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Why I Chose This Topic

Many math research papers are highly niche and lack real-world
connection.

These topics often feel distant unless pursued academically long-term.

I wanted something broadly relatable—tied to real-life experiences.

But I also wanted mathematical depth and complexity.

Linear programming offers both: real applications and rich theory.

Today’s talk is high-level, but my paper includes deeper proofs,
algorithms, and extended applications.
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Introduction

What is Linear Programming (LP)?

Linear Programming (LP) optimizes a linear objective function
subject to linear constraints.
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Introduction

Example: Shipping Cost Minimization

A company ships from 2 factories (F1, F2) to 3 warehouses (W1, W2,
W3).
Cost matrix:

W1 W2 W3

F1 4 6 8

F2 5 4 3

F1 can ship 70 units, F2 can ship 30. Warehouse demands: W1 (30), W2
(30), W3 (40).
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Introduction

Solving the Shipping Problem

Objective: Minimize total cost.
Let xij be units shipped from factory i to warehouse j .
Formulation:

min 4x11 + 6x12 + 8x13 + 5x21 + 4x22 + 3x23

Subject to:

x11 + x12 + x13 = 70

x21 + x22 + x23 = 30

x11 + x21 = 30

x12 + x22 = 30

x13 + x23 = 40

xij ≥ 0

Optimal Solution: x11 = 30, x12 = 30, x23 = 40 with cost = $420.
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Introduction

Example: Diet Optimization

Goal: Choose two foods to satisfy nutrition at minimal cost.
Variables: x1 = servings of Food A, x2 = servings of Food B
Constraints:

2x1 + x2 ≥ 30 (Protein)

4x1 + 3x2 ≥ 50 (Carbs)

x1 + 2x2 ≤ 40 (Fat)

x1, x2 ≥ 0

Objective: Minimize 1.5x1 + 2x2
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Introduction

Diet Problem Solution (Graphical)

Feasible region formed by intersecting constraints.

Corner points evaluated:

Optimal at x1 = 10, x2 = 10 ⇒ Cost = 1.5(10) + 2(10) = 35

Interpretation: Eat 10 servings of each food to minimize cost.
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Introduction

Historical Background

1939: Kantorovich optimizes Soviet industrial planning with LP.

1947: George Dantzig invents the Simplex method for military
logistics.

LP grows into a cornerstone of modern optimization.

Today: LP powers algorithms in scheduling, AI, economics, and robotics.
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Introduction

Real-World Motivations

Logistics: Minimize transportation costs from factories to
warehouses.

Finance: Allocate investments to maximize returns under risk.

Robotics: Plan robot arm movements while avoiding obstacles.

Manufacturing: Maximize profit given resource and labor limits.
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Mathematical Foundations

Mathematical Foundations
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Mathematical Foundations

Geometric Interpretation

LP feasible region is a convex polyhedron formed by intersecting
half-spaces.

The optimal solution lies at a vertex of this region.

Convexity ensures any local optimum is global.

Constraints define half-planes → intersection is convex region.

LP objective is linear → best value lies on a vertex.

You don’t need to test every point, just the corners.

0.4375x1 + x2 ≤ 4

x2 ≥ 0

x1 ≥ 0

3x1 + x2 ≤ 12

Optimal

x1

x2

Feasible Region
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Mathematical Foundations

The Simplex Method

Starts at an initial vertex (basic feasible solution).

Moves along edges improving the objective.

Stops when no direction improves → optimal vertex.

Finite, but worst-case exponential (Klee-Minty).

Theorem: If the simplex algorithm terminates at a basic feasible solution,
that solution is optimal.
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Mathematical Foundations

Klee-Minty Cube: Worst Case for Simplex

LP where Simplex visits all 2n vertices.

In 3D:

0 ≤ x1 ≤ 1

ϵx1 ≤ x2 ≤ 1− ϵx1

ϵx2 ≤ x3 ≤ 1− ϵx2

Objective: Maximize x3

Lesson: LP is easy in practice, but simplex isn’t always fast in theory.
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Mathematical Foundations

Klee-Minty Cube: Diagram

Constructs distorted hypercube with exponential path for simplex.

Demonstrates exponential worst-case.

Theorem: There exist LPs where simplex visits all 2n vertices.

x1

x2

x3

Figure 1: Distorted hypercube for the Klee-Minty LP example in three dimensions.
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Mathematical Foundations

Interior-Point Methods

Introduced by Karmarkar (1984), polynomial time.

Stays within the interior using log barriers.

Solves:
min cT x − µ

∑
log(xi )

Great for large, sparse problems.
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Mathematical Foundations

Duality: Two Perspectives

Primal: Maximize cT x subject to Ax ≤ b

Dual: Minimize bT y subject to AT y ≥ c

Strong duality: Optimal values match: cT x∗ = bT y∗
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Mathematical Foundations

Duality: Visualization

Primal Feasible
Region

Dual Feasible
Region

x∗

y∗
cT x∗ = bT y∗

Primal Problem Dual Problem

Figure 2: Conceptual illustration of primal-dual relationship. Strong duality
ensures that optimal values coincide.
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Modern Technology

Modern Technology
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Modern Technology

Modern Applications

Logistics: Delivery routing, freight assignment.

Robotics: Motion planning, force control.

Machine Learning: LPBoost, fairness constraints.

Networks: Flow optimization, resource scheduling.
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Modern Technology

Solver Technologies

Gurobi, CPLEX: Commercial state-of-the-art solvers.

HiGHS, GLPK: Open-source alternatives.

PDLP: Google’s distributed LP solver using GPUs.

Techniques: Presolve, parallelism, warm-starts.
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Open Problems

Open Problems

Meer Mathur Linear Programming and Its Applications July 10, 2025 23 / 26



Open Problems

Open Problems and Frontiers

Is there a strongly polynomial Simplex algorithm?

How far can quantum solvers take us?

Can we bridge LP and integer programming more tightly?
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Conclusion

Conclusion
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Conclusion

Conclusion

Linear programming blends practical utility with elegant math.

It powers systems from logistics to AI.

And it continues to raise questions that drive new research.

Thank you! Questions?
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