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Abstract. In this paper, we will cover the fundamentals of Ehrhart theory, while also
discovering polytopes that have negative coefficients in their Ehrhart polynomials. Ehrhart
theory is the study of the number of lattice points within integral convex polytopes, and he
proved that such values are polynomials. It turns out that not only are these values poly-
nomials, but they can also have negative coefficients as well in sufficiently large dimensions.
The study of polytopes with all-positive Ehrhart polynomial coefficients is called Ehrhart
positivity; it is still an open field.

1. Introduction

We know how to find the area of a lattice polygon that is not too complex. How do we
find the area of a lattice polygon that has irregular angles and is very complex, like the one
pictured below?

Georg Alexander Pick decided to study these. In 1899, he discovered Pick’s Theorem
(Theorem 2.1), which finds the area of a polygon on a lattice plane. This theorem became
very well-known and useful. It is a gem, but unfortunately, it only applies to the second
dimension.

Eugène Ehrhart hence ventured to find a method that would work in all dimensions—for all
polytopes, which are higher-dimensional generalizations a polygon. He decided to continue
with a different approach: counting the number of interior lattice points when a polytope
is scaled up by a factor of t. This turns out to be a rational polynomial, called the Lattice
Point Enumerator, otherwise known as the Ehrhart polynomial.
The result of Ehrhart’s study became its own field: Ehrhart theory. Ehrhart theory

is the bridge between combinatorics, algebra, and geometry. There are many notions from
combinatorics that are used in Ehrhart theory. For example, in situations where the Ehrhart
polynomial is hard to work with, we often work with Ehrhart series, the generating function
of an Ehrhart polynomial.
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After seeing that all coefficients are positive in the Ehrhart polynomials of polygons, one
question proceeds naturally:

Question 1.1. Are all coefficients of every Ehrhart polynomial positive? In other words, is
every Ehrhart polynomial Ehrhart-positive?

This question becomes of greater importance, as Ehrhart discovered that the first two
coefficients of Ehrhart polynomials are specific properties of a polytope. Therefore, knowing
if coefficients can be negative is crucial to understand if any subsequent coefficient can be
other properties of polytopes, since properties of most polytopes are positive.

As we will see, the answer to this question is no. Negative coefficients do exist in some
polytopes.

Remark 1.1. Ehrhart positivity, which is the study of the sign of coefficients in Ehrhart
polynomials, is still an open field. We still do not know all polytopes that are non-Ehrhart-
positive.

The goal of this paper is to provide the reader with a fundamental understanding of
Ehrhart theory, as well as insight into which types of polytopes have negative Ehrhart
polynomial coefficients. To do this, we will focus on convex polytopes solely in this paper.
In addition, we will provide the following structure:

First, we will start by looking at Pick’s Theorem in section 2, and work with some ex-
amples. Then, in section 3, we will formally define lattice polytopes. In section 4, we will
define Ehrhart polynomials and their generating functions, Ehrhart series. Next, in section
5, we will explore what the coefficients in the Ehrhart polynomial of a polytope tell us about
the properties of that polytope. We will then prove the existence of negative coefficients
in Ehrhart polynomials. In section 6, we will explore polytopes that have negative Ehrhart
polynomial coefficients. Finally, in section 7, we will go over the opposite: polytopes that
have positive Ehrhart polynomial coefficients.

2. Pick’s Theorem

Pick’s Theorem from [Pic99] is defined as follows:

Theorem 2.1 (Pick’s Theorem). Given any convex lattice polygon,

A = I +
B

2
− 1

where A is the area of the polygon, I is the number of interior lattice points, and B is the
number of points on the border of the polygon.

We will give a few examples.

Example 2.1. Will will find the area of the polygon below.
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Here, I = 12 and B = 12, so
A = 12 + 6− 1 = 17.

Example 2.2. Pick’s theorem can also be used when a polygon is not convex, though convex
polygons are the focus of this paper.

Here, I = 27 and B = 10, so
A = 27 + 5− 1 = 31.

Now that we have a taste of Ehrhart theory in two dimensions, we will dive into more
precisely defining lattice polytopes, so as to pave the way for studying Ehrhart theory in
further detail.

3. Lattice Polytopes

Polytopes are generalizations of the 2-dimensional polygon or the 3-dimensional polyhe-
dron into higher dimensions. There are two formal ways to define lattice polytopes: the
vertex description and the hyperplane description. The vertex description aims to define a
polytope by its vertices.

Definition 3.1 (vertex description). A polytope is the convex hull of finitely many points.
More formally, for any polytope P ,

P := conv{v1, v2, . . . , vn} = {λ1v1 + λ2v2 + · · ·+ λnvn : λk ≥ 0,
n∑

k=1

λk ≤ 1}

for a finite set of points {v1, v2, . . . , vn} ⊂ Zd.

To more easily imagine what this means, we will provide an example in the second dimen-
sion.
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Example 3.1. Consider the polygon below.

Consider the vectors from the origin to each vertex.

Here, any point in this triangle can be described as the sum of some fractions of these
vectors. For example, the point shown below is the sum of the blue vectors.

These fractions’ sum is at most 1; notice that the points that have sums equal to 1 are
the ones on the border of the polygon.

Unlike the vertex description, the hyperplane description aims to describe a polytope by
its faces. We will start by defining the hyperplane, then a half-space.

Definition 3.2. A hyperplane is a generalization of the plane to higher dimensions. In other
words, it is a (d− 1)-dimension subspace within a d-dimension space. Formally,

H := {x ∈ Zd : a · x = b}
for some a ∈ Zd and constant b.
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Definition 3.3. A half-space H ∈ Zd is the part of a d-dimensional space that lies on a
given side of a (d− 1)-dimensional hyperplane. More formally,

H := {x ∈ Zd : a · x ≥ b} or {x ∈ Zd : a · x ≤ b}
for some a ∈ Zd and constant b.

Definition 3.4 (hyperplane description). A polytope P ⊂ Zd is the intersection of a finite
number of half-spaces. Formally,

Ehrhart theory focuses on the t-th dilate of a polytope.

Definition 3.5. The t-th dilate of a polytope P is denoted as tP , and refers to scaling P
up by a factor of t. More formally,

tP = {(tx1, tx2, . . . , txd) : (x1, x2, . . . , xd) ∈ P}
= {tx : x ∈ P}.

4. Ehrhart Polynomials and Series

4.1. Ehrhart Polynomials. The core idea of Ehrhart theory is the lattice-point enumer-
ator, which, similar to Pick’s Theorem (Theorem 2.1), counts the number of lattice points
within a polytope. However, Ehrhart polynomials count the number of lattice points within
the t-th dilate of the polytope.

Definition 4.1. The lattice-point enumerator is defined as

LP(t) =
∣∣tP ∩ Zd

∣∣ .
It is sometimes denoted as i(P , t) instead of LP(t).

It turns out that, for every polytope, this value is a rational polynomial, which Ehrhart
proved in 1962. Hence, the lattice-point enumerator is sometimes also referred to as the
Ehrhart polynomial. This is especially surprising, as there is no reason for it to be a polyno-
mial.

Theorem 4.1 (Ehrhart’s theorem). The Ehrhart polynomial of a convex lattice polytope P
is a rational polynomial of degree d.

The full proof of this theorem can be found in [Ehr62].
Below are a few examples of Ehrhart polynomials.

Example 4.1. Let
lm = {α ∈ R : 0 ≤ α ≤ m,m ∈ N}.

Then, lm is a convex lattice polytope in dimension 1. Hence Llm(t) = mt+ 1.

Example 4.2. We will look at Ehrhart theory in dimension two.

Theorem 4.2 (Pick’s Theorem, restated). For any convex lattice polygon P ,

LP (1) = A(P ) +
B(P )

2
+ 1.

Theorem 4.3 (Ehrhart’s theorem in dimension 2, see [BR07]). Let P be a convex lattice
polygon and t be an integer.

LP(t) = A(P)t2 +
B(P)t

2
+ 1.
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Proof. After dilating P by a factor of t, we now have similar polygons. Therefore, the area
of tP is t2 times the area of P , and the number of lattice points on the borderline is t times
the number of lattice points on P . □

Example 4.3. There exists a convex lattice polygon Qm in dimension 3 whose Ehrhart
polynomial is

LQm =
m

6
t3 + t2 +

−m+ 12

6
t+ 1

for any m ∈ N.
4.2. Ehrhart Series. When working with Ehrhart polynomials is inconvenient, we usually
work with its Ehrhart series.

Definition 4.2. A generating function of a series a0, a1, a2, . . . is the polynomial

f(x) = a0 + a1x+ a2x
2 + . . . .

Definition 4.3. The Ehrhart Series EhrP(x) of a polytope P is the generating function of
LP(t); that is, the sequence LP(0), LP(1), LP(2), . . . .

EhrP(x) = LP(0) + LP(1)x+ LP(2)x
2 + . . .

Now that we know the fundamentals of Ehrhart theory, we can now explore Ehrhart
polynomials more thoroughly.

5. Coefficients

5.1. Properties of Polytopes. It turns out that the first and second coefficients of Ehrhart
polynomials are actually geometric properties of polytopes. The leading coefficient is the
area, volume, or hypervolume of the polytope, depending on its dimension. The second
coefficient is half the sum of the volumes of each facet (higher-dimensional generalization
of face). The constant term of Ehrhart polynomials is always 1. However, we do not know
anything more about other coefficients of Ehrhart polynomials.

To find out more about the coefficients, we first need to know if that is possible. One way
to see this is to check the sign of the coefficients, since that might give us insight as to which
properties are and are not represented in Ehrhart polynomials.

5.2. The Existence of Negative Coefficients in Ehrhart Polynomials.

Theorem 5.1. For any d ≥ 4, there exists a convex lattice polytope P whose coefficients are
negative except for the coefficients of td and td−1.

Proof. We will begin by presenting a lemma.

Lemma 5.1.1. For two Ehrhart polynomials LP(t) and LQ(t) in dimensions d1 and d2, re-
spectively, where P and Q are convex integral polytopes, there exists a convex lattice polytope
of dimension d1 + d2 with Ehrhart polynomial LP(t) · LQ(t).

Proof. We can multiply two polytopes together.

Definition 5.1. A cartesian product of two polytopes P = {(x1, x2, . . . , xd1) ∈ Zd1} in
dimension d1 and Q = {(y1, y2, . . . , yd2) ∈ Zd2} is

P1 × P2 = {(x1, x2, . . . , xd1 , y1, y2, . . . , yd1)}.
It is well known that the cardinality of the cartesian product is the product of the cardinality
of each polytope.
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We have two points (a1, a2, . . . , ad1) ∈ P , (b1, b2, . . . , bd2) ∈ Q if and only if we can conclude
that (a1, a2, . . . , ad1 , b1, b2, . . . , bd2) is in P ×Q. Therefore, the Ehrhart polynomial of P ×Q
is

LP×Q(t) = LP(t) · LQ(t).

□

From applying Lemma 5.1.1 multiple times and using Examples 4.1 and 4.3, we can
conclude that there exists an integral convex polytope Pm in the dth (d ≥ 4) dimension with
Ehrhart polynomial

LPm(t) = (Lld−3
(t))d−3LQm(t).

Plugging in the values (see Example 4.1 and Example 4.3),

LPm(t) = ((d− 3)t+ 1)d−3 ·
(
m

6
t3 + t2 +

−m+ 12

6
t+ 1

)
.

When Ai = (d− 3)i
(
d−3
i

)
for 0 ≤ i ≤ d− 2, we can expand ((d− 3)t+ 1)3 in LPm using the

binomial theorem:

d−3∑
i=0

(
d− 3

i

)
((d− 3)t)i = A0 + A1t+ A2t+ · · ·+ Ad−3t

d−3.

This means that

LPm(t) =
(
A0 + A1t+ A2t+ · · ·+ Ad−3t

d−3
)(m

6
t3 + t2 +

−m+ 12

6
t+ 1

)
.

Then, let LPm(t) be
∑d

i=0 c
(d,m)
i ti, where each c

(d,m)
i is a rational number. We can expand the

above equation to find that c
(d,m)
1 = −m+12

6
+A1, c

d,m
2 = 1+ −m+12

6
·A1 +A2, and in general,

c
(d,m)
j =

m

6
Aj−3 + Aj−2 +

−m+ 12

6
· Aj−1 + Aj

for 3 ≤ j ≤ d− 2. With sufficiently large m, we have that c
(d,m)
1 is negative. Similarly, c

(d,m)
2

is negative for a large m. For c
(d,m)
j in general,

c
(d,m)
j =

m

6
Aj−3 + Aj−2 +

−m+ 12

6
· Aj−1 + Aj

=
m

6
Aj−3 + Aj−2 +

−m

6
· Aj−1 + 2Aj−1 + Aj

= −Aj−1 − Aj−3

6
·m+ Aj−2 + 2Aj−1 + Aj

= −(d− 3)j−3 · g(d, j)
6

·m+ Aj−2 + 2Aj−1 + Aj,

where g(d, j) = (d− 3)2 ·
(
d−3
j−1

)
−

(
d−3
j−3

)
. Now, we will present another lemma.

Lemma 5.1.2. When d ≥ 5 and 3 ≤ j ≤ d− 2,

g(d, j) > 0.
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Proof. We will proceed by induction.

g(d, 3) = (d− 3)2 ·
(
d− 3

2

)
− 1,

and this indeed is greater than 0. We also know that

g(d, d− 2) = (d− 3)2 −
(
d− 3

2

)
,

which is also greater than 0. So, we know that the condition given in the problem is true
for j = 3 and j = d − 2. We also specifically test d = 5, 6 and both of them work. We will
now proceed with induction on d, for d ≥ 7 and 4 ≤ j ≤ d− 3. Firstly, (d− 3)2 can also be
expressed as (d− 4)2 + 2d− 7. Therefore,

g(d, j) = ((d− 4)2 + 2d− 7)

(
d− 3

j − 1

)
−
(
d− 3

j − 3

)
.

Then, by Pascal’s Identity, this is equal to

((d− 4)2 + 2d− 7)

((
d− 4

j − 1

)
+

(
d− 4

j − 2

))
−
((

d− 4

j − 3

)
+

(
d− 4

j − 4

))
.

We can now simplify:

((d− 4)2 + 2d− 7)

(
d− 4

j − 1

)
+ ((d− 4)2 + 2d− 7)

(
d− 4

j − 2

)
−
(
d− 4

j − 3

)
−
(
d− 4

j − 4

)
=(d− 4)2

(
d− 4

j − 1

)
+ (2d− 7)

(
d− 4

j − 1

)
+ (d− 4)2

(
d− 4

j − 2

)
+ (2d− 7)

(
d− 4

j − 2

)
−

(
d− 4

j − 3

)
−
(
d− 4

j − 4

)
=g(d− 1, j) + g(d− 1, j − 1) + (2d− 7)

(
d− 3

j − 1

)
.

Therefore, g(d− 1, j) + g(d− 1, j − 1) > 0, and hence, g(d, j) > 0. □

Since g(d, j) > 0, we know that c
(d,m)
j can be negative for a sufficiently large m. □

6. Families of Polytopes with Negative Ehrhart Polynomial Coefficients

To understand order polytopes, we first need to understand what posets are.

Definition 6.1. A poset, or partially ordered set, P = (P,≤) is a set P with a relation ≤
on P that is reflexive, transitive, and asymmetric.

• Reflexivity refers to the condition that x ≤ x for all x ∈ P.
• Transitivity happens when, if x ≤ y and y ≤ z, then x ≤ z.
• Asymmetry refers to the fact that x ≤ y =⇒ y ≤ x is false.

We will demonstrate this with an example.

Example 6.1. We will show that (R,≤) is a poset. To do this, we need to show that ≤ is
reflexive, transitive, and asymmetric.

• Reflexivity: for all x in R, x ≤ x.
• Transitivity: for all x, y, and z in R, we have that if x ≤ y and y ≤ z, then x ≤ z.
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• Asymmetry: for all x and y in R, if x ≤ y and y ≤ x, then x = y.

Therefore, (R,≤) is indeed a poset.

Now, using a poset, we will define order polytopes.

Definition 6.2. An order polytope OP of a finite poset (P,≤P ) is the subset of ZP = {f :
P → Z} that is defined by

0 ≤ f(i) ≤ 1 ∀i ∈ P

and

f(i) ≤ f(j) if i ≤P j.

We will also define the ordinal sum of two posets.

Definition 6.3. The ordinal sum of two disjoint finite posets is the poset (P ⊕ Q,≤P⊕Q)
such that s ≤P⊕Q t if:

• s, t ∈ P and s ≤P t,
• s, t ∈ Q and s ≤Q t, or
• s ∈ P and t ∈ Q.

See Figure 1 below for an example.

Figure 1. The ordinal sum of P and Q.

Order polytopes can be non-Ehrhart-positive, meaning that their Ehrhart polynomials
can have negative coefficients.

Theorem 6.1. For any positive integer d ≥ 14, there exists an order polytope that has
negative Ehrhart polynomial coefficients. t For d ≤ 11, any order polytope is Ehrhart-positive,
meaning that their Ehrhart polynomials always have negative coefficients.

For d ≥ 21, there is an order polytope that is non-Ehrhart positive for each d.

The main idea of the proof is that it suffices to show an example of a non-Ehrhart-positive
order polytope for each d. We will let m,n be two positive integers, and let Pm,n be the
ordinal sum of Pm and Pn. It turns out that the polynomials are the ones shown in Figure 2
below; the first two are Ehrhart-positive, but the rest are not. For the full proof, see [LT19].

Other examples of polytopes that have negative Ehrhart polynomial coefficients are smooth
lattice polytopes and matroids.

7. The Other Side of the Story: Ehrhart Positivity

Polytopes that do not have negative Ehrhart coefficients no matter the dimension are
called Ehrhart-positive. Many classes of polytopes are Ehrhart-positive.
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Figure 2. The Ehrhart polynomials of OPm,n .

7.1. The Unit d-Cube. The unit d-cube is a generalization of the 2D square and the 3D
cube into higher dimensions; it is denoted as □d.

Theorem 7.1. The Ehrhart polynomial of the unit d-cube is (t+ 1)d for a dimension d.

Proof. We will work on a 2D plane, then generalize into higher dimensions. Below is the t-th
dilate of the unit square.
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Each coordinate of every point within this square can have x = 0, 1, 2, . . . , t. Similarly, it
has y = 0, 1, 2, . . . , t. Therefore, there are (t + 1)2 ways to choose the coordinates, and the
Ehrhart polynomial is t2 + 2t+ 1.

For a unit d-cube, every point has d coordinates, and each of these have t+ 1 values they
can be. Therefore, the lattice-point enumerator for a unit d-cube is (t+ 1)d.

□

Since the expansion of (t + 1)d must always be positive by the binomial theorem, unit
d-cubes are Ehrhart-positive.

7.2. The Standard d-Simplex. While the unit d-cube is the generalization of squares into
higher dimensions, the standard d-simplex is the generalization of the 2D triangle and the
3D tetrahedron. It is denoted as △d.

Definition 7.1. Formally, △d defined as the convex hull of the d unit vectors e1, e2, . . . , ed

△d := conv{0, e1, e2, . . . , ed}
= {(x1, x2, . . . , xd) ∈ Zd : x1 + x2 + · · ·+ xd ≤ 1 and xi ≥ 0 for 1 ≤ i ≤ d}.

Theorem 7.2. The Ehrhart polynomial of the standard d-simplex is
(
d+t
d

)
.

Proof. Points of the form (x1, x2, . . . , xd) in a standard d-simplex satisfy

x1 + x2 + · · ·+ xd ≤ t

where xi for all i. We can make this an equality by writing

x1 + x2 + · · ·+ xd + xd+1 = t.

The number of solutions (x1, x2, . . . , xd, xd+1) can be counted using Stars and Bars; we are
dividing t indistinguishable stars into d+1 distinguishable sections with bars. So, the number
of solutions is

(
t+(d+1)−1
(d+1)−1

)
=

(
t+d
d

)
. □

We claim that the standard d-simplex is also Ehrhart-positive.

Theorem 7.3. The standard d-simplex is Ehrhart positive.

Proof. Writing
(
t+d
d

)
as a polynomial,

(t+ d)!

t! · d!
=

(t+ d)(t+ d− 1)(t+ d− 2) . . . (t+ 1)

d!
.

Since d! is positive, we only need to see if the coefficients of the numerator are positive. Since
every factor in the numerator has positive coefficients, the expansion is also positive. □
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Of course, many other polytopes have Ehrhart positivity, such as d-cross polytopes. How-
ever, Ehrhart polynomials of d-cross polytopes are hard to work with, so the Ehrhart series
is used.

Remark 7.1. There is no standard way of proving Ehrhart positivity as of now. Therefore,
it is difficult yet captivating to prove Ehrhart positivity, or non-Ehrhart positivity for a each
polytope.
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