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Introduction to Simplicial Complexes

Figure 1: A simplicial complex
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Discrete Morse Functions

Definition: Discrete Morse Functions

A discrete Morse function f is a function f : K → R that satisfies
the following properties:

|{τ (i−1) < σ : f (τ) ≥ f (σ)}| ≤ 1

and
|{τ (i+1) > σ : f (τ) ≤ f (σ)}| ≤ 1

for every σ(i) ∈ K .

Linhan Shen

Discrete Morse Theory



Introduction to Simplicial Complexes Discrete Morse Functions The Collapse Theorem Applications in Homology

Discrete Morse Functions

Figure 2: An example of a discrete Morse function
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Each simplex has at most one ”exception”; we can represent these
exceptions with an induced gradient vector field.
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Discrete Morse Functions

Figure 3: The induced gradient vector field of the previous discrete
Morse function
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Notice how the vectors describe possible collapses that reduce the
simplicial complex.
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The Collapse Theorem

Definition: Level Subcomplexes

Let f : K → R be a discrete Morse function. For any c ∈ R, the
level subcomplex K (c) is the subcomplex consisting of any
simplices τ along with its faces such that f (τ) ≤ c .

Definition: Intervals

If σ and τ are subcomplexes of K such that σ < τ , then the
interval [σ, τ ] is the set of all simplices in K that contain σ and are
contained in τ .
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The Collapse Theorem

Theorem: The Collapse Theorem

Let f : K → R be a discrete Morse function and [σ, τ ] ⊆ R an
interval that contains no critical values. Then K (τ) ↘ K (σ).

Remark

This tells us that when we are trying to simplify a simplicial
complex, we only have to consider level subcomplexes with critical
simplices.
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The Collapse Theorem

Figure 4: The Collapse Theorem in practice
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The level subcomplexes generated by 13 and 12 can be collapsed.
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The level subcomplexes generated by 13 and 12 can be collapsed.
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Applications in Homology

Definition: Betti Numbers

Briefly speaking, the homology of a simplicial complex refers to the
number of ”holes” in the complex. The Betti numbers bn refer to
the number of n-dimensional holes in a simplicial complex.

Linhan Shen

Discrete Morse Theory



Introduction to Simplicial Complexes Discrete Morse Functions The Collapse Theorem Applications in Homology

Applications in Homology

Theorem: Weak Discrete Morse Inequalities

Let f : K → R be a discrete Morse function with mi critical values
in dimension i for i = 0, 1, 2, . . . , n := dimK . Then we have the
following inequalities:

i For all i = 0, 1, 2, . . . , n, bi ≤ mi .

ii The Euler characteristic χ(K ) is equal to
∑n

i=0(−1)imi .

Theorem: Strong Discrete Morse Inequalities

Let f : K → R be a discrete Morse function. For each
p = 0, 1, 2, . . . , n, n + 1, we have

bp−bp−1+bp−2−. . .+(−1)pb0 ≤ mp−mp−1+mp−2−. . .+(−1)pm0.
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Applications in Homology

Figure 5: Visualizing the Discrete Morse Inequalities
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Applications in Homology

Proof of the Weak Discrete Morse Inequalities)

i We proceed by induction on the number of simplices, checking
if the highest value simplex is regular (in which case we can
collapse it by) or critical (in which case removing it removes a
hole).

ii Since each regular pair of simplices consists of two
codimension-1 simplices, their Euler characteristic is 0.
Canceling out all of the regular simplices, we are left with just
the critical simplices.
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Thank you for attending my presentation!

Thank you very much!
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