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Abstract. This paper provides a concise introduction to cohomology, a tool that comes up
constantly in mathematics. We define homology and cohomology, discuss its low dimensional
cases, how one uses the second cohomology group to classify extensions of abelian kernel. We
finish with an introduction to a few more advanced structural tools that apply to cohomology.

1. Introduction

Group cohomology is a rich and flexible invariant that arises when one studies group
actions through the lens of homological algebra. It appears throughout mathematics, with
applications ranging from number theory to topology. At its core, group cohomology provides
a systematic framework for understanding how a group G acts on an abelian group A. It
assigns to each such pair two sequences of abelian groups Hn(G,A) and Hn(G,A) which
encode deep information about the relationship between G and A. While these groups can
be defined algebraically via derived functors, they admit remarkably concrete interpretations
in low dimensions.

This paper offers a concise yet meaningful introduction to group cohomology. We in-
troduce the basic definitions and theorems of the theory while giving examples and a few
applications along the way. One such application discussed in detail is the classification of
group extensions with abelian kernel.

We begin with the necessary background. The reader is assumed to be familiar with
elementary group, ring, module, and category theory, but not with homological algebra.
The first section therefore introduces tensor products, chain complexes, and resolutions, as
well as G-modules and the group ring.

The next section defines group homology and cohomology as the derived functors of coin-
variants and invariants, respectively. To make these constructions concrete, we introduce
the bar resolution, a hands-on method for computing both homology and cohomology that
reveals how the formal machinery translates into explicit algebraic data.

After that we examine low-dimensional cohomology in detail. This is where the theory
becomes particularly intuitive and applicable. For instance, the first cohomology group H1

describes certain automorphisms of the affine group over a commutative ring, while the
second cohomology group H2 classifies group extensions-capturing the ways in which two
groups can be combined.

The final section surveys the rich structural properties of group cohomology. We discuss,
for example, long exact sequences of homology and cohomology as well as the specific case
of tate cohomology. Emphasis is placed on the most commonly used tools in practice.
Although many additional tools exist, we limit our focus to those that arise most frequently
in applications.
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2. Algebraic preliminaries

2.1. Some homological algebra. Despite this ostensibly being a paper about group co-
homology, we will not begin by talking about groups, we actually need to start by talking a
bit about modules. Most of what I’ll be talking about in this subsection falls in the broader
landscape of homological algebra, a subject that deals in much more generality than is neces-
sary for the subject matter of this paper. In particular I am not covering projective objects,
injective objects, and right resolutions. Throughout, let R be a ring and assume all rings
are unital.

We first have to define the tensor product. This is just a way to make a space A ⊗R B
such that R-linear functions out of A⊗R B correspond to bilinear functions out of A×B

Definition 2.1. For any (left) R-module A and (right) R-module B. The tensor product
A⊗R B is the abelian group generated by the symbols a⊗ b where a ∈ A and b ∈ B modulo
the following relations:

• a⊗ b+ c⊗ b = (a+ c)⊗ b
• a⊗ b+ a⊗ d = a⊗ (b+ d)
• ra⊗ b = a⊗ br

Notably the tensor product is functorial: If A
f−→ B is a homomorphism of modules then for

any module C we have an induced homomorphism A⊗R C
f⊗RC−−−→ B ⊗R C defined by

f ⊗R C(a⊗ c) = f(a)⊗ c.

The tensor product is also commutative. Meaning A ⊗R B ∼= B ⊗R A. This just comes
from the isomorphism f(a⊗b) := b⊗a. Additionally it is particularly nice with free modules.

Lemma 2.2. For any free module F on some set S and any module A, A ⊗R F ∼=
⊕

S A.
Or, to be slightly more precise. For any s ∈ S let [s] be the corresponding generator in F .
Then we have that any element of x ∈ F ⊗R A is of the form

∑
s∈S ms([s]⊗ a).

Proof. By definition every element of x ∈ F ⊗R A may be written as∑
f∈F

cf (f ⊗ a) =
∑
f∈F

cf ((
∑
s∈S

bs[s]))⊗ a)

=
∑
f∈F

∑
s∈S

cfbs([s]⊗ a)

=
∑
s∈S

ms([s]⊗ a)

Thus F ⊗R A ∼= An with every element of the form
∑

s∈S ms([s]⊗ a). ■

Definition 2.3. A chain complex is a sequence of modules and homomorphisms:

. . . Cn+1 Cn Cn−1 . . .
∂n+1 ∂n

such that ∂n ◦ ∂n+1 = 0. That is, Img(∂n+1) ⊂ ker(∂n). We call the kernels of these
homomorphisms cycles and denote the cycles by Zn(C∗) := ker ∂n. We call the images
boundaries and denote boundaries by Bn := Img(∂n+1) In particular a chain complex is
said to be exact if Img(∂n+1) = ker(∂n). A cochain complex is identically defined except
everything is indexed in the opposite direction. So a cochain complex looks like:

. . . Cn−1 Cn Cn+1 . . .∂n−1 ∂n



A SHORT MARCH THROUGH GROUP COHOMOLOGY 3

. We call the kernels cocycles and denote them Zn(C∗) := ker(∂n). We call the images
coboundaries and denote Bn(C∗) := Img(∂n−1).

In order to measure the failure of a chain complex to be exact we use homology.

Definition 2.4. We define the nth homology group of a chain complex by Hn(C∗) :=
Zn(C∗)/Bn(C∗). The nth cohomology group of a cochain complex is defined identically by
Hn(C∗) := Zn(C∗)/Bn(C∗).

Exactness is an incredibly strong property. It can be used to characterize all sorts of
things. For example every homomorphism of modules decomposes into an exact sequence:

0 ker(f) A B B/Img(f) 0
f

Additionally we can obtain a long exact sequence from two shorter exact sequences.

Lemma 2.5 (Snake lemma). Suppose the following diagram commutes and has exact rows:

A B C 0

0 A′ B′ C ′

a b c

Then we have a long exact sequence

ker(a) ker(b) ker(c) Coker(a) Coker(b) Coker(c)

The proof of the snake lemma is long and cumbersome but ultimately fairly trivial. I urge
the reader to attempt a proof on their own however a detailed proof may be found in [5].

Presentations are also just exact sequences in disguise. Every presentation of a given
abelian group A is just an exact sequence:

0 F2 F1 A 0

where F1 and F2 are free. In fact this generalizes to all modules via the idea of a free
resolution.

Definition 2.6. A free resolution of a given module A is an exact chain complex:

. . . F3 F2 F1 A 0

such that each Fn is free.

Free resolutions allow us to give a nice description of the structure of a module. F1 gives
generators, F2 relations among generators, F3 relations among relations and so on.

We are also able to describe what are called exactness properties.

Definition 2.7. A covariant additive functor F is said is said to be:

• left exact if and only if exactness of 0 → A → B → C implies 0 → FA → FB → FC
is exact.

• right exact if and only if exactness of A → B → C → 0 implies FA → FB → FC →
0 is exact.

And a contravariant additive functor F is said to be:

• left exact if and only if exactness of A → B → C → 0 implies 0 → FC → FB → FA
is exact.
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• right exact if and only if exactness of 0 → A → B → C implies FC → FB → FA →
0 is exact.

Example. Both Hom and ⊗R fulfill certain exactness properties.

• For anyR-moduleM , Hom(−,M) is a contravariant left exact functor and Hom(M,−)
is a covariant left exact functor. In particular if M is free then Hom(M,−) is both
left and right exact.

• For any R-module M , −⊗R M is right exact. Similarly to Hom if M is free −⊗R M
is both right and left exact.

The proofs of these facts are not particularly difficult but not terribly illuminating, one can
find such proofs in [4].

We are finally able to define derived functors. The essential idea is that we extend a
functor to a sequence of functors via a resolution.

Definition 2.8. Let F be a right exact covariant functor, or left exact contravariant functor.
Then for any module A let Cn be a free resolution of A. Then the nth derived functor DF n

is defined as the nth homomology group of the chain complex FCn.

Via some homological algebra one can show that derived functors are independent of choice
of free resolution and that DF 0 = F . [4]

Example. The two canonical examples of derived functors are Ext and Tor. Extn(−, B) is
defined to be the nth derived functor of Hom(−, B) and Torn(−, B) is defined to be the
nth derived functor of − ⊗R B. We can also define derived functors of Hom(B,−) using
something called injective resolutions. It turns out that these agree with Ext, meaning
DHom(B,−)n(A) = Extn(B,A). [4]

These wind up being the only derived functors we need in this paper.

2.2. G-Modules and The group ring. The central objects studied by group cohomology
are of course groups, as well as what are called G-modules.

Definition 2.9 (G-Module). Let G be a group. Then a G-module A is simply an abelian
group equipped with a G action such that for all g ∈ G and a, b ∈ A g(a + b) = ga + gb.
A G-module homomorphism ϕ : A −→ B is simply a group homomorphism such that for all
a ∈ A, ϕ(ga) = gϕ(a). We denote the category of G-modules G-Mod.

One very nice example of G-modules are free G-modules on G-sets.

Example. For any G-set S we have a corresponding G-module G[S] with

• underlying abelian group equal to the free abelian group on S. That is, every element
is a formal sum of elements of s ∈ S;

• scalar multiplication is given, for any g ∈ G by:

g
∑
s∈S

nss :=
∑
s∈S

nsgs

G-Mod is the primary category where group cohomology takes place. In particular, we
always take the cohomology of a given group G with respect to a choice of G module. Group
cohomology is really all about the ways in which a group G and a given G-module are related.
The use of the word module is immediately justified by the following definition and lemma.
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Definition 2.10 (The group ring). Let G be a group and define Z[G] to have underlying
abelian group: ⊕

g∈G

Z

Meaning elements of Z[G] look like formal sums of elements of G. With multiplication
defined by (∑

g∈G

agg

)(∑
g∈G

bgg

)
=
∑
g∈G

∑
h∈G

ahbh−1gg

Notably it immediately follows from the above definition that for any g, h ∈ G, their
multiplication in Z[G] is equal to their multiplication in G.

Lemma 2.11. The categories G-mod and Z[G]-mod are equivalent.

Proof. Note first that for any Z[G] module A, any g, h ∈ G, and any a, b ∈ A we have:
1. g(ha) = (gh)a
2. g(a+ b) = ga+ gb
3. gh ∈ G
Thus any Z[G]-module gives a group action on A respecting its abelian group structure.

In other words any Z[G]-module gives a G-module.
Now note that any element of Z[G] is of the form

∑
g∈G agg and thus the structure of any

G-module A is determined entirely by the underlying abelian group of A and the action of
G on A. So any G-Module gives a Z[G] module.

Now that we have a one to one correspondence of objects we just have to show that this
correspondence respects morphisms. If φ : A −→ B is a Z[G] module homomorphism then
φ(ga) = gφ(a) and is a homomorphism of G-modules. Now if φ : A −→ B is a G-module
homomorphism it is also an abelian group homomorphism and thus

φ

(∑
g∈G

ag(ga)

)
=
∑
g∈G

agφ(ga) =
∑
g∈G

aggφ(a)

Therefore φ is a Z[G]-module homomorphism. Thus Z[G]-mod and G-mod are equivalent.
■

This lemma provides us with the ability to take tensor products, homomorphisms, and
free resolutions. In particular two constructions are of high interest to us.

Definition 2.12 (Invariants and Coinvariants). Every G-module A has two very important
abelian groups associated to it:

• The invariants of A, denoted AG, the subgroup of all elements a ∈ A such that for
all g ∈ G ga = a.

• The coinvariants, denoted AG, the quotient A/X where X is the subgroup of A
generated by elements of the form ga− a for some a ∈ A.

These two correspond to a certain homomorphism group and tensor product respectively.

Lemma 2.13. Let A be a G-module and Ztriv denote the integers with the trivial group
action gn = n for all g ∈ G, then:

• AG
∼= Ztriv ⊗Z[G] A
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• AG ∼= HomZ[G](Ztriv, A)

Proof. • Let x ∈ Ztriv ⊗Z[G] A then

x =
n∑

k=1

mk ⊗ ak =
n∑

k=1

mk(1⊗ ak) =
n∑

k=1

1⊗mkak = 1⊗
n∑

k=1

mkak

Thus all elements of Ztriv ⊗Z[G] A are of the form 1 ⊗ a where a ∈ A. We define
a map φ : Ztriv ⊗Z[G] A → AG by φ(1 ⊗ a) := [a]AG

. Then if 1 ⊗ a = 1 ⊗ b we must
have a = gb where g is acts trivial on Ztriv. By definition of Ztriv, g could be any
element of G. Thus b = ga meaning [b]AG

= [a]AG
. Therefore φ is well defined. It is

clearly surjective because if [a]AG
∈ AG, then 1⊗ a ∈ Ztriv ⊗A and φ(1⊗ a) = [a]AG

.
Furthermore if 1⊗ a ̸= 1⊗ b then b ̸= ga meaning

φ(1⊗ a) = [a]AG
̸= [b]AG

= φ(1⊗ b)

meaning φ is injective. Since φ is both surjective and injective, it is bijective and
thus an isomorphism.

• Let x ∈ HomZ[G](Ztriv, A) then for all n ∈ Z x(n) = nx(1) and is thus entirely
determined by where it sends 1. Therefore we may define an injective module homo-
morphism ϕ : HomZ[G](Ztriv, A) → A by ϕ(x) = x(1). The only other condition on x
is that for all g ∈ G x(g1) = gx(1) but since g1 = 1, this condition is equivalent to
requiring x(1) = gx(1) or in other words requiring HomZ[G](Ztriv, A) ∼= Img(ϕ) = AG.

■

3. Group (co)homology

3.1. Definitions. Lemma 2.13 is wonderful not only because it nicely characterizes AG and
AG but also because it tells us that they are right and left exact functors respectively. This
means we can finally define group homology and cohomology.

Definition 3.1. Let G be a group and A a G-module.

• The nth homology functor of G, denoted Hn(G,−) is the nth derived functor of the
coinvariant functor. In light of lemma 2.13 we can interpret this as saying that the nth
homology group of G with respect to A, Hn(G,A) may be defined as TorZ[G]

n (Ztriv, A).
• The nth cohomology functor of G, denoted Hn(G,−) is defined to be the nth derived
functor of the invariant functor. Similarly to homology, this can be interpreted using
lemma 2.13 say that the nth cohomology group of G with respect to A, Hn(G,A) is
defined to be ExtnZ[G](Ztriv, A).

These are the formal definitions of group homology and cohomology. However, taken on
their own, they offer little intuition. If a random person on the street asked you what group
homology and cohomology actually “mean”, you’d likely struggle to provide a satisfying
answer. The rest of this section will be dedicated to equipping you with the intuition and
information that might allow you to, at least partially, answer the random person on the
street.

The easiest way to get a concrete view on any of this would be to define a resolution and
see what homology and cohomology look like when you use this resolution to calculate them.
Various different sources like to use various different resolutions. The one presented below
is often called the bar resolution. [2]
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Definition 3.2. The bar resolution is a free resolution of Ztriv denoted C̄∗ with:

•
C̄n :=

⊕
Gn

Z[G]

That is, the free Z[G]-module on the set Gn. For each element (g1, . . . , gn) ∈ Gn we
denote the corresponding generator in C̄n by [g1, . . . , gn].

• The augmentation ϵ : C̄0 = Z[G] → Z is defined by:

ϵ
(∑

agg
)
:=
∑

ag

• The nth differential ∂n : C̄n(G) → ¯Cn−1(G) is defined by:

∂n([g1, . . . , gn]) := g1[g2, . . . , gn] +
n−1∑
k=1

(−1)k[g1, . . . , gkgk+1, . . . , gn] + (−1)n[g1, . . . , gn−1]

A straightforward calculation shows that this is an exacts chain complex and thus a resolu-
tion.

3.2. An explicit description of group cohomology. To understand what cohomology
represents you have to first recall what it means for a module to be free. Recall that for any
free R-module F =

⊕
s∈S R denoting for any s ∈ S the corresponding basis element [s]. We

have for any module A an isomorphism of abelian groups j : HomR(F,A) → HomSet(S,A)
given by the assignment j : f 7→ fj where fj(s) = f([s]).
We are now able to give a more explicit description of cohomology groups. Given a

group G and a G-module A, the cohomology cochain complex, C̄∗(G,A) is given by taking
C̄n(G,A) := Hom(C̄n(G), A) and differentials ∂n

A to be induced by the Hom functor. Then it
is immediate from the definition of cohomology that taking the cohomology of this cochain
complex. By the above discussion we may view C̄n(G,A) as the abelian group of set functions
from Gn → A. Finally giving an explicit construction of ∂n

A we get:

(∂n
Af)(g1, . . . , gn+1) := (f ◦ ∂n+1)(g1, . . . , gn+1)

= g1f(g2, . . . , gn+1)

+
n∑

k=1

(−1)kf(g1, . . . , gkgk+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)

All of this to say that the nth cohomology group is explicitly the set of all functions Gn → A
such that:

g1f(g2, . . . , gn+1) =
n∑

k=1

(−1)k+1f(g1, . . . , gkgk+1, . . . , gn+1) + (−1)nf(g1, . . . , gn)

Mod functions of the form:

g1f(g2, . . . , gn) +
n−1∑
k=1

(−1)kf(g1, . . . , gkgk+1, . . . , gn) + (−1)nf(g1, . . . , gn−1)

We’ll get into some specific applications soon, but for right now a good picture to have in
your head is that group cohomology gives us an idea of the external structure of a given
G-module. It tells us how the structure of a given G-module is “observed” by the group G.
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3.3. An explicit description of Homology. If cohomology tells us about the external
structure of a G-module with respect to the group G, the homology should tell us about the
internal structure with respect to G.

Again we start with a given G-module A and the bar resolution. This time though,
instead of taking Hom(C̄n(G), A) we take the tensor product. That is, the nth homology
chain complex C̄n(G,A) := C̄n⊗Z[G]A by 2.2 we thus have that C̄n(G,A) = AGn

. The maps

∂A
n : AGn → AGn−1

are induced by the tensor product, given explicitly:

∂A
n ([g1, . . . , gn]⊗ a) = [g2, . . . , gn]⊗ g1a

+
n−1∑
j=1

(−1)j([g1, . . . , gjgj+1, . . . , gn]⊗ a)

+ (−1)n([g1, . . . , gn−1]⊗ a)

Then the nth homology group is given explicitly as the cycles Zn(G,A). That is, the subgroup
of AGn

generated by the elements [g1, . . . , gn] satisfying:

[g2, . . . , gn]⊗ g1a =
n−1∑
j=1

(−1)j−1([g1, . . . , gjgj+1, . . . , gn]⊗ a) + (−1)n+1([g1, . . . , gn−1]⊗ a)

Modulo the Boundaries Bn(G,A); elements of the form:

[g2, . . . , gn+1]⊗ g1a

+
n∑

j=1

(−1)j([g1, . . . , gjgj+1, . . . , gn+1]⊗ a)

+ (−1)n([g1, . . . , gn]⊗ a)

So where cohomology groups are quotients of subroups of functions into a space, homology
groups are subquotients of a space. You should think of homology as capturing the internal
structure of a G-module.

4. Low dimensional (Co)Homology

4.1. Crossed homomorphisms and H1. The subgroup H1 admits a very simple descrip-
tion.

Proposition 4.1. Let G be a group and A a G-module. Then H1(G,A) is isomorphic to
the group of functions f : G → A such that f(gh) = f(g) + gf(h) modulo functions f such
that for some fixed a ∈ A and all g ∈ G f(g) = ga− g.

Proof. We have already given a description of ∂n
A. Since

(∂1
Af)(g, h) = gf(h)− f(gh) + f(g)

we see that Z1(A) = ker(∂1
A) consists of functions such that for all g, h ∈ G

f(g)− f(gh) + gf(h) = 0

In other words, those functions such that f(g) + gf(h) = f(gh).
Similarly ∂0

A takes functions f : {∗} → A to functions ∂0
Af : G → A by

∂0
Af(g) = gf(∗)− f(∗)
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since f(∗) is just some element a ∈ A we thus have Img(∂0
A) = B1 consists of functions of

the form f(g) = ga − a. Thus H1(G,A) = Z1(A)/B1(A). Which as we have just shown is
exactly the group of functions f : G → A such that f(gh) = f(g)+ gf(h) mod out functions
f such that for some fixed a ∈ A and all g ∈ G f(g) = ga− g. ■

In particular we have the following corollary.

Corollary 4.2. Let G be a group and A a G-module such that for all a ∈ A and g ∈ G
ga = a. Then H1(G,A) = Hom(G,A).

Proof. By the triviality of the action by G on A we have that f(g)+gf(h) = f(g)+f(h) and
thus that ker(∂1

A) = Hom(G,A). Since ga− a = a− a = 0 it is immediate that Img(∂0
A) = 0.

Thus H1(G,A) = ker(∂1
A)/Img(∂0

A) = ker(∂1
A)/{0} = ker(∂1

A) = Hom(G,A). ■

The functions in ker(∂n
A) are called crossed homomorphisms and they come up very often

whenever you have a group and a G-module.

Example. One of the most interesting applications of H1 is to finding outer automorphisms
of an affine group.

Definition 4.3. Let R be a commutative ring. Then the affine group Aff(R) consists of
functions f : R → R of the form f(x) = ux + r where u, r ∈ R with u invertible in R. The
group operation is given by composition of functions. This is easily checked to be a group:

• Associativity is given by definition of function composition.
• f(x)=x is the identity since uf(x) + r = ux+ r = f(ux+ r).
• If f(x) = ux+ r define f−1(x) := u−1x− u−1r, then

f(f−1(x)) = u(u−1x− u−1r) + r = x− r + r = x

Thus every element has an inverse.

Whenever we have an interesting group we want to know more about it is often helpful
to look at its automorphism group. Every group has what are called inner automorphisms.
These are automorphisms of the form γg(x) = gxg−1 for some fixed element g of the group.
While inner automorphisms are interesting in their own right, they can only really tell us
about the conjugacy action of a group. If we want to know anything more about a group
we have to look at those automorphisms that are not inner. With that in mind we have the
following definition.

Definition 4.4. The outer automorphism group of a group G is defined to be the quotient
Aut(G)/Inn(G) where Inn(G) denotes the subgroup of inner automorphisms.

Additionally those automorphisms φ such that if f(x) := ux + r φ(f) = g such that
g(x) = ux+ r+D(g). Notably such automorphisms define a subgroup of the automorphism
group which we will denote Aut(Aff(R);R). We thus have the following definition.

Definition 4.5. Let Inn(Aff(R);R) denote the intersection of Aut(Aff(R);R) with Inn(Aff(R)).
Then we define Out(Aff(R);R) := Aut(Aff(R);R)/Inn(Aff(R);R).

Now note that R is actually an R×-module under the multiplication action. We now show
that Out(Aff(R);R) ∼= H1(R×, R).

Proposition 4.6. Aut(Aff(R);R) ∼= Z1(R×, R)
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Proof. First suppose φ ∈ Aut(Aff(R);R) then φ(ux + r) = ux + r + D(u) where D(u) is
some set function. Then in fact D(u) ∈ Z1(R×, R). This is easily shown because:

φ(uvx+ 0) = uvx+D(uv)

= φ(ux+ 0 ◦ vx+ 0)

= φ(ux+ 0) ◦ φ(vx+ 0)

= u(vx+D(v)) +D(u)

= uvx+ uD(v) +D(u).

Therefore D(uv) = D(u) + uD(v) and thus D ∈ Z1(R×, R).
Similarly if D is any cocycle. Then define φ(ux + r) := ux + r +D(u). This has a clear

inverse given by φ−1(ux+ r) := ux+ r −D(u) and is a homomorphism because:

φ(ux+ r ◦ vx+ s) = φ(uvx+ us+ r)

= uvx+ us+ r +D(uv)

= uvx+ us+ r + uD(v) +D(u)

= u(vx+ s+D(v)) + r +D(u)

= φ(ux+ r) ◦ φ(vx+ s)

Aut(Aff(R);R) ∼= Z1(R×, R) ■

Proposition 4.7. B1(R×, R) ∼= Inn(Aff(R);R)

Proof. Let f = vx+ s be such that its inner automorphism γf ∈ Inn(Aff(R);R). Then:

γf (ux+ r) = v(u(v−1x− v−1s) + r) + s

= vuv−1x− vuv−1s+ vr + s

= ux+ s− us+ vr

= ux+ r +D(u)

Thus f must be of the form x+ s and D(u) = s− su ∈ B1(R×, R).
Now let D(u) ∈ B1(R×, R), then D(u) = s− su for some fixed s ∈ R. Then we have just

shown that if f = x+ s γf (ux+ r) = ux+ r+ s− su. Thus B1(R×, R) ∼= Inn(Aff(R);R) ■

Theorem 4.8. H1(R×, R) ∼= Out(Aff(R);R)

Proof. Since B1(R×, R) ∼= Inn(Aff(R);R) and Z1(R×, R) ∼= Aut(Aff(R);R) we thus have
H1(R×, R) = Z1(R×, R)/B1(R×, R) ∼= Aut(Aff(R);R)/Inn(Aff(R);R) ∼= Out(Aff(R);R).

■

4.2. Extensions and H2. The second cohomology group H2 is extremely useful. This is
precisely because it classifies what are called extensions.

Definition 4.9. Given a group G and a group H. An extension of G by H is a short exact
sequence:

1 H X G 1

So the group X has normal subgroup isomorphic to H with the quotient X/H ∼= G.

Extensions give all ways to combine two groups. The reader should already be familiar
with a couple of examples of extensions.
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Example (Product). The product of two groups G and H is an example of an extension. In
fact it is in many ways the trivial extension. To be explicit the injection H → G×H is
given by h 7→ (1, h) and the surjection G×H is given by (g, h) 7→ g.

Another example that we have just discussed is the affine group.

Example. The affine group of a given commutative ring R is an extension of the multiplicative
group of R, R× by its additive group RA. The injection is given by r 7→ x + r and the
surjection is given by ax+ r 7→ a.

Both of the above are examples of semidirect products. All this really means is that it’s an
extension 1 → H → X → G → 1 where G is a subgroup of X. Importantly, most extensions
are not semidirect products. We also only ever consider extensions up to equivalence.

Definition 4.10 (equivalence of extensions). Two extensions

1 H X G 1

and
1 H Y G 1

are said to be equivalent if we have an isomorphism X → Y such that

X

1 H G 1

Y

∼=

Commutes.

H2 allows us to classify extensions of abelian kernel, that is extensions of a group G by
an abelian group A. What makes this classification possible is the following lemma.

Lemma 4.11. Let G be a group and A an abelian group. Then for any extension

1 A X G 1
j π

we have an induced action by G on A.

Proof. Let

1 A X G 1
j π

Be some extension of G by A. Suppose g ∈ G and x, y ∈ X are such that π(x) = π(y) = g
then we have some b ∈ A ↪→ X such that j(b) = xy−1. Thus for any a ∈ A we have
j(a)xy−1 = xy−1j(a) which implies x−1j(a)x = y−1j(a)y and thus xj(a)x−1 = yj(a)y−1.
And thus conjugation by elements of G on elements of A in X is a well defined group action.
We denote the application of this action on some a θg(a) ■

Now the general goal is to fix a group G, an abelian group A and an action of G on A.
That is we fix a group G and a G-module A. We then produce a bijection between H2(G,A)
and the set of all extensions of G by A that induce the fixed action of G on A. This will
however take several steps.
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Lemma 4.12 (step 1). for any extension Let

1 A X G 1π

we have a bijection between X and A×G.

Proof. We first choose some section r : G → X. This is a set function such that π(r(g)) = g.
We can be assured that a section exists by the axiom of choice. We produce a bijection via
the following function. f : X → A×G, f(x) := (x · r(π(x))−1, π(x)). Its fairly easy to show
that this function is a bijection because it has an inverse f−1(a, g) := a · r(g). This is its
inverse since

f(f−1(a, g)) = f(ar(g)) = (ar(g)(r(π(r(g)))−1, π(ar(g))) = ((ar(g)(r(g))−1, π(r(g))) = (a, g)

and

f−1(f(x)) = f−1(x(r(π(x))−1, π(x)) = x(r(π(x))−1r(π(x)) = x

■

Remark 4.13. This allows us to translate multiplication in X to multiplication in the set
A×G by f((f−1(a, g))(f−1(b, gh) = (θg(b) + a+ r(g)r(h)r(gh)−1, gh)

Lemma 4.14 (step 2). For any section r as described in Lemma 4.12 the function R : G2 →
A defined by R(g, h) := r(g)r(h)r(gh)−1 is in ker(∂2

A).

Proof. Recall that a function is in ker(∂2
A) if and only if it satisfies g1f(g2, g3) = f(g1g2, g3)−

f(g1, g2g3) + f(g1, g2). Since we have:

θg1(R(g2, g3)) = r(g1)r(g2)r(g3)r(g2g3)
−1r(g1)

−1

= r(g1)r(g2)r(g1g2)
−1r(g1g2)r(g3)r(g1g2g3)r(g1g2g3)

−1r(g2g3)
−1r(g1)

−1

= R(g1, g2) +R(g1g2, g3)−R(g1, g2g3)

R is thus in ker(∂2
A). ■

Remark 4.15. Lemma 4.14 gives us an assignment from extensions to H2(G,A) sending the
extension to the class [R]. The below lemma shows that this assignment is independent of
choice of section.

Lemma 4.16 (part 3). For any section r and any other section s with S(g, h) := s(g)s(h)s(gh)−1

we have S −R ∈ Img(∂1
A).

Proof. Because both s and r are sections of π which has kernel A s(g) = ar(g) for some
a ∈ A and thus there is a set function D : G → A such that for all g ∈ G s(g) = D(g)r(g).
Then

S(g, h)−R(g, h) = D(g)r(g)D(h)r(h)r(gh)−1D(gh)−1 − r(g)r(h)r(gh)−1

= D(g)r(g)D(h)r(g)−1r(g)r(h)r(gh)−1D(gh)−1 − r(g)r(h)r(gh)−1

= D(g)θg(D(h))r(g)r(h)r(gh)−1D(gh)−1 − r(g)r(h)r(gh)−1

= D(g) + θg(D(h)) + r(g)r(h)r(gh)−1 −D(gh)− r(g)r(h)r(gh)−1

= D(g) + θg(D(h))−D(gh)

Which is by definition in the image of ∂1
A. ■
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Lemma 4.17 (part 4). We have a well defined function assigning each class [R] of H2(G,A)
to the extension of G by A:

1 A GR G 1

where GR has underlying set A×G and multiplication defined by (a, g)(b, h) = (a+ θg(b) +
R(g, h), gh)

Proof. First we show that the operation described above defines a group. Associativity is
proved as follows:

((a, g)(b, h))(c, f) = (a+ θg(b) +R(g, h), gh)(c, f)

= (a+ θg(b) + θgh(c) +R(g, h) +R(gh, f), ghf)

= (a+ θg(b) + θgh(c) + θg(R(h, f)) +R(g, hf), ghf)

= (a+ θg(b+ θh(c) +R(h, f)) +R(g, hf), ghf)

= (a, g)(b+ θh(c) +R(h, f)

= (a, g)((b, h)(c, f))

Now define 1R := −R(1, 1) then we have

(a, g)(1R, 1) = (a+ θg(1R) +R(g, 1), g)

= (a+ θg(−R(1, 1)) +R(g, 1), g)

= (a−R(g, 1) +R(g, 1)−R(g, 1) +R(g, 1), g)

= (a, g)

and

(1R, 1)(a, g) = (1R + a+R(1, g), g)

= (a−R(1, 1) +R(1, g)−R(1, g) +R(1, 1), g)

= (a, g)

Thus (1R, 1) is the identity element. Finally for any (a, g) we have

(a, g)(−θg−1(R(g, g−1) +R(1, 1) + a), g−1) = (a+ θg(−θg−1(R(g, g−1) +R(1, 1) + a)) +R(g, g−1), 1)

= (a− a−R(g, g−1) +R(g, g−1)−R(1, 1), 1)

= (1R, 1)

Therefore GR is in fact a group. Now we have to show that this is an extension. We first
define the injective homomorphism iR : A → GR by iR(a) = (a + 1R, 1). This is easily
checked to be a homomorphism by:

iR(a)iR(b) = (a+ 1R, 1)(b+ 1R, 1)

= (a+ b+ 1R + 1R +R(1, 1), 1)

= (a+ b+ 1R, 1)

= iR(a+ b)

and injectivity follows because a ̸= b implies a + 1R ̸= b + 1R which then implies iR(a) =
(a + 1R, 1) ̸= (b + 1R, 1) = iR(b). The surjection π : GR → G defined by π(a, g) := g. This
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is obviously surjective and it’s a homomorphism because:

π((a, g)(b, h)) = π(a+ θg(b) +R(g, h), gh) = gh = π(a, g)π(b, h)

Since ker(π) consists of elements of the form (a, 1) which is exactly the image of iR exactness
follows.

Finally we have to show that if R and S are two elements of ker(∂2
A) which differ by

an element D of Img(∂1
A) then they give equivalent extensions. So our assignment is well

defined. We define f : GR → GS by f(a, g) := (a+D(g), g). To show that f(a, g) defines a
homomorphism GR → GS, we compute:

f((a, g) ·R (b, h)) = f(a+ θg(b) +R(g, h), gh)

= (a+ θg(b) +R(g, h) +D(gh), gh)

On the other hand:

f(a, g) · f(b, h) = (a+D(g), g) · (b+D(h), h)

= (a+D(g) + θg(b+D(h)) + S(g, h), gh)

= (a+D(g) + θg(b) + θg(D(h)) + S(g, h), gh)

Now using the assumption that R(g, h) = S(g, h)+D(g)+θg(D(h))−D(gh), we substitute:

f(a, g) · f(b, h) = (a+ θg(b) +R(g, h) +D(gh), gh)

= f((a, g) · (b, h))
Therefore, f is a group homomorphism. This is a equivalence because f(iR(a)) = f(a +

1R, 1) = (a+1R+D(1), 1) Using the identity R(1, 1)−S(1, 1) = D(1)+D(1)−D(1) We thus
get that (a+1R+D(1), 1) = (a+1S, 1) = iS(a) and π(f(a, g)) = π(a+D(g), g) = g = π(a, g)
meaning that

GR

1 A G 1

GS

f

commutes ■

Theorem 4.18. We have a one to one correspondence between elements of H2(G,A) and
extensions with induced action corresponding to the G-module action on A.

Proof. By remark 4.15 the assignment described by lemma 4.14 and 4.16 and the assignment
described by lemma 4.17 are mutually inverse and thus bijections. ■

5. A few structural tools

Cohomology is particularly useful because of how structured it is. If cohomology shows
up anywhere you immediately get a bunch of free structure. For example, you get a nice
long exact sequence.
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5.1. Long exact sequences and Tate cohomology.

Proposition 5.1 (Long exact sequence of cohomology). If 0 → A → B → C → 0 is a short
exact sequence of G-modules we have an induced long exact sequence:

. . . H i(G,A) H i(G,B) H i(G,C) H i+1(G,A) ...

Proof. First note that Ci(G,−) = Hom(Z[G],−). Since Z[G] is free we therefore have that
if

0 → A → B → C → 0

is exact, so is

0 → Ci(G,A) → Ci(G,B) → Ci(G,C) → 0.

Thus

0 Ci(G,A) Ci(G,B) Ci(G,C) 0

0 Ci+1(G,A) Ci+1(G,B) Ci+1(G,C) 0

∂i
A ∂i

B ∂i
C

commutes and has exact rows. Then because C̄∗ is a cochain complex we thus have that
this diagram

Ci(G,A)/Bi(G,A) Ci(G,B)/Bi(G,B) Ci(G,C)/Bi(G,C) 0

0 Zi+1(G,A) Zi+1(G,B) Zi+1(G,C)

∂i
A ∂i

B ∂i
C

commutes and has exact rows. Applying the snake lemma we then get an exact sequence

H i(G,A) H i(G,B) H i(G,C) H i+1(G,A) H i+1(G,B) H i+1(G,C)

■

We have an identical theorem in the case of group homology. The proof is nearly iden-
tical and may be obtained by replacing every instance of Ci, Ci+1, Zi+1, Bi, H i, H i+1,
and Hom(Z[G],−) in the above proof with Ci, Ci+1, Zi+1, Bi, Hi, Hi+1, and Z[G] ⊗Z[G] −
respectively.

When G is finite we are able to extend the exact sequences to construct something called
Tate cohomology. First, however, we have to define the norm element.

Definition 5.2. The norm element NG ∈ Z[G] is defined to be the sum:

NG =
∑
g∈G

g

Importantly the norm element and its multiples are the only elements of Z[G]G. This
means that left multiplication by the norm element induces a map from AG → AG.

Lemma 5.3. Let G be a finite group and A be a G-module. Then the left multiplication map
by NG on A induces a map AG → AG.
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Proof. Since AG = A/Span{ag − a|a ∈ A, g ∈ G} we need to show that NG(ag − a) = 0.
This follows because:

NG(ag − a) = NG(g − 1)(a) = (NG −NG)a = 0

Thus multiplication by NG gives a well defined map AG → A. Now note that if a ∈ A lies
in the image of this map we must have a = NGb for some b ∈ A. Thus for any g ∈ G we
have ga = gNGb = NGb = a. Therefore a ∈ AG meaning multiplication by NG gives a well
defined map N̄G : AG → AG ■

Definition 5.4. We define Ĥ0(G,A) = Coker(N̄G) and Ĥ−1(G,A) = ker(N̄G).

We are now able to define Tate cohomology.

Definition 5.5. We have already defined Tate cohomology for i = −1, 0 so now we define
for any i > 0, Ĥ i(G,A) := H i(G,A) and for i < −1 we define Ĥ i(G,A) := H−i−1(G,A).

The primary reason Tate cohomology exists at all is because it allows us to combine the
homology and cohomology long exact sequences.

Lemma 5.6. Let
0 A B C 0

be a short exact sequence. Then we have a long exact sequence

. . . Ĥ i(G,A) Ĥ i(G,B) Ĥ i(G,C) Ĥ i+1(G,A) . . .

Proof. Apply the snake lemma to this diagram

. . . H1(G,A) H0(G,A) = AG H0(G,B) = BG H0(G,C) = AC 0

0 H0(G,A) = AG H0(G,B) = BG H0(G,C) = CG H1(G,A) . . .

N̄G N̄G N̄G

■

When G is not only finite but cyclic Tate cohomology further simplifies to become periodic.
This comes from the following resolution.

Definition 5.7. Let Z/n be a cyclic group and denote its generator g. Then the following
periodic chain complex is a resolution of Ztriv:

. . . Z[G] Z[G] Z[G] Z[G] Ztriv 0
g−1 NG g−1 ε

where the map g− 1 denotes multiplication by g− 1 and NG denotes multiplication by NG.

Theorem 5.8. Tate cohomology of cyclic groups is periodic

Proof. If we use the above chain complex to compute Tate cohomology Ĥ i(G,A), noting
that Hom(Z[G], A) = A = Z[G]⊗Z[G] A we see that:

• The chain complex used to compute typical group cohomology is

0 A A A A A . . .
g−1 NG g−1 NG

• The chain complex used to compute typical group homology is

. . . A A A A A 0
g−1 NG g−1 NG
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• Because the homomorphism connecting group homology and cohomology is multipli-
cation by NG, the sequence used to compute Tate cohomology is

. . . A A A A A . . .
g−1 NG g−1 NG

Thus because the chain complex used to compute Tate cohomology is periodic. So is Tate
cohomology. ■

5.2. Compatible maps. We now talk a bit about compatible maps. These allow us to
relate cohomology groups H i(G,A) and H i(K,B) by relating the groups G and K and
relting the modules A and B.

Definition 5.9. Let G and H be groups, A a G-module and B an H-module. We say that
a pair of maps (α, β), α : H → G, β : A → B are compatible if

β(α(h)a) = hβ(a)

Compatible maps provide a lot of utility because of the following lemma.

Lemma 5.10. Suppose we have compatible maps α : H → G and β : A → B. Then the
maps θi : Ci(G,A) → Ci(H,B) given by:

(θif)(h1, . . . , hi) := β(f(α(h1), . . . α(hi))

induce maps on the homology groups.

Proof. It is sufficient to show that θi sends coboundaries to coboundaries and cocycles to
cocycles. In other words we need to show that:

(∂i
Bθ

i(f))(h1, . . . , hi+1) = (θi+1∂i
Af)(h1, . . . , hi+1)

This is a fairly simple calculation:

(θi+1∂i
Af)(h1, . . . , hi+1) = β((∂i

Af)(α(h1), . . . , α(hi+1)))

= β(α(h1)f(α(h2), . . . , α(hn+1)))

+
n∑

k=1

(−1)kβ(f(α(h1), . . . , α(hk)α(hk+1), . . . , α(hn+1)))

+ (−1)n+1β(f(α(h1), . . . , α(hn)))

= h1β(f(α(h2), . . . , α(hn+1)))

+
n∑

k=1

(−1)kβ(f(α(h1), . . . , α(hk)α(hk+1), . . . , α(hn+1)))

+ (−1)n+1β(f(α(h1), . . . , α(hn)))

= (∂i
Bθ

i(f))(h1, . . . , hi+1)

■

There are three canonical applications of compatible maps. The first and simplest of which
is restriction:
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Definition 5.11. Let K ⊂ G be a subgroup of G and i : K ↪→ G the inclusion of K into G.
Let A be a G module (and thus also a K-module). Then clearly i and idA are compatible.
We define restriction to be the map

Res : Hn(G,A) → Hn(K,A)

induced by i and idA.

When K ⊂ G is a subgroup we have a very nice relation between their cohomologies. In
order to see this we need to introduce the concept of induced and coinduced modules.

Definition 5.12. Let G be a group and K a subgroup of G. Then We can easily make any
Z[G]-module to a Z[K]-module simply by restricting scalars. However if we want to turn
a Z[K]-module M to a Z[G] module we have to ways. The coinduced module is defined as
CoInd(M)GK := HomZ[K](Z[G],M) and given module structure by (gf)(x) := f(xg). The

induced module is defined as IndG
K(M) := Z[G] ⊗Z[K] M and given module structure by

g(h⊗m) := gh⊗m.

Coinduced modules allow us to introduce a particular pair of compatible maps.

Proposition 5.13. let G be a group and K a subgroup of G. Let A be a K-module. Then
the inclusion map i : K ↪→ G is compatible with the map ϕ : CoIndG

K(A) → A given by
ϕ(f) := f(1).

Proof. Let f ∈ CoInd(A) and k ∈ K. Then

ϕ(i(k)f) = ϕ(kf) = f(k) = kf(1) = kϕ(f)

Meaning i and ϕ are compatible. ■

Lemma 5.14 (Shapiro’s lemma). Let G be a group, K a subgroup of G and A a K-module.
Then Hn(G,CoIndG

K(A))
∼= Hn(K,A).

Proof. It is sufficent to show that the map θi : Ci(G,CoIndG
K(A)) → Ci(K,A) given by

(θif)(k1, . . . , ki) := ϕ(f(k1, . . . , ki)) is a bijection. First suppose f ∈ ker(θi) then for all
k1, . . . , ki ∈ K and g ∈ G we have:

(f(k1, . . . , ki))(g) = ϕ(g(f(k1, . . . , ki)) = ϕ(f(gk1, . . . , gki)) = 0

And thus f = 0. Therefore θi is injective.
Now, if α ∈ Ci(K,A) define f(k1, . . . , ki)(g) := α(gk1, . . . , gki), then by definiton θi(f) =

α. Meaning θi is surjective. Thus Hn(G,CoIndG
K(A))

∼= Hn(K,A). ■

We now have an easy way of relating the cohomology groups of a group G and any of its
subgroups K. But what if instead of being a subgroup, K is a quotient.

Lemma 5.15. Let G be a group and N a normal subgroup of G and A be a G-module. Then
let π : G → G/N be the projection map of G onto G/N and i : AN ↪→ A the inclusion of AN

into A. Then π and i are compatible.

Proof. Note that for any a ∈ AN and any h, g ∈ G with hN = gN , then h−1g ∈ N , thus
h−1ga = a implying ga = ha. We therefore have that i(π(g)a) = π(g)a = ga = gi(a)

Thus π and i are compatible. ■

Definition 5.16. We define inflation to be the map H i(G/N,AN) → H i(G,A) induced by
i and π and denote it by Inf.
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Remark 5.17. It is hopefully clear that inflation is injective. If two functions f, g : G/N →
AN are inequivalent then, if π : G → G/N is the natural surjection, f ◦ π ̸= g ◦ π.

Theorem 5.18. For any group G normal subgroup N and G-module A we have an exact
sequence:

0 H1(G/N,AN) H1(G,A) H1(N,A)Inf Res

Proof. We have already discussed the injectivity of Inf, but we also have that if f ∈ Img(Inf)
and n ∈ N then

f(n) = f(π(n)) = f(π(1)) = f(1)

. Since

f(1) = f(1) + 1f(1) = 2f(1)

implies f(1) = 0, we therefore have

f(n) = f(1) = 0

meaning Res(f) = 0. Thus Img(Inf) ⊂ ker(Res). Now suppose f ∈ ker(Res). Then for all
n ∈ N , f(n) = 0. Then if g, h ∈ G are such that gh−1 ∈ N we must have:

(5.1) 0 = f(h−1g) = f(h−1) + h−1f(g)

meaning

−hf(h−1) = f(g)

Since 0 = f(1) = f(h−1)+h−1f(h) we therefore have −hf(h−1) = f(h) meaning by equation
5.1

(5.2) f(h) = f(g)

. Further, for any g ∈ G and n ∈ N we have

nf(g) = f(ng)− f(g) = f(ng)

which, since ngg−1 = n ∈ N equation 5.2 gives that

nf(g) = f(ng) = f(g)

. This means that if f ∈ ker(Res) then f induces a map f ∗ : G/N → AN given by
f ∗([g]) := f(g). Since clearly Inf(f ∗) = f we thus have that ker(Res) ⊂ Img(Inf). Therefore
ker(Res) = Img(Inf) and thus

0 H1(G/N,AN) H1(G,A) H1(N,A)Inf Res

is exact.
■

We also have an anologue of compatible maps for homology.

Definition 5.19. Let α : G → H and β : A → B. Then these maps are said to be
homologically compatible if:

β(ga) = α(g)β(a)

Lemma 5.20. Compatible maps α : G → H and β : A → B induce maps on homology
Hi(G,A) → Hi(K,B).
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Proof. We have induced maps Ci(G,A) → Ci(K,B) given by (αi ⊗ β)([g1, . . . gi] ⊗ a) :=
[α(g1), . . . α(gi)] ⊗ β(a). Via a calculation that is nearly identical to the one given in the
proof of lemma 5.10 these maps respect differentials and thus induce maps on homology. ■

We have analogous definitions and theorems for homologically compatible maps as we do
compatbile maps. In particular we have

Definition 5.21. For a subgroup H ⊂ G and G-module A corestriction is the map

Hi(G,A) → Hi(K,A)

given by the homologically compatible maps i : K ↪→ G and idA : A → A.

Definition 5.22. If N is a normal subgroup of G and A is a G-module coinflation is the
map:

Hi(G,A) → Hi(G/N,AN)

induced by the homologically compatible quotient maps π : G → G/N and p : A → AN .

We also have the following two lemmas.

Lemma 5.23 (Shapiro’s lemma). If K is a subgroup of G and A is a K-module the
Hi(G, IndG

K(A))
∼= Hi(K,A)

Lemma 5.24. Suppose N is a normal subgroup of G and A is a G-module then we have an
exact sequence:

H1(N,A) H1(G,A) H1(G/N,AH) 0Cor CoInf

Remark 5.25. The proofs of the above two lemmas closely parallel those of lemma 5.14 and
theorem 5.18. To avoid unnecessary repetition, I have chosen not to write them out in full.
Readers who wish to see the details are encouraged to adapt the earlier proofs accordingly.

6. conclusion

Group cohomology provides a powerful framework for studying group actions on modules.
We introduced homology and cohomology as derived functors, explored their low-dimensional
interpretations (such as crossed homomorphisms and group extensions), and discussed key
tools like long exact sequences and Tate cohomology. These concepts connect abstract
homological algebra to concrete group-theoretic problems, making them essential for deeper
investigations in mathematics.

We have notably excluded many applications of group cohomology to wider mathematics.
If the reader would like to learn about galois cohomology, a detailed exposition may be found
in [3]. similarly, [1] is a wonderful book that covers the theory of central simple algebras,
which uses a lot of group cohomology. Finally if one wants a more geometric lens of group
cohomology these notes [2] are simply amazing.
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