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Pick's Theorem

How do we find the area?
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Pick's Theorem

Georg Alexander Pick discovered Pick's Theorem in 1899.
Theorem (Pick’s Theorem)

Given any convex lattice polygon,
B
A=1+—--1
+ 2

where A is the area of the polygon, | is the number of interior lattice
points, and B is the number of points on the border of the polygon.
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Pick's Theorem

Example

Will will find the area of the polygon below.

Here, | =12and B=12,s0 A=124+6—-1=17.
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Pick's Theorem

Example

Will will find the area of the polygon below.

Here, | =12and B=12,s0 A=124+6—-1=17.

Pick's theorem also works for concave polygons; however, we will focus on
convex ones for this talk.
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Lattice Polytopes

There are two ways to formally define lattice polytopes. The first is the
vertex description; the second is the hyperplane description.

Definition (vertex description)
A polytope is the convex hull of finitely many points. More formally, for

any polytope P,

P =conv {vi,va,...,va} = {vi+dava+- -+ Apv 1 A > O,Z)\k <1}
k=1

for a finite set of points {vi,vo,...,v,} C Z€.
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Lattice Polytopes: Vertex Description

To more easily imagine what this means, we will provide an example in the
second dimension.

Example

Consider the polygon below.

C A
D
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-
Lattice Polytopes: Vertex Description

Consider the vectors from the origin to each vertex.

A

\

* A
. ¥
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-
Lattice Polytopes: Vertex Description

Here, any point in this triangle can be described as the sum of some

fractions of these vectors. For example, the point shown below is the sum
of the blue vectors.

C A
. ¥

. Y .

These fractions’ sum is at most 1; notice that the points that have sums
equal to 1 are the ones on the border of the polygon.
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Lattice Polytopes: Hyperplane Description

Definition
A hyperplane is a generalization of the plane to higher dimensions. In
other words, it is a (d — 1)-dimension subspace within a d-dimension

space. Formally,
H={xecZ:a-x=b}

for some a € Z9 and constant b. )
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|
Lattice Polytopes: Hyperplane Description

Definition
A hyperplane is a generalization of the plane to higher dimensions. In
other words, it is a (d — 1)-dimension subspace within a d-dimension

space. Formally,
H={xecZ:a-x=b}

for some a € Z9 and constant b.

Definition
A half-space H € Z9 is the part of a d-dimensional space that lies on a
given side of a (d — 1)-dimensional hyperplane. More formally,

H={xecZ:a-x>blor{xecZ:a-x<b}

for some a € Z9 and constant b.
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Lattice Polytopes: Hyperplane Description

Definition (hyperplane description)

A polytope P C Z9 is the intersection of a finite number of d-dimensional
half-spaces and (d — 1)-dimensional hyperplanes.
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|
Lattice Polytopes: Hyperplane Description

Definition (hyperplane description)

A polytope P C Z9 is the intersection of a finite number of d-dimensional
half-spaces and (d — 1)-dimensional hyperplanes.

Definition
The t-th dilate of a polytope P is denoted as tP, and refers to scaling P
up by a factor of t. More formally,

tP = {(tX]-? tX27 ceey th) . (X17X27 e 7Xd) S P}
= {tx:x € P}.
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-
Ehrhart polynomials

The core idea of Ehrhart theory is the lattice-point enumerator, which,
similar to Pick's Theorem (Theorem 1), counts the number of lattice
points within a polytope. However, Ehrhart polynomials count the number
of lattice points within the t-th dilate of the polytope.
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-
Ehrhart polynomials

The core idea of Ehrhart theory is the lattice-point enumerator, which,
similar to Pick's Theorem (Theorem 1), counts the number of lattice
points within a polytope. However, Ehrhart polynomials count the number
of lattice points within the t-th dilate of the polytope.

Definition

The lattice-point enumerator is defined as
Lp(t) = ’tPﬂZd‘ .

It is sometimes denoted as i(P, t) instead of Lp(t).
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Ehrhart polynomials

It turns out that, for every polytope, this value is a rational polynomial,
which Ehrhart proved in 1962. Hence, the lattice-point enumerator is
sometimes also referred to as the Ehrhart polynomial. This is especially
surprising, as there is no reason for it to be a polynomial.

Theorem (Ehrhart’s theorem)

The Ehrhart polynomial of a convex lattice polytope P in dimension d is a
rational polynomial of degree d.
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N
Coefficients

@ The leading coefficient is the area, volume, or hypervolume of the
polytope, depending on its dimension.

@ The second coefficient is half the sum of the volumes of each facet
(higher-dimensional generalization of face).

@ The constant term of Ehrhart polynomials is always 1. However, we
do not know anything more about other coefficients of Ehrhart
polynomials.
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Theorem

For any d > 4, there exists a convex lattice polytope P whose coefficients
are negative except for the coefficients of t¢ and t9-1.

The main idea of this proof is finding an Ehrhart polynomial that has
negative coefficients.
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Lemma

For two Ehrhart polynomials Lp(t) and Lo(t) in dimensions di and d,
respectively, where P and Q are convex integral polytopes, there exists a
convex lattice polytope of dimension di + d» with Ehrhart polynomial

Lp(t) - Lo(t).

Definition

A cartesian product of two polytopes P = {(x1, X2, ..., Xq,) € Z%} in
dimension di and Q = {(y1,Y2,...,Yd) € Zdz} is

7)1 X 772 = {(X]_,Xz,. cy Xdps Y1 Y2, e ,ydl)}.

It is well known that the cardinality of the cartesian product is the product
of the cardinality of each polytope.

4
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Proof.
We have two points (a1, az,...,aq4) € P, (b1, b2, ..., bg,) € Q if and only
if we can conclude that (a1, a2, ..., a4, b1, b2, ..., bg,) isin P x Q.

Therefore, the Ehrhart polynomial of P x Q is

Lpxq(t) = Lp(t) - Lo(t).
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Let
Im={a€eR:0<a<mmeN}

Then, I, is a convex lattice polytope in dimension 1. Hence
Ly, (t) =mt+1.

There exists a convex lattice polygon Q,, in dimension 3 whose Ehrhart
polynomial is
— 12
Lo, = %t3+t2+%t+1

for any m € N.
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The Existence of Negative Coefficients in Ehrhart
Polynomials

We can conclude that there exists an integral convex polytope P, in the
dth (d > 4) dimension with Ehrhart polynomial

Lp, () = (L1, (1) Lo, (1)

by using the previous two polynomials and applying the lemma multiple
times. After we plug in their values,

—m+12
Lp (t) = ((d —3)t+1)43. <'6"t3 + 12 + %t—i— 1> .
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The Existence of Negative Coefficients in Ehrhart
Polynomials

When A; = (d — 3)i(dl_.3) for 0 < i< d —2, we can expand
((d —3)t+1)3 in Lp,, using the binomial theorem:

d-3

d—3 .
Z( i >((d_3)t)l:A0+A1t+A2t+...+Ad3td—3'
i=0

This means that

Lp (t) = (Ao + At + Agt + -+ Ad_3td*3)

— 12
X (rgt3+t2+m6+t+1>.
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Then, let Lp, (t) be d o I(d M) gi , where each c( '™ is a rational

number. We can expand the above equation to flnd that

cfdv’") - %ﬂz + Aq, cdm_14 %‘HZ - A1 + Ay, and in general,
d m —m+12
Cj( m) 5 -3 +A 2+ 5 CAil1 +H A

for 3 <j < d — 2. With sufficiently large m, we have that c(d ™ is

negative. Similarly, céd’m) is negative for a large m.
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The Existence of Negative Coefficients in Ehrhart
Polynomials

(d,m)

For G in general,
m —-m+12
q*m = A3t A2t —— At A
m —m
— g \j—3 + Aj_2 + T . Aj—l + 2AJ'_1 + Aj
Ai_1—Ai_3
=1 )= 5 = m4 Ajo +2A1 + A
. d,j
_ _(d—3y-3.8d) m+ Ao +2A 1 + A,

6

where g(d,j) = (d —3)2- (423) — (433).
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Lemma
Whend>5and3<,<d-2,

g(d,j) > 0.

Proof.
We will proceed by induction.

w3 =@-32 (17 7) -1

and this indeed is greater than 0. O
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The Existence of Negative Coefficients in Ehrhart
Polynomials

We also know that

g(d,d—2)=(d—3)?%— (d;3>,

which is also greater than 0. So, we know that the condition given in the
problem is true for j = 3 and j = d — 2. We also specifically test d = 5,6
and both of them work. We will now proceed with induction on d, for

d>7and 4 <j<d-3. Firstly, (d — 3)? can also be expressed as
(d — 4)% +2d — 7. Therefore,

d-3 d-3
dj)=((d—4)?*+2d-7 - :
g(d.j)=((d -4+ )<j_1> <j_3>
Then, by Pascal’s Identity, this is equal to

wa-ar+2a-n((527)+(F22)) - ((025)+ (7=4)):
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The Existence of Negative Coefficients in Ehrhart

Polynomials
We can now simplify:

((d —4)>+2d —7)(7__f> +((d —4)%> +2d — 7)(7:;)

~(572)-(50)
:(d—4)2<j.j:f> +(2d—7)(7__f> +(d—4)2<j’:;>
T T B (s I
:g(d—1,j)+g(d—1J—1)+(2d_7)<j']—_f>'

Therefore, g(d — 1,j) + g(d — 1,j — 1) > 0, and hence, g(d,j) > 0.
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The Existence of Negative Coefficients in Ehrhart
Polynomials

Since g(d,j) > 0, we know that cj(d’m) can be negative for a sufficiently
large m.

That means that we have successfully found an Ehrhart polynomial that
has negative coefficients.
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-
Non-Ehrhart-Positive Polytopes

One family of polytopes that can have negative Ehrhart polynomial
coefficients is order polytopes.

To understand order polytopes, we first need to understand what posets
are.
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-
Non-Ehrhart-Positive Polytopes

One family of polytopes that can have negative Ehrhart polynomial
coefficients is order polytopes.

To understand order polytopes, we first need to understand what posets
are.

Definition

A poset, or partially ordered set, P = (P, <) is a set P with a relation <
on P that is reflexive, transitive, and asymmetric.

Negative Coefficents in Ehrhart Polynomials July 10, 2025 27 /34



-
Non-Ehrhart-Positive Polytopes

One family of polytopes that can have negative Ehrhart polynomial
coefficients is order polytopes.

To understand order polytopes, we first need to understand what posets
are.

Definition
A poset, or partially ordered set, P = (P, <) is a set P with a relation <
on P that is reflexive, transitive, and asymmetric.

@ Reflexivity refers to the condition that x < x for all x € P.
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-
Non-Ehrhart-Positive Polytopes

One family of polytopes that can have negative Ehrhart polynomial
coefficients is order polytopes.

To understand order polytopes, we first need to understand what posets
are.

Definition
A poset, or partially ordered set, P = (P, <) is a set P with a relation <
on P that is reflexive, transitive, and asymmetric.

@ Reflexivity refers to the condition that x < x for all x € P.

@ Transitivity happens when, if x < y and y < z, then x < z.
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-
Non-Ehrhart-Positive Polytopes

One family of polytopes that can have negative Ehrhart polynomial
coefficients is order polytopes.

To understand order polytopes, we first need to understand what posets
are.

Definition
A poset, or partially ordered set, P = (P, <) is a set P with a relation <
on P that is reflexive, transitive, and asymmetric.

@ Reflexivity refers to the condition that x < x for all x € P.

@ Transitivity happens when, if x < y and y < z, then x < z.

@ Asymmetry refers to the fact that x <y = y < x is false.
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Non-Ehrhart-Positive Polytopes

Example
We will show that (R, <) is a poset. To do this, we need to show that <
is reflexive, transitive, and asymmetric.

@ Reflexivity: for all x in R, x < x.

o Transitivity: for all x,y, and z in R, we have that if x <y and y < z,

then x < z.

@ Asymmetry: for all x and y in R, if x < y and y < x, then x = y.

Therefore, (R, <) is indeed a poset.
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-
Non-Ehrhart-Positive Polytopes

Definition

An order polytope Op of a finite poset (P, <p) is the subset of
ZP = {f : P — 7Z} that is defined by

0<f(i)<1 VieP

and

F(i) < F(j) if i <pJ.
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Non-Ehrhart-Positive Polytopes

Definition
An order polytope Op of a finite poset (P, <p) is the subset of
ZP = {f : P — 7Z} that is defined by

0<f(i)<1 VieP

and
() <f(y) ifi<pj.

Definition
The ordinal sum of two disjoint finite posets is the poset (P @ Q, <pgq)
such that s <pgq t if:

@ s,t€ Pands<pt,

@ s,te@Qands<gt,or

escPandteq.
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-
Non-Ehrhart-Positive Polytopes

P®&QO

DU

Figure: The ordinal sum of P and Q.
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-
Non-Ehrhart-Positive Polytopes

Theorem

For any positive integer d > 14, there exists an order polytope that has
negative Ehrhart polynomial coefficients.

For d < 11, any order polytope is Ehrhart-positive, meaning that their
Ehrhart polynomials always have negative coefficients.

For d > 21, there is an order polytope that is non-Ehrhart positive for
each d.
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-
Non-Ehrhart Positive Polytopes

Let m, n be two positive integers, and let Pp, , be the ordinal sum of Pp,

and P,.

P Ehrhart polynomial
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-
Non-Ehrhart Positive Polytopes

There are also many other polytopes that have negative Ehrhart
polynomial coefficients:
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Non-Ehrhart Positive Polytopes

There are also many other polytopes that have negative Ehrhart
polynomial coefficients:

@ Smooth lattice polytopes (in each dimension starting from d > 3).
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-
Non-Ehrhart Positive Polytopes

There are also many other polytopes that have negative Ehrhart
polynomial coefficients:

@ Smooth lattice polytopes (in each dimension starting from d > 3).

@ Type-B generalized permutohedra (in each dimension starting from
d>T.
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-
Non-Ehrhart Positive Polytopes

There are also many other polytopes that have negative Ehrhart
polynomial coefficients:

@ Smooth lattice polytopes (in each dimension starting from d > 3).

@ Type-B generalized permutohedra (in each dimension starting from
d>T.

@ Chain polytopes, which have the same Ehrhart polynomials as order
polytopes.
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Thank you!

Any questions?
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