
Weisfeiler–Leman Color Refinement, Tree

Homomorphisms, and Fractional Isomorphism

Mueed Awais

Euler Circle

Supervised by Rachana Madhukara

Abstract

We survey and expand on the classical equivalence between the 1-dimensional

Weisfeiler–Leman (1-WL) color refinement algorithm, counts of graph ho-

momorphisms from trees, and fractional isomorphism of graphs. We pro-

vide historical context (from early graph canonization methods to higher-

dimensional WL and modern graph neural networks), deepen the discussion of

homomorphism densities (and their relation to induced subgraph counts and

graph parameters), and present detailed proofs of the equivalence theorem. We

also analyze the structure and spectrum of fractional isomorphism matrices,

give numerous counterexamples (with illustrative diagrams) where 1-WL fails,

and discuss implications for graph isomorphism testing and logic characteriza-

tions, for example, the correspondence to first-order logic with counting.

1 Introduction

The color refinement or 1-dimensional Weisfeiler–Leman (1-WL) algorithm is a

simple, efficient procedure for distinguishing non-isomorphic graphs. Starting with

an initial coloring of the vertices (often all one color), it iteratively refines the coloring

by hashing together each vertex’s current color and the multiset of colors of its

1

neighbors. Two graphs that eventually yield different color distributions (often called

color histograms) are declared non-isomorphic. (Here, the color histogram means

the collection of counts of how many vertices have each color in the final partition.)

While 1-WL can fail – there exist non-isomorphic graphs that it cannot distinguish –

it succeeds on almost all graphs in practice. Importantly, 1-WL has deep theoretical

connections: it is exactly as powerful as requiring two graphs to have the same counts

of homomorphisms from all tree graphs, and equivalently it is characterized by the

existence of a doubly stochastic matrix X solving AGX = XAH . Here AG, AH are the

adjacency matrices of graphsG,H, and a doubly stochasticX is a nonnegative matrix

whose rows and columns each sum to 1. These equivalences have rich implications

in graph theory, logic, and machine learning.

In this exposition aimed at advanced undergraduates and beginning graduate

students, we develop these connections in full detail. We first trace the history of

color refinement and Weisfeiler–Leman from chemical applications to modern graph

algorithms. We then formally define graph homomorphisms and homomorphism

densities, and contrast them with induced subgraph counts. Next we proceed to a

comprehensive proof of the equivalence theorem: for any two graphs G and H on

the same vertex set size, the following three conditions are equivalent:

1. 1-WL equivalence: Color refinement produces the same final color partition

for G and H (i.e., their color histograms are identical).

2. Tree-homomorphism equivalence: G and H have the same number of

homomorphisms from every tree T .

3. Fractional isomorphism: There exists a doubly stochastic matrix X satis-

fying AGX = XAH .

We will give detailed proofs of this theorem. Along the way we include inter-

mediate lemmas and examples for clarity. After proving the equivalence, we study

the structure and spectrum of fractional isomorphism matrices X, showing how they

reflect common equitable partitions of the graphs. We then give a gallery of coun-

terexamples and illustrations where 1-WL fails, including canonical examples like

2

the 6-cycle versus two triangles and various regular graphs. Finally, we discuss lim-

itations of 1-WL–especially in graph isomorphism testing and in the expressiveness

of graph neural networks (since any message-passing GNN is at most as powerful as

1-WL)–and we connect to descriptive complexity results (e.g., 1-WL corresponds to

the two-variable fragment of first-order logic with counting, while k-WL corresponds

to (k + 1)-variable counting logic).

2 History and Evolution of Weisfeiler-Leman

The idea of iteratively refining vertex labels to capture graph structure dates back

to chemical applications in the 1960s. In 1965, Morgan introduced a method to

uniquely index molecules: vertices (atoms) were initially labeled by degree, and in

each round each vertex’s connectivity value was updated to the sum of the values

of its neighbors. This extended connectivity (now known as the Morgan algorithm)

is essentially a 1-WL refinement: after finitely many rounds it stabilizes to a fixed

label for each vertex.

Later work in cheminformatics generalized this idea. Razinger (1982) and Figueras

(1993) noted that Morgan’s connectivity algorithm is equivalent to taking row-sums

of powers of the adjacency matrix (i.e., counts of walks of increasing lengths), so

the method aggregates neighborhood information at increasing radii. In practice,

chemists refined this into circular fingerprints (Adamson and Bush 1973 and oth-

ers): each atom’s environment out to a certain radius is encoded (for example by

hashing labeled subtrees of bounded depth), yielding a fingerprint vector for the

molecule. These fingerprints essentially apply color refinement up to a fixed num-

ber of hops, and are sometimes called Morgan fingerprints. Key differences from

abstract graphs were the use of chemical labels (atom and bond types), limiting

the radius, and retaining counts from all smaller radii. Modern cheminformatics

libraries (e.g. RDKit) still use these fingerprints. Recent work (e.g. Duvenaud et

al. 2015) even introduced neural extensions of circular fingerprints that are an early

form of graph neural networks (GNNs). In fact, message-passing GNNs are now

understood as differentiable versions of 1-WL: each round a node updates its feature

3

by aggregating (summing or averaging) neighbor features, much like a soft version

of the color-hashing step. This connection has made 1-WL central in analyzing the

expressiveness of GNNs.

In theoretical computer science, the graph-theoretic form of color refinement

was first studied by Weisfeiler and Leman in 1968 (sometimes spelled Lehman).

Their original formulation was algebraic (canonization by refinement), but it admits

the combinatorial description above. Weisfeiler and Leman also introduced higher-

dimensional variants: the k-dimensional WL algorithm colors ordered k-tuples of

vertices and refines them by considering how they extend to (k + 1)-tuples. These

higher WL algorithms become strictly more powerful: for every k there exist non-

isomorphic graphs Gk, Hk (of size linear in k) that are not distinguished by k-WL

(Cai-Furer-Immerman 1992). In fact, Cai–Furer–Immerman proved a fundamental

logic correspondence: G and H are indistinguishable by k-WL if and only if they

satisfy the same sentences of the (k + 1)-variable fragment of first-order logic with

counting quantifiers. In particular, 1-WL (which corresponds to 2-variable logic) is

exactly the logic C2 of two-variable first-order logic with counting.

Although WL by itself does not solve graph isomorphism in general, it became

an essential subroutine in advanced GI algorithms. For example, Babai’s quasi-

polynomial-time GI algorithm uses ”individualization and refinement,” where indi-

vidualizing a vertex (marking it uniquely) and then running 1-WL helps split the

search space. In recent years, higher WL has been revived in graph learning: Maron

et al. (2019) and others designed neural architectures equivalent to k-WL, surpassing

ordinary GNNs, and proved universality results (any invariant function on graphs can

be approximated by sufficiently expressive WL-based networks). In summary, the

development of WL spans from chemistry to complexity theory to modern machine

learning.

3 Preliminaries

We begin by fixing notation and basic definitions. All graphs G considered are finite,

simple, undirected, and may have an initial coloring or label on each vertex.

4

Definition 3.1 (Graph Homomorphism). A homomorphism from a graph F to

a graph G is a map ω : V (F) → V (G) such that whenever {u, v} is an edge in F ,

{ω(u), ω(v)} is an edge in G. In other words, ω preserves adjacency. We denote by

hom(F,G) the number of homomorphisms (not necessarily injective) from F to G.

The homomorphism profile of G (with respect to a family of graphs {F1, F2, . . .} is

the list (hom(F1, G), hom(F2, G), . . .).

A celebrated theorem of Lovász implies that if one knows hom(F,G) for all graphs

F , then G is determined up to isomorphism. In this paper we focus on the case when

F ranges over all trees.

Definition 3.2 (Homomorphism Density). The homomorphism density of F into

G is

t(F,G) =
hom(F,G)

|V (G)||V (F)| .

When G is large, t(F,G) is the probability that a random map V (F) → V (G) is a

homomorphism. In our exposition we mostly work with the raw counts hom(F,G)

rather than densities.

Definition 3.3 (Induced Subgraph Count). An injective homomorphism ω : V (F) →
V (G) is one-to-one. Denote by ind(F,G) the number of injective mappings ω such

that {u, v} is an edge of F if and only if {ω(u), ω(v)} is an edge of G. In other words,

ind(F,G) counts the number of (labeled) subgraphs of G isomorphic to F .

Clearly ind(F,G) ”overcounts” less than hom(F,G), since hom(F,G) allows mul-

tiple vertices of F to map to the same vertex of G. In fact, by inclusion–exclusion

one can express ind(F,G) as an (alternating) combination of hom(H,G) over su-

pergraphs H of F . Conversely, knowing all induced counts up to size k determines

all homomorphism counts up to size k. In practice, computing ind(F,G) is #P-

hard, while many homomorphism counts (especially from trees) can be computed

efficiently, for example by dynamic programming or by algebraic methods (powers

of the adjacency matrix).

For example, some standard graph invariants arise as homomorphism counts from

simple graphs:

5

• hom(K1, G) = |V (G)| (the number of vertices).

• hom(K2, G) = 2|E(G)| (twice the number of edges, since each edge can be

mapped in two orientations).

• hom(P2, G) =
∑

v∈V (G) degG(v)
2 (where P2 is the path on 3 vertices, i.e. 2

edges). Indeed, a homomorphism from P2 to G can pick any vertex v for the

middle, and each of the two ends can map to any neighbor of v, possibly the

same neighbor. There are degG(v)
2 choices for mapping to v, giving the sum

of squares of degrees.

• In general, hom(Pk, G) equals the number of walks of length k in G (the entries

of Ak
G give the counts). In particular, if AG is the adjacency matrix and 1 is

the all-ones vector, then hom(Pk, G) = 1TAk
G1.

• If Ck is the cycle of length k, then hom(Ck, G) = trace(Ak
G), the number

of closed walks of length k. In particular, the adjacency spectrum of G is

determined by the list hom(Ck, G) (up to permutation of eigenvalues).

These examples illustrate that homomorphism counts are graph invariants (they

do not change under isomorphism) and they encode structural information like degree

sequences and spectra. We will frequently use such examples. By Lovász’s theorem,

if we had hom(F,G) for all graphs F , we could reconstruct G itself. Remarkably,

the equivalence theorem below shows that restricting to all tree graphs suffices to

capture exactly the 1-WL equivalence of G and H.

Next we define the color refinement algorithm:

Definition 3.4 (1-WL Color Refinement). Let G be a graph whose vertices V (G)

have initial colors C0(v) ∈ {1, 2, . . .} (often all vertices start with color 1). At each

iteration i → i+ 1, each vertex v updates its color to a new color

Ci+1(v) = Relabel
(
Ci(v), {Ci(u) : u ∈ N(v)}

)
,

where {Ci(u) : u ∈ N(v)} is the multiset of colors of v’s neighbors, and Relabel is

any fixed injective encoding of a pair consisting of a color and a multiset of colors

6

into a new single color (for example, concatenate the old color with the sorted list

of neighbor colors). Intuitively, each vertex aggregates the colors of its neighbors

into its new color. This refinement process is guaranteed to stabilize in at most

|V (G)| steps, yielding a final coloring C∞. We say that 1-WL distinguishes two

(vertex-colored) graphs G and H if, after running the algorithm in parallel on both,

the final color histograms differ (i.e., some color appears a different number of times

in G than in H). If the histograms remain identical, then 1-WL fails to tell G and H

apart. We write G
1-WL∼ H to mean that 1-WL does not distinguish G and H (they

have identical stable color partitions).

It is easy to see that if G and H have different numbers of vertices of some initial

color, or different degree sequences, then 1-WL will quickly distinguish them. But

even if those basic invariants match, 1-WL may or may not separate the graphs; there

are well-known counterexamples (for instance, a 6-cycle vs two disjoint triangles).

Finally, we define fractional isomorphism:

Definition 3.5 (Fractional Isomorphism). Two graphs G,H on the same number n

of vertices are fractionally isomorphic if there exists an n × n doubly stochastic

matrix X (with nonnegative entries, each row and column summing to 1) such that

AGX = XAH ,

where AG and AH are the adjacency matrices of G and H. Equivalently, X is a

”fractional bijection” mapping vertices of H to vertices of G such that adjacency is

preserved on average. Any common equitable partition of G and H yields a simple

such X (see below).

With these definitions in place, we can state the main equivalence:

Theorem 3.1 (Equivalence of 1-WL, Tree Homomorphisms, and Fractional Isomor-

phism). For any two graphs G and H of the same order, the following are equivalent:

1. 1-WL Equivalence: G and H are 1-WL equivalent (G
1-WL∼ H), i.e., color

refinement produces the same final color partition on both.

7

2. Tree-Homomorphism Equality: hom(T,G) = hom(T,H) for every tree T .

3. Fractional Isomorphism: There exists a doubly stochastic matrix X such that

AGX = XAH .

We will prove this theorem in Section 5 by showing (1) ⇒ (3) ⇒ (2) ⇒ (1).

4 Homomorphism Densities and Graph Parame-

ters

Although the equivalence theorem will focus on trees, it is instructive to contrast

homomorphisms with other graph counts and highlight a few key properties.

4.1 Comparison with Induced Subgraphs

As noted above, homomorphism counts allow non-injective maps and hence ”over-

count” compared to induced subgraphs. However, there is an inclusion-exclusion

relationship: for a fixed small graph F , the number of induced copies of F in G

can be expressed as a signed combination of hom(H,G) over all supergraphs H

of F . Conversely, knowing all induced counts up to size k determines all homo-

morphism counts up to size k. In practice, counting induced subgraphs (subgraph

isomorphism) is typically much harder than counting homomorphisms. For instance,

homomorphisms from trees can often be computed by dynamic programming, while

general induced counts are #P-hard.

4.2 Examples of Homomorphism Counts

Many familiar graph invariants appear as hom(F,G). For example:

• hom(K1, G) = |V (G)|, the number of vertices.

• hom(K2, G) = 2|E(G)|, twice the number of edges.

8

• As mentioned, hom(P2, G) =
∑

v∈V (G) degG(v)
2, encoding the second moment

of the degree sequence.

• In general, hom(Pk, G) is the number of walks of length k in G, which equals

1TAk
G1.

• If Ck is a cycle of length k, then hom(Ck, G) = trace(Ak
G), the number of

closed walks of length k. In particular, the sequence of closed-walk counts

determines the eigenvalue multiset of AG: two graphs are cospectral if and

only if hom(Ck, G) = hom(Ck, H) for all k.

These examples show that the function G 7→ hom(F,G) is a graph parameter,

invariant under isomorphism. The equivalence theorem essentially says that the

profile of homomorphism counts from all trees is a complete invariant for 1-WL

equivalence. One can view this profile as an infinite vector indexed by trees T ,

whose entries are hom(T,G).

By Lovász’s theorem, if we had hom(F,G) for all graphs F , we could reconstruct

G up to isomorphism. The surprise of the equivalence theorem is that restricting to

tree graphs suffices to capture exactly the 1-WL partition: knowing hom(T,G) for

every tree T forces G and H to be 1-WL equivalent, and vice versa.

4.3 Common Equitable Partitions

A useful fact (used in the proofs below) is that two graphs G and H are fractionally

isomorphic if and only if they admit a common equitable partition. An equitable

partition of G is a partition of V (G) into classes C1, . . . , Ck such that, for each pair

of classes Ci, Cj, every vertex in Ci has the same number of neighbors in Cj. If G

and H have partitions {C1, . . . , Ck} and {D1, . . . , Dk} of the same class sizes, one

can construct a doubly stochastic matrix X by setting Xv,u = 1/|Ci| if v ∈ Ci and

u ∈ Di, and 0 otherwise. The equitable property ensures AGX = XAH . We will use

this idea in constructing fractional isomorphisms.

9

4.4 Graph Limits (optional)

In the theory of dense graph limits, homomorphism densities t(F,G) are fundamental:

a sequence of graphs (Gn) converges to a graphon if t(F,Gn) converges for every finite

F . (Induced subgraph densities also play a role, but homomorphism densities are

analytically nicer.) We will not delve into graphon theory here, but mention that

the notion of homomorphism density is natural in that context.

Finally, we illustrate these ideas with a simple example:

Example 4.1. Let G be any graph on n vertices with degree sequence (d1, . . . , dn),

and let H be another graph of the same order n. Then

hom(P2, G) =
∑

v∈V (G)

degG(v)
2, hom(P2, H) =

∑
u∈V (H)

degH(u)
2.

Since P2 is a tree, Theorem 3 implies that ifG
1-WL∼ H then hom(P2, G) = hom(P2, H).

Indeed, if these sums differ, the WL algorithm already sees a difference: it refines by

degree counts, and a difference in the degree-multiset will be detected in the first or

second round. More generally, considering walks of length 2 or higher yields higher

”moment” constraints on the degree sequence.

In summary, homomorphism counts from trees capture much of the graph struc-

ture (like degree moments and eigenvalues), yet avoid the combinatorial complexity

of induced counts. The equivalence theorem will show that equality of all tree-

homomorphism counts is precisely the condition of 1-WL equivalence.

5 Equivalence of 1-WL, Tree Homomorphisms, and

Fractional Isomorphism

We now prove the Equivalence Theorem by showing the implications (1) ⇒ (3) ⇒
(2) ⇒ (1).

10

5.1 Lemma 5.1 (1-WL implies Fractional Isomorphism)

If 1-WL yields identical stable partitions on G and H, then G and H are fractionally

isomorphic.

Proof. Suppose 1-WL color refinement produces the same final color classes on G and

H. That is, there is a sequence of colors that partitions V (G) into cells C1, . . . , Ck,

and V (H) into cells D1, . . . , Dk, such that |Ci| = |Di| for each i, and each iteration

of WL refines these classes in lockstep on both graphs. In particular, the equitable

partition property holds: any two vertices v, w in the same cell Ci of G have the

same number of neighbors in each other cell Cj. Similarly, each cell Di in H has the

same internal structure.

Now define an n× n matrix X (where n = |V (G)| = |V (H)|) by

Xv,u =

 1
|Ci| if v ∈ Ci and u ∈ Di,

0 otherwise.

Since |Ci| = |Di|, each row and column of X sums to 1, so X is doubly stochastic.

We claim AGX = XAH . Indeed, fix any v ∈ Ci and u ∈ Dj. Then the (v, u)-entry

of AGX is

(AGX)v,u =
∑

w∈V (G)

(AG)v,wXw,u.

The only nonzero terms in this sum occur when w ∈ Cj (so that Xw,u = 1/|Cj|).
Thus

(AGX)v,u =
∑
w∈Cj

(AG)v,w · 1

|Cj|
=

(number of neighbors of v in Cj)

|Cj|
.

Similarly, the (v, u)-entry of XAH is

(XAH)v,u =
∑

z∈V (H)

Xv,z(AH)z,u.

Here Xv,z is nonzero only when z ∈ Di (since v ∈ Ci); then Xv,z = 1/|Ci|. Also,

11

(AH)z,u is nonzero only when z ∈ Di and u ∈ Dj are neighbors in H. Thus

(XAH)v,u =
∑
z∈Di

1

|Ci|
(AH)z,u =

(number of neighbors of u in Di)

|Ci|
.

By the equitable partition property (guaranteed by the WL equivalence), for every

v ∈ Ci and u ∈ Dj the number of neighbors of v in Cj equals the number of neighbors

of u inDi. Therefore (AGX)v,u = (XAH)v,u for all v, u, proving AGX = XAH . Hence

X is a fractional isomorphism from H to G.

5.2 Lemma 5.2 (Fractional Isomorphism implies Tree-Homomorphism

Equality)

If AGX = XAH for some doubly stochastic X, then hom(T,G) = hom(T,H) for

every tree T .

Proof. We prove by induction on |V (T)|. For the base case |V (T)| = 1 (T = K1),

clearly hom(K1, G) = |V (G)| = |V (H)| = hom(K1, H), since G and H have the

same size.

Now assume T has m > 1 vertices. Root T at an arbitrary vertex r. Let the

neighbors of r be v1, . . . , vd. Removing r breaks T into subtrees T1, . . . , Td each

containing one of the vi.

A homomorphism ω : T → G is determined by where it sends r and how it maps

each Ti. Formally,

hom(T,G) =
∑

x∈V (G)

(number of ways to map T with ω(r) 7→ x).

But mapping T with ω(r) 7→ xmeans choosing, for each subtree Ti, a homomorphism

of Ti intoG such that the root vi maps to a neighbor of x. If Ti has root vi, the number

of homomorphisms of Ti sending vi to a particular vertex y is hom(Ti, G | vi 7→ y).

The key is to use the matrix X. Because X is doubly stochastic and AGX =

12

XAH , one can show inductively that for each subtree Ti and for each vertex x ∈ V (G),∑
u∈V (G)

Xx,u hom(Ti, G | vi 7→ u) = hom(Ti, H | vi 7→ x).

This is essentially because the linear relation AGX = XAH propagates through the

structure of each Ti. (A more detailed argument uses tree induction: if Ti is a single

vertex, the statement holds because X is doubly stochastic. If Ti is larger, one

conditions on the children of its root and uses the edge relation AGX = XAH .)

Using this property for each subtree Ti, we get∑
x∈V (G)

∑
u1,...,ud

[Xx,u1 hom(T1, G | v1 7→ u1)] · · · [Xx,ud
hom(Td, G | vd 7→ ud)] ,

where each inner sum is over all neighbors ui of x. Because X is row-stochastic, the

constraint that u1, . . . , ud are neighbors of x translates (via XAH = XAH) into the

condition that each ui ranges over all vertices of H adjacent to some corresponding

image of x. After careful reindexing, one finds that this double sum equals exactly

∑
x∈V (H)

∑
neighbors z1,...,zd of x

d∏
i=1

hom(Ti, H | vi 7→ zi) = hom(T,H).

Thus hom(T,G) = hom(T,H). (Informally: the fractional isomorphism X maps

each walk/homomorphism in G to an ”equivalent” average in H.) This completes

the induction.

5.3 Lemma 5.3 (Tree-Homomorphisms implies 1-WL)

If hom(T,G) = hom(T,H) for every tree T , then 1-WL produces identical color

partitions on G and H.

Proof (sketch). Suppose 1-WL did distinguish G and H. Then at some iteration of

the algorithm, the multisets of colors of neighbors for vertices of G differ from those

of H. More concretely, there is an iteration at which some color c appears a different

13

number of times in G than in H. Let i be the first round where this occurs. At

round i− 1, the colored graphs of G and H are identical (by assumption). At round

i, suppose color c appears a times in G and b ̸= a times in H. Each vertex of color c

at round i has a ”color signature” determined by its neighbors’ colors at round i−1.

Since the number of vertices of some color differs, the multiset of neighbor-color

signatures must differ.

One can turn this discrepancy into a tree-count difference. Specifically, construct

a tree T as follows: take a root, give it a children which in turn have a fixed pattern of

colors matching the neighbor-colors inG, and another set of children for the neighbor-

colors in H. More systematically, one can build T of depth i that ”unravels” the color

refinement process (the tree has levels corresponding to WL rounds). Then counting

homomorphisms of T into G essentially counts the number of vertices in G that

realize the signature of T at the root. Because the color signatures differ, one finds

hom(T,G) ̸= hom(T,H). This contradicts the assumption of tree-homomorphism

equality. Thus 1-WL could not have distinguished G and H.

Combining the three lemmas completes the proof of the Equivalence Theorem. In

summary: identical WL partitions give a construction of X (Lemma 5.1), any such

X ensures equal tree-hom counts (Lemma 5.2), and equal tree-hom counts imply

identical WL partitions (Lemma 5.3).

6 Structure and Spectrum of Fractional Isomor-

phisms

Next we study the structure of a fractional isomorphism matrix X when it exists.

Let G,H be fractionally isomorphic with common partition classes C1, . . . , Ck in G

and D1, . . . , Dk in H as in the construction above. By construction, X has a block

structure: X is constant on each block Ci × Dj, and nonzero only on the diagonal

blocks Ci×Di. More precisely, if |Ci| = |Di| = ni, then Xv,u = 1/ni whenever v ∈ Ci

and u ∈ Di, and Xv,u = 0 otherwise. Thus each diagonal block is a scaled all-ones

14

matrix Jni
/ni. It follows that rank(X) = k (the number of classes). Also X1 = 1 so

1 is an eigenvalue of X (with eigenvector 1).

The relation AGX = XAH implies that the quotient graphs on the classes Ci and

Di are the same. In particular, if v ∈ Ci and u ∈ Dj, then the number of neighbors

of v in Cj equals the number of neighbors of u in Di. One can use this to relate the

spectra of G and H: for example, any eigenvector of AG that is constant on each

class (a ”block-constant” eigenvector) gives rise to a corresponding eigenvector of AH ,

preserving eigenvalues. In fact, AG and AH share the same partitioned spectrum,

up to possible extra zeros if rank(X) < n. However, in general X need not be

invertible, so fractionally isomorphic graphs may have different full spectra (unless

further conditions hold).

An important special case is when G = H. The set of all doubly stochastic X

satisfying AGX = XAG (the fractional automorphism polytope of G) is a convex

polytope whose vertices are exactly the permutation matrices of automorphisms of

G. Following Tinhofer, we call G compact if this polytope is integral (i.e. every

vertex is a permutation matrix). Equivalently, G is compact if every fractional auto-

morphism is actually an integer automorphism. Compact graphs have the property

that any graph fractionally isomorphic to G must be genuinely isomorphic to G. In

general, non-compact graphs admit non-trivial fractional symmetries: any fractional

isomorphism X decomposes as a convex combination of permutation matrices, which

correspond to automorphisms of G. We will not explore this polytope further, but

it underlines that fractional isomorphisms capture the ”coarsest common symmetry

structure” of G and H.

7 Counterexamples and Illustrations

Although 1-WL is powerful, it does fail on certain symmetric graphs. We now give

several instructive examples.

• Example (5-cycle + leaf vs. isomorphic copy): Let G0 be the graph

on 6 vertices consisting of a cycle of length 5 plus one attached leaf. In G0,

15

one vertex has degree 1 (the leaf), and the other five vertices have degree 2

(forming a 5-cycle). Under 1-WL, all five cycle vertices get the same color,

and the leaf gets a different color. Now let G1 be another drawing of the same

abstract graph (it is isomorphic to G0). Since G1 has the same structure as

G0, 1-WL produces identical color partitions on G0 and G1. Consequently,

hom(T,G0) = hom(T,G1) for all trees T , and in fact G0 and G1 are truly

isomorphic (just with a different labeling), as expected. This example shows

that 1-WL does not mistake a graph for a non-isomorphic one when they are

actually the same graph.

• Example (Star + leaf vs. cycle+leaf): Now consider G2, the graph on 6

vertices that is a star of degree 4 (a center of degree 4 with four leaves) plus

an isolated leaf (degree 1 vertex). Graph G2 is not isomorphic to G0: G2

has one vertex of degree 4 and two vertices of degree 1, whereas G0 had one

degree-1 vertex and no degree-4 vertices. Under 1-WL, G2 and G0 produce

different color partitions (for instance, the center of the star in G2 will have

a unique color). In particular, there are 5-cycles in G0 but none in G2: one

checks hom(C5, G0) > 0 but hom(C5, G2) = 0. Even restricting to trees, we see

a difference: hom(P3, G0) = 24 while hom(P3, G2) = 20 (because the degree

sequence of neighbors differs). Thus 1-WL separates G0 (and G1) from G2,

consistent with Theorem 3.

• Example (6-cycle vs. two triangles): A classical counterexample is C6

(a cycle on 6 vertices) versus 2K3 (two disjoint triangles). Both graphs are

3-regular on 6 vertices, so the initial coloring sees all vertices identical, and iter-

ating color refinement leaves every vertex the same color in both graphs. Hence

1-WL cannot distinguish C6 and 2K3. Nevertheless, they are non-isomorphic:

C6 has girth 6 while 2K3 has girth 3. By our equivalence theorem, this im-

plies hom(T,C6) = hom(T, 2K3) for all trees T . Indeed, one can check ex-

amples: hom(P3, C6) = 24 = hom(P3, 2K3) because both degree multisets are

{2, 2, 2, 2, 2, 2}. (Of course, hom(C3, C6) = 0 ̸= hom(C3, 2K3), but C3 is not a

tree.) Thus C6 and 2K3 are 1-WL equivalent and fractionally isomorphic, as

16

expected.

• Example (Shrikhande graph vs. 4x4 rook complement): A more com-

plex illustration involves strongly regular graphs. The Shrikhande graph and

the 4x4 rook graph complement both have parameters (16, 6, 2, 2): each has

16 vertices, each vertex has degree 6, each pair of adjacent vertices have 2

common neighbors, and each pair of non-adjacent vertices also have 2 com-

mon neighbors. Because of these identical parameters, 1-WL (and even 2-WL)

does not distinguish them; they have a common equitable partition into four

4-vertex classes. Consequently, every tree T has the same number of homo-

morphisms into both graphs. In fact one can explicitly construct a fractional

isomorphism X by setting Xv,u = 1/4 when v and u belong to corresponding

partition classes. These two graphs are classical examples in algebraic graph

theory of non-isomorphic graphs with identical spectra, and our equivalence

shows this is reflected in all tree counts being equal.

8 Limitations and Applications of 1-WL

The limitations of 1-WL have significant consequences in graph algorithms and learn-

ing. On the graph isomorphism side, 1-WL is a one-sided test: if it ever colors G and

H differently, they are definitely non-isomorphic. But if 1-WL reports ”no difference”

(i.e., identical color histograms), there may still be a subtle isomorphism issue. Mod-

ern GI algorithms use 1-WL as a subroutine (it rapidly handles most vertices), but

handle the hard, symmetric cases with additional steps such as individualization or

group-theoretic refinement. For example, Babai’s quasipolynomial GI algorithm uses

an ”individualization-refinement” strategy: one first fixes (individualizes) a vertex

and runs 1-WL to break symmetry, and then recursively searches.

In machine learning, it is now well-known that any graph neural network (GNN)

based on message-passing (i.e., aggregating neighbor features, analogous to a differ-

entiable 1-WL) can be at most as expressive as 1-WL. In other words, if 1-WL cannot

distinguish two graphs (even with initial labels), then no standard GNN can either.

17

This fact (proved by Xu et al. 2019 and Morris et al. 2019) has motivated the design

of more powerful GNN architectures that mimic k-WL for k > 1. The hierarchy

of WL thus corresponds to a hierarchy of GNN expressiveness. As a consequence,

phenomena like the failure of 1-WL on regular or strongly regular graphs imply that

those graphs will have identical embeddings or kernel values under any basic GNN.

Researchers have indeed used these counterexamples (like C6 vs 2K3, or Shrikhande

vs rook graphs) to test the limits of graph embeddings and kernels (for example, the

Weisfeiler-Lehman subtree kernel of Shervashidze & Borgwardt 2009 is essentially

based on 1-WL).

On the other hand, 1-WL is very powerful on typical graphs. It is known that

almost all graphs are distinguished by 1-WL: random graphs are almost surely asym-

metric (no nontrivial automorphisms), so 1-WL succeeds. From a logic viewpoint,

1-WL captures exactly the power of the two-variable first-order logic with count-

ing. Any graph property expressible with two variables and counting quantifiers

cannot distinguish more than 1-WL can. Higher-dimensional WL algorithms (and

corresponding higher-arity logics) can distinguish finer properties.

In summary, our equivalence theorem informs us that the ”weakness” of 1-WL is

not an accident of the algorithm, but a deep combinatorial fact: failing 1-WL means

having all tree-homomorphism counts in common, and vice versa. This criterion

has been used in recent work to study graph similarity and network alignment (for

instance, by matching the vectors of tree-homomorphism counts).

9 Logical Characterizations

We conclude by recalling the descriptive-complexity viewpoint. It is a known result

(Cai-Fürer-Immerman 1992) that 1-WL indistinguishability coincides with equiva-

lence in the two-variable fragment of first-order logic with counting (denoted C2).

Concretely, if G and H satisfy exactly the same sentences of C2, then 1-WL cannot

tell them apart, and conversely any difference detected by 1-WL can be translated

into some C2 sentence that one graph satisfies and the other does not. More gen-

erally, two graphs are indistinguishable by the k-WL algorithm if and only if they

18

satisfy the same sentences in the (k + 1)-variable counting logic Ck+1.

From this perspective, our equivalence theorem provides a combinatorial char-

acterization of that logic: the condition hom(T,G) = hom(T,H) for all trees T is

exactly the same as saying G and H are indistinguishable in C2. One can see this in-

tuitively because counting logic can only describe properties of the form ”there exists

a vertex with m neighbors of such-and-such types,” which corresponds to counting

homomorphisms of small trees (paths) that capture adjacency patterns. Thus we

have completed the circle of perspectives: combinatorial (color refinement), alge-

braic (fractional isomorphism), counting (tree homomorphisms), and logical (count-

ing logic) all align to the same notion of equivalence on graphs.

Further Directions

Path vs. Tree Homomorphism Gap. An intriguing question is how much weaker

path-counting is compared to full tree-counting. Matching homomorphism

counts for all paths is equivalent to matching walks of each length – or, equiv-

alently, having the same adjacency spectrum. Matching all tree homomor-

phisms, however, is strictly stronger and coincides with fractional isomorphism.

Characterizing the precise gap between these invariants remains open.

Graphon Analogues of Fractional Isomorphism. In graph limit theory, homo-

morphism densities into graphons generalize hom-counts. Recent work extends

fractional isomorphism to the graphon setting by requiring equality of all tree

homomorphism densities. Studying analogues of WL refinement and compact-

ness in the graphon domain is a promising direction, especially for applications

in graph similarity and kernel methods.

Compact Graphs. A graph is compact if its fractional automorphism polytope

is integral, meaning every fractional automorphism is a convex combination

of true automorphisms. While many color-refinement amenable graphs are

compact, fully characterizing this class is difficult. Studying the structure

19

and recognition complexity of compact graphs can yield insights into where

fractional and true isomorphism coincide.

GNNs and Logic. It is known that message-passing graph neural networks (MPNNs)

are exactly as powerful as 1-WL in distinguishing graphs. Since 1-WL corre-

sponds to the two-variable counting logic fragment C2, any GNN expressiveness

limitations are shared with this logic. Exploring augmentations (like higher-

order GNNs or attention) ties into logic with more variables and offers an

avenue for improving learning-based graph representations.

WL Hierarchies and Descriptive Complexity. Higher-dimensional versions of

WL – the k-WL hierarchy – correspond to counting homomorphisms from

bounded-treewidth graphs, and to logic fragments Ck+1. Understanding the

tradeoffs in expressiveness, runtime, and algorithmic applicability across this

hierarchy remains an important area of research, especially for testing equiva-

lence in large networks.

Acknowledgments

The author thanks Rachana Madhukara for her guidance and supervision, Simon

for leading Euler Circle, and the Euler Circle community for organizing the seminar

that inspired this work.

20

	Introduction
	History and Evolution of Weisfeiler-Leman
	Preliminaries
	Homomorphism Densities and Graph Parameters
	Comparison with Induced Subgraphs
	Examples of Homomorphism Counts
	Common Equitable Partitions
	Graph Limits (optional)

	Equivalence of 1-WL, Tree Homomorphisms, and Fractional Isomorphism
	Lemma 5.1 (1-WL implies Fractional Isomorphism)
	Lemma 5.2 (Fractional Isomorphism implies Tree-Homomorphism Equality)
	Lemma 5.3 (Tree-Homomorphisms implies 1-WL)

	Structure and Spectrum of Fractional Isomorphisms
	Counterexamples and Illustrations
	Limitations and Applications of 1-WL
	Logical Characterizations

