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Abstract. In this paper, we will introduce discrete Morse theory, an analogue of Morse
theory onto discrete surfaces called simplicial complexes. We will look into the applications
of creating discrete Morse functions, which range from reducing simplicial complexes to
analyzing their homology. Along the way, we will introduce Random Discrete Morse Theory,
Vertex Refinement, and Morse Sequences.

1. Introduction

The concept of discrete Morse theory was first introduced by R. Forman in 1998 [5] as an
analogue of (smooth) Morse theory onto analyzing discrete surfaces. Morse theory is used
primarily with smooth manifolds. Specifically, it applies Morse functions—smooth functions
with only non-degenerate critical points—onto manifolds in order to analyze their topology
[11]. In this paper, we will primarily use Discrete Morse Theory for two goals: to reduce the
complexity of a simplicial complexes (primarily through elementary collapse) and to make
observations about their homotopy. These will come in the form of the Collapse Theorem
and its corollaries, which allow us to view sequences of elementary collapses as generalized
discrete vector fields, and the Discrete Morse Inequalities, which relate the critical points
of a discrete Morse function with the F2-Betti numbers of a simplicial complex. Finally,
we will introduce the concept of Morse sequences, which are an alternative way of utilizing
elementary operations—specifically, elementary expansions and the inverse of elementary
collapses—to represent simplicial complexes.

2. Background on Simplicial Complexes

We will begin by properly defining the discrete surfaces we are working with [10].

Definition 2.1. A simplex is the smallest possible Euclidean polytope in a given number of
dimensions. Generally, we will define a simplex in i dimensions as τ (i), or more abstractly,
an i-simplex. For any simplex τ (i), dim(τ) := i. The codimension of a simplex τ with respect
to a simplex σ is defined as dim(σ)− dim(τ).

An i-simplex can be thought of as a set of vertices with cardinality i + 1. For example,
a 0-simplex is a point, while a 2-simplex is a triangle. We will notate a simplex by the
concatenation of its vertices; a 2-simplex defined over vertices v1, v2, v3, and v4 will be
notated as v1v2v3v4. When the intention is clear, we will also write the last simplex as v1234
for convenience.

Definition 2.2. A simplicial complex K is defined as a subset of the power set of a collection
of vertices [vn] := {v0, v1, . . . , vn}, excluding ∅, satisfying the following conditions:

(a) If σ ∈ K, for every τ ⊆ σ, τ ∈ K;
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(b) For every vi ∈ [vn], vi ∈ K.

We will denote the vertex set of K, or [vn], as V (K). For any simplicial complex K in i
dimensions, dim(K) := i. The c-vector of K is defined as the vector (c0, c1, ..., cdim(k)), where
ci is the number of i-simplices in K.

A natural thought that could arise from this definition is the question of the efficiency
of writing out K. Consider the simplicial complex K := {v1, v2, v3, v12, v13, v23, v123}. If the
simplex v0v1 is contained in K, we also know that v0 and v1 are contained in K. In fact,
the majority of the simplices in this depiction are unnecessary; all of then are contained
in v0v1v2! We will now attempt to construct a more efficient way of depicting a simplicial
complex, only using the essential simplices. We start by defining these “essential simplices”:

Definition 2.3. For every τ ⊊ σ : σ ∈ K, we say that τ is a face of σ and σ is a coface of
τ . This relationship is denoted as τ < σ.

Definition 2.4. A simplex σ ∈ K is a facet of K if it is not the coface of any other simplex
in K.

Lemma 2.5. The set of facets of K properly contains every simplex of K.

Proof. We will prove this claim by contradiction. Assume that there exists a simplex τ ∈ K
such that for every facet σ of K, τ ≮ σ. If τ is not a face of any other simplex, Then, τ itself
is a facet, and since τ contains itself, we have a contradiction. ■

Theorem 2.6. Every simplicial complex K is uniquely represented by the set of its facets.

Proof. We can rephrase this theorem as the following statement: two simplicial complexes
K and L are identical—that is, the set of their simplices are equivalent—if and only if the
set of their facets are equivalent.

We will start by proving the forward direction. Suppose that K and L are identical. Then,
they both generate the same set of facets.

Now, we will prove the reverse direction through contradiction. Let S be defined as the
set of the facets of K, which is equivalent to the set of the facets of L. If we assume that
K and L are not identical, then at least one of the complexes will contain a simplex σ that
the other does not. Without loss of generality, we will assume that K contains σ; we can
make the same argument with L containing σ instead as needed. By Lemma 2.5, we know
that S properly contains the simplices of both K and L, which includes σ. This implies
that L, which does not contain σ, has a facet that does contain σ. This is a contradiction of
Definition 2.2 ■

3. Simple Homotopy and Euler Characteristics

Now that we have a proper understanding of the construction of simplicial complexes, a
logical next step is to define an equivalence relation between these structures. We will do this
by creating a function that can transform a simplicial complex into a homotopy equivalent
one.

Definition 3.1. A free pair in a simplicial complex K is a set of two simplices {σ(i−1), τ (i)} ∈
K such that τ (i) is a facet and τ (i) is the only coface of σ(i−1).

Definition 3.2. We call the process of removing a free pair from a simplicial complex K
an elementary collapse, and it will be notated as K ↘ L, where L is the resulting complex.
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Similarly, an elementary expansion is the process of adding a free pair, which will be notated
as K ↗ L. Because of our definition of free pairs, L will always be a simplicial complex. If
there exists a series of elementary expansions and collapses that transforms a complex K to
a complex L, we say that K and L are homotopy equivalent, or K ∼ L. Finally, we call a
simplicial complex collapsible if there exists a sequence of collapses—no expansions allowed—
that transforms the complex into a single 0-simplex, we call that complex collapsible.

There also exists an elementary operation called elementary removal, where a simplex
(not necessarily part of a free pair) of the largest possible dimension is removed from the
complex, but this operation will not be considered because it does not preserve the homology
of a complex. As a shorthand rule, whenever we reference “elementary operations” from this
point, we mean elementary expansions and elementary collapses.

Example 3.3. Consider the following complex K.

v123 v45

v34v13

v12

v23

v1

v2

v3

v4

v5

We can perform an elementary expansion, adding the free pair {v35, v345}, to get the
following complex:

v123 v345

v34

v45

v35

v13

v12

v23

v1

v2

v3

v4

v5

We can also collapse the following free pairs, in order, from the complex K: {v12, v123},
{v1, v13}, {v2, v23}, {v3, v34}, and {v4, v45}. Below is a visualization of these elementary
collapses:

v123 v45

v34v13

v12

v23

v1

v2

v3

v4

v5

v45

v34v13

v23

v1

v2

v3

v4

v5

v45

v34

v23v2

v3

v4

v5

v45

v34

v3

v4

v5



4 LINHAN SHEN

v45

v4

v5 v5

Since we are able to collapse K to a single 0-simplex, K is collapsible.

Remark 3.4. All collapsible simplicial complexes are homotopy equivalent.

Proof. Consider two collapsible simplicial complexes K and L. There exists a sequence of
collapses that transforms K into a 0-simplex, and there exists a sequence of expansions that
transforms a 0-simplex into L. Combining these sequences, we get a series of elementary
operations that transforms K into L. Thus, K ∼ L. ■

We can consider the Euler characteristics (denoted by χ) over these simplicial complexes
to determine whether or not they are homotopy equivalent.

Remark 3.5. If we have simplicial complexes K and L such that χ(K) ̸= χ(L), then K ≁ L.

Proof. We will first show that the Euler characteristic of a free pair is 0. Remember that
each free pair is a set of two simplices {σ(i−1), τ (i)}. The Euler characteristic of this pair
is therefore (−1)i−1 + (−1)i = 0. Because elementary expansions and collapses involves
either adding or subtracting a free pair, it is impossible to change the Euler characteristic
of a complex through elementary operations, and therefore a simplicial complex cannot be
homotopy equivalent with another complex with a different Euler characteristic. ■

Example 3.6. Consider the following simplicial complex.

v12

v23

v13

v1

v2

v3

This simplicial complex is not homotopy equivalent to the complex described in Example
3.3 by the previous remark. By Remark 3.4, this also means that the above complex is not
collapsible. (This result can be confirmed by the fact that there are no free pairs in the
figure, so it cannot undergo elementary collapse.)

When we defined collapsible simplicial complexes, one might wonder about why we need
a transformation without elementary expansions. The implication here is that there exist
simplicial complexes that can be reduced to a 0-simplex through elementary collapses and
expansions, yet are not collapsible. This was proved in [2] with the following example.

Example 3.7. The following simplicial complex, also known as the Dunce hat, is not col-
lapsible because it has no free pairs. However, it is homotopy equivalent to the triangulation
of a 3-sphere with 8 vertices and 19 facets, which is then collapsible.
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v1

v1 v1

v2 v2

v2

v3 v3

v3

v4

v5

v6

v7

v8

Remark 3.8. The order and types of collapses that are taken on a simplicial complex matter.

4. Discrete Morse Functions

Simplicial complexes can grow to be quite complex (pun not intended). In order to make
these structures more practical, we can start by trying to find an equivalent simplicial com-
plex that is smaller. We can do this through elementary operations, but visualizing these
operations directly is time-consuming. In Example 3.3, it took us half a page to collapse a
simplicial complex with only 11 elements. This is where discrete Morse functions come in.

Definition 4.1. A discrete Morse function f is a function f : K → R that satisfies the
following properties:

|{τ (i−1) < σ : f(τ) ≥ f(σ)}| ≤ 1

and

|{τ (i+1) > σ : f(τ) ≤ f(σ)}| ≤ 1

for every σ(i) ∈ K. A critical simplex is a simplex σi ∈ K such that

|{τ (i−1) < σ : f(τ) ≥ f(σ)}| = 0

and

|{τ (i+1) > σ : f(τ) ≤ f(σ)}| = 0,

and f(σ) is a critical value. We define the discrete Morse vector of f as f⃗ := (mf
0 ,m

f
1 ,m

f
2 , . . . ,m

f
dim(K)),

where mf
i is the number of i-dimensional critical simplices of f (also denoted as mi if the

function is clear). Every simplex τ that is not critical is a regular simplex, and f(τ) is a
regular value. The discrete Morse functions g on K are said to be Forman equivalent to f if
for every pair of simplices σ(i) < τ (i+1) in K, f(σ) < f(τ) ⇐⇒ g(σ) < g(τ).

We can think of a discrete Morse function as a function that, generally, assigns higher
values to higher-dimension simplices. Each simplex is given an “exception” to this rule,
allowing us to create pairs of simplices that are each others’ “exceptions”.

Definition 4.2. A discrete Morse function f : K → R is called excellent if it is 1-1 on the
critical simplices of K.

Lemma 4.3. Let f : K → R be a discrete Morse function. Then there is an excellent
discrete Morse function g : K → R which is Forman equivalent.
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Proof. Let σ, τ ∈ K be critical simplices such that f(σ) = f(τ). Then, we construct a discrete
Morse function f ′ : K → R such that f ′(γ) = f(γ) for all γ ̸= τ and f ′(τ) = f(τ) + ϵ, where
f(τ) < f(τ) + ϵ and f(τ) + ϵ is strictly less than the smallest value in f greater than f(τ).
Repeating this process, we will eventually create a discrete Morse function g that is 1-1 on
the critical simplices of K. ■

Example 4.4. Here is an example of a discrete Morse function on the simplicial complex
from Example 3.3.

8 6

43

9

3

4

7

2

5

7

Using these functions, we can create gradient vector fields that outline pairs of regular
simplices.

Definition 4.5. The induced gradient vector field Vf for a discrete Morse function f on K
is defined as follows:

Vf := {(σ(i), τ (i+1)) : σ < τ, f(σ) ≥ f(τ)}.
Each (σ(i), τ (i+1)) ∈ Vf is called a vector or a pair, with σ being the tail and τ being the
head.

Lemma 4.6. Let K be a simplicial complex, with σ ∈ K being a simplex and f a discrete
Morse function on K. Then, exactly one of the following holds:

(a) σ is the tail of exactly one vector in Vf ;
(b) σ is the head of exactly one vector in Vf ;
(c) σ is a critical simplex.

Proof. First, note that set of all regular simplices from f is equivalent to the set of simplices
contained in the vectors of Vf ; this proves the uniqueness of (3).

Now, writing that σ is a regular simplex defined by σ = v1v2v3 . . . vi−1vi and renaming
the elements if necessary, suppose by contradiction that τ = v1v2v3 . . . vivi+1 > σ and ν =
v1v2v3 . . . vi−2vi−1 < σ satisfy f(τ) ≤ f(σ) ≤ f(ν). In other words, suppose that both
conditions (1) and (2) apply to σ. Next, observe that σ̃ := v1v2v3 . . . vi−1vi+1 satisfies ν <
σ̃ < τ . Because ν < σ and f(ν) ≥ f(τ), v < σ̃ tells us that f(ν) < f(σ̃), and f(σ̃) < f(τ)
follows similarly. We can then write that

f(τ) ≤ f(σ) ≤ f(ν) < f(σ̃) < f(τ),

which is a contradiction. Therefore, if σ is a regular simplex, exactly one of (1) and (2) must
be true. ■

Theorem 4.7. Two discrete Morse functions f and g defined on a simplicial complex K
are Forman equivalent if and only if f and g induce the same gradient vector field.

Proof. We will start by proving the forward direction. If we let f and g be Forman equivalent,
then for any σ(i) < τ (i+1) ∈ K, f(σ) < f(τ) ⇐⇒ g(σ) < g(τ). This implies that
f(σ) ≥ f(τ) ⇐⇒ g(σ) ≥ g(τ), meaning that (σ, τ) ∈ Vf ⇐⇒ (σ, τ) ∈ Vg.
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Now, we will prove the reverse direction. Suppose that V := Vf = Vg. By Lemma 4.6,
any simplex in K is either critical or in exactly one pair in V . We want to prove that any
two simplices σ(i) < τ (i+1) ∈ K must satisfy f(σ) ≥ f(τ) ⇐⇒ g(σ) ≥ g(τ). This gives us
the following cases:

(a) Suppose that (σ, τ) ∈ V . This implies that f(σ) ≥ f(τ) ⇐⇒ g(σ) ≥ g(τ);
(b) Without loss of generality, suppose that σ is not in a pair in V while τ is in a pair

in V . Because σ is not in a pair in V , it is a critical simplex for both f and g. As a
result, f(σ) < f(τ) and g(σ) < g(τ);

(c) Suppose that σ and τ are in different pairs in V . Then f(σ) < f(τ) and g(σ) < g(τ);
(d) Suppose that neither σ nor τ are in a pair in V . Then they are both critical, and

f(σ) < f(τ) and g(σ) < g(τ).

In all of these cases, f(σ) ≥ f(τ) ⇐⇒ g(σ) ≥ g(τ). ■

Corollary 4.8. If two discrete Morse functions f, g defined on a simplicial complex K are
Forman equivalent, then they share the same critical simplices.

Proof. From Theorem 4.7, we have that Vf and Vg are equivalent. This implies that the set
of simplices that are not in a pair in Vf—that is, are critical in f—are also not in a pair in
Vg, and thus critical in g. ■

Example 4.9. The induced gradient vector field of the discrete Morse function described
in Example 4.4 is as follows:

v123 v45

v34v13

v12

v23

v1

v2

v3

v4

v5

Note that if we think of these vectors as free pairs to perform elementary collapses on,
the induced gradient vector field described a series of (unordered) collapses that allows us to
simplify the complex. Specifically, it becomes the sequence of collapses described in Example
3.3.

Example 4.10. There are many scenarios, however, when the collapses we want to perform
are obstructed. Consider the following induced gradient vector field.

v12

v23

v34

v14

v1 v2

v3v4

Because there are no free pairs, we are unable to perform any collapses. We are“obstructed”
by the simplex v14, since if it were removed, the resulting simplicial complex would be col-
lapsible. We will see a way to view these obstructions in Section 6.
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5. Random Discrete Morse Theory

Definition 5.1. A optimal discrete Morse function is a discrete Morse function f on a
simplicial complex K such that for any discrete Morse function g on K,

mf
i ≤ mg

i : 0 ≤ i ≤ dim(K).

For example, the discrete Morse function described in Example 4.4 is optimal.
For the purpose of reducing simplicial complexes, our goal is to do as many elementary

collapses as possible; thus, we prefer to have optimal discrete Morse functions, since they
have the most regular pairs. [1] documents an algorithm that outputs the discrete Morse
vector of a random discrete Morse function on a simplicial complex K: The idea of this

Algorithm 1 Random Discrete Morse Algorithm

INPUT: An i-dimensional simplicial complex K, given by its list of facets.

(0) Initialize m0 = m1 = m2 = . . .mi = 0.
(1) Is the complex empty? If yes, then STOP; otherwise, go to (2).
(2) Are there free pairs? If yes, go to (3); if no, go to (4).
(3) Elementary Collapse: Pick one free pair uniformly at random and delete it. Go back

to (1).
(4) Critical Face: Pick one of the top-dimensional faces uniformly at random and delete

it from the complex. If n is the dimension of the face just deleted, increment mn by
1 unit. Go back to (1).

OUTPUT: The resulting discrete Morse vector (m0,m1,m2, . . . ,mi).

algorithm is simple: we randomly “remove” free pairs by turning them into regular pairs
until there are no more; then, we take a random simplex of the highest dimension, label it
as a critical simplex, and repeat.

This algorithm is not very computationally complex, and often returns optimal discrete
Morse vectors in general; however, there exist simplicial complexes that pose an issue, as
seen in the following example from [10].

Proposition 5.2. For every ϵ > 0, there exists a simplicial complex Gϵ such that the proba-
bility that the Random Discrete Morse Algorithm yields an optimal discrete Morse vector of
Gϵ is less than ϵ.

Proof. For any ϵ > 0, choose n ∈ N such that 6
n+6

< ϵ. Consider the simplicial complex

with at least n edges between the two cycles. Note that there are no free pairs in the
simplicial complex.

In order for a random discrete Morse vector by the Random Discrete Morse Algorithm
to be optimal, the first removed edge must be one from the two cycles of length 3. (This
results in a discrete Morse vector of (1, 2).) The probability of this happening is 6

n+6
; thus,

our chances of obtaining an optimal discrete Morse vector is less than ϵ. ■
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This observation tells us that discrete Morse functions can still be unreliable for finding
elementary collapses. In the next section, we will discuss ways to improve our toolbox for
reducing simplicial complexes.

6. Generalized Discrete Morse Functions and the Collapse Theorem

Tabling the discussion of collapses for the moment, we will note that the discrete Morse
functions are somewhat limited in the information that they provide; they only partition a
simplicial complex into groups of one (critical simplices) and two (pairs of regular simplices).
From this idea, we get the concept of generalized discrete Morse functions. These functions
were first introduced by R. Freij in 2009 [6].

Definition 6.1. Let K be a simplicial complex. Then, for α, β ∈ K, the interval [α, β] is
defined as

[α, β] := {γ ∈ K : α ⊆ γ ⊆ β}
Note that the interval [α, β] ̸= ∅ ⇐⇒ α < β.

Definition 6.2. Let g : K → R be a function on a simplicial complex K that satisfies the
following conditions:

(a) g(σ) ≤ g(τ) for all σ < τ ∈ K;
(b) A partition W of K into intervals exists such that for any simplices σ, τ in the same

interval, g(σ) = g(τ).

Then, we call g a generalized discrete Morse function and W its generalized discrete vector
field. Finally, any interval that only contains one simplex σ is called singular, σ is a critical
simplex, and g(σ) is a critical value. Any interval that is not singular is regular and its
simplices are regular simplices.

Example 6.3. This simplicial complex is partitioned into into 8 different intervals, and its
critical values are 1, 2, 5, and 6.

7

8

7 7

36

4

8

5

4 1

7

3
2

Generalized discrete Morse functions are useful because they provide an easier way to
visualize collapses. We will provide a way to do so in Corollary 6.9.

Definition 6.4. A subcomplex L of a simplicial complex K is a simplicial complex such that
L ∈ K.

Definition 6.5. Consider a discrete Morse function f : K → R. For any c ∈ R, the level
subcomplex K(c) is the subcomplex consisting of any simplices τ along with its faces such
that f(τ) ≤ c. In other words,

K(c) =
⋃ ⋃

f(τ)≤c σ≤τ

σ.
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The following lemma tells us that we can slightly alter any discrete Morse function f to
make it 1-1 without changing some specific level subcomplexes.

Lemma 6.6. Let f : K → R be a discrete Morse function and [α, β] ⊆ R be an interval that
contains no critical values. Then there is a discrete Morse function f ′ on K that satisfies
the following conditions:

(a) f ′ is 1-1 on [α, β];
(b) f ′ has no critical values in [α, β];
(c) The level subcomplexes Kf (γ) and Kf ′(γ) are equivalent for γ ∈ {α, β}, where Kf (γ)

refers to the level subcomplex of K defined by γ with respect to f ;
(d) f = f ′ outside of [α, β].

Proof. We will attempt to construct such a function f ′.
We start by copying over all values outside of [α, β], since they are identical from (d).

Next, we will consider every value κ in f in [α, β). Let the next largest value in f be λ. For
all simplices with a value of κ, we will reassign each of their values for f ′ in such a way that
one of the highest-dimension simplices has a value of κ, all of the simplices have a different
value in the interval [κ, λ], and all i + 1-simplices have a lesser value than all i-simplices.
Finally, we will define δ as the greatest value in f ′ less than β. We will then perform a
similar process for the simplices with a value of β in f , with one of the lowest-dimension
simplices being assigned a value of β in f ′. This preserves all regular pairs, and contains all
of the values within the range [α, β], so it satisfies all of the conditions. ■

The following theorem is known as the Collapse Theorem.

Theorem 6.7. Let f : K → R be a discrete Morse function and [α, β] ⊆ R be an interval
that contains no critical values. Then K(β) ↘ K(α).

Proof. Applying Lemma 6.6 and with an abuse of notation, we assume that f is 1-1. Because
of this, we can split [α, β] into subintervals such that each subinterval contains exactly one
regular value. Consider the simplex σ(i) ∈ K such that f(σ) is the largest regular value in
[α, β]. Then, Lemma 4.6 tells us that exactly one of the following conditions holds:

(a) There exists τ (i+1) > σ such that f(τ) ≤ f(σ);
(b) There exists ν(i−1) < σ such that f(ν) ≥ f(σ).

For the first case, suppose that there exists τ (i+1) < σ such that f(τ) ≤ f(σ). We will prove
that {τ, σ} is a free pair in K(β) through contradiction.

Suppose that there exists a second coface τ̃ (i+1) > σ with τ̃ ∈ K(β). Because f(τ) ≤ f(σ),
we know that either f(τ̃) ≥ f(σ). However, this is impossible, since f(σ) is the largest
value in the interval [α, β]. Thus, {τ, σ} is a free pair, and K(b) ↘ K(b) − {τ, σ}. The
same argument can be applied to the second case, so we can apply this argument to every
subinterval in [α, β], removing each subinterval as we ”collapse” them. ■

This theorem tells us that for the purpose of collapsing simplicial complexes, we only have
to consider the collapsability of critical subcomplexes.

Lemma 6.8. For every generalized discrete vector field, there is a standard discrete vector
field that further partitions every non-singular, non-empty interval into pairs.

Proof. We will prove this lemma by showing an algorithm known as vertex refinement that
partitions an interval into pairs. ■
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Algorithm 2 Vertex Refinement

INPUT: A non-singular, non-empty interval [α, β] (which implies α < β).

(0) Initialize a set v with cardinality 0.
(1) Choose a random 0-simplex σ ∈ β − α.
(2) Is the interval empty? If yes, then STOP; otherwise, go to (3).
(3) Choose a random simplex γ ∈ [α, β] and add the pair {γ − {σ}, γ ∪ {σ}} to v. Go

back to (2).

OUTPUT: The resulting set of pairs v that fully partition the interval [α, β].

The following result is immediate from Theorem 6.7 and Lemma 6.8.

Corollary 6.9. Let K be a simplicial complex with a generalized discrete vector field W ,
and let K ′ ⊆ K be a subcomplex of K. If K − K ′ is a union of non-singular, non-empty
intervals in W , then K ↘ K ′.

Example 6.10. Let us visualize our results with the following generalized discrete Morse
function over a simplicial complex K. [10]

8 6

2 4

6

5

4

2 3

8

1

8

6

42

7

8 5

31

67

4

2

0

The sole critical value is 0; indeed, if we remove the critical simplex with a value of 0, the
remaining simplices can be expressed as the union of the intervals with values 1, 2, 3, 4, 5,
6, 7, and 8. Therefore, K can be collapsed to the 0-simplex with a value of 0.

7. Simplicial Unreduced Homology

Another characteristic that remains constant across elementary operations are a simplicial
complex’s homology; we could start by thinking about ways to count the number of holes
in a complex. An example of a 1-dimensional hole would be the sequence of 1-simplices
{v34, v45, v35} from Example 3.6; we have a boundary formed by 1-simplices but not 2-
simplices to “fill in the gaps”. In order to calculate the number of these types of holes, we
first need to find all of these possible ”boundaries”.

To do this, we will create vector spaces Uci
n over F2 for every i : 1 ≤ i ≤ dim(k) in a

simplicial complex K that represent the linear combinations of n vectors, where each of
i-simplices contained in K are represented as a vector. (The vector space being over F2

means that the coefficients of the vectors will only be the numbers 0 or 1, with 0 + 0 = 0,
0 + 1 = 1, and 1 + 1 = 0.) For example, the vector space over K over 1-simplices would be

U3
1 := {⃗0, v12, v13, v23, v12 + v13, v12 + v23, v13 + v23, v12 + v13 + v23}, where 0⃗ is the zero vector.
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In order to create a chain complex utilizing these vector spaces, we need to define a linear
transformation ∂i : Uci → Uci−1 . For each simplex, this linear transformation will associate
its boundary.

Definition 7.1. Let σ ∈ Ki and write σ = σn0n1n2...ni
. For i = 0, define ∂o : Uc0 → 0

by ∂0 → 0, a zero matrix of the appropriate size. For i ≥ 0, define the boundary operator
∂i : Uci → Uci−1 by

∂i(σ) :=
∑
0≤j≤i

(σ − σnj
).

Because our vector spaces are over F2, ∂∂ = 0.

Example 7.2. We will give an example of this by calculating ∂∂(v123):

∂∂(v123) = ∂(v12 + v23 + v13)

= ∂(v12) + ∂(v23) + ∂(v13)

= v1 + v2 + v2 + v3 + v0 + v3

= 2v1 + 2v2 + 2v3

= 0⃗

Thus, we have defined a chain complex.

Definition 7.3. The ith unreduced F2-homology of K is defined as the vector space

Hi(K;F2) := Unull ∂i−rank ∂i+1 .

The ith F2-Betti number of K is defined as

bi(K;F2) := null ∂i − rank ∂i+1.

The ith Betti number of a simplicial complexK refers to the number of i-dimensional holes
in K. For example, in Example 3.6, there is one 1-dimensional hole (since v123 is “missing”)
and one 0-dimensional hole (since we only have one distinct “object”), so b1 = 1 and b0 = 1.
We can calculate bn using a well-known theorem of linear algebra called the Rank-Nullity

Theorem:

Theorem 7.4. Let ∂ : U → V be a linear transformation between two finite vector spaces.
Then, rank(∂) + null(∂) = dim(U).

For the sake of convenience, we will refer to the F2-Betti numbers as Betti numbers from
here on. However, these differ from standard Betti numbers, which contain more information.

The following lemma is given by [4]:

Lemma 7.5. If simplicial complexes K and L are homotopy equivalent, then for every
nonnegative integer i, bi(K) = bi(L).

Before we move on to talking about applying Discrete Morse Theory, we must first prove
one lemma: the addition of a p-simplex will either increase bp by 1 or decrease bp−1 by 1.

Lemma 7.6. Let K be a simplicial complex and σ(p) ∈ K a facet of K, where p ≥ 1. If
K ′ := K − {σ} is a simplicial complex, then one of the following holds:

(a) One hole is added to the complex, or bp(K) = bp(K
′) + 1 and bp−1(K) = bp−1(K

′);
(b) One hole is removed from the complex, or bp(K) = bp(K

′) and bp−1(K)+1 = bp−1(K
′).
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Furthermore, bi(K) = bi(K
′) for all i ̸= p− 1, p.

Proof. Let (U∗, ∂∗) and (U′
∗, ∂

′
∗) be the associated chain complexes forK andK ′, respectively.

Since σ is a facet, it follows that ∂i = ∂′
i for all i ̸= p. Thus, it is generally true that

bi(K) = bi(K
′) for all i, with the only possible exceptions being bp = null(∂p) − rank(bp+1)

and bp − 1 = null(∂p−1) − rank(∂p). We will consider the cases where σ ∈ ker(∂p) and
σ /∈ ker(∂p).

For the first case, suppose that σ ∈ ker(∂p). Then Im(∂p) = Im(∂′
p), and rank(∂p) =

rank(∂′
p) follows as a result. Because σ /∈ U′

∗, we know that σ /∈ ker(∂′
p) and null(∂p) =

null(∂′
p) + 1. Finally, we reach

bp(K) = null(∂p)− rank(∂p+1)

= null(∂′
p)− rank(∂p+1) + 1

= bp(K
′) + 1

and bp−1(K) = null(∂p−1)− rank(∂p) = null(∂′
p)− rank(∂′

p) = bp−1(K
′).

For the second case, suppose that σ /∈ ker(∂p), so that ∂p(σ) is nonzero and contained
within Im(∂p). Then ker(∂p) = ker(∂′

p), which gives us bp(K) = null(∂p) − rank(∂p+1) =
null(∂′

p) − rank(∂′
p+1) = bp(K

′). Next, since ∂p(σ) is nonzero and σ is a basis element,
rank(∂p) = rank(∂′

p) + 1. We reach

bp−1(K) = null(∂p−1)− rank(∂p−1)

= null(∂′
p−1)− rank(∂′

p−1)− 1

= bp−1(K
′)− 1.

■

8. Discrete Morse Theory and Homology

We can now apply discrete Morse functions to our discussion on homology. The following
theorem is known as the Weak discrete Morse inequalities.

Theorem 8.1. Let f : K → R be a discrete Morse function, and let n := dim(K). Then,
we have the following inequalities:

(a) For all i = 0, 1, 2, . . . , n, mi ≥ bi, and

(b)
n∑

i=0

(−1)imi = χ(K).

Proof. We will start by proving the first part of the Weak Discrete Morse Inequalities. Since
it does not affect the values of mi, we will use Lemma 4.3 to assume that f is excellent.
Now, we will use strong induction on c, the number of simplices of K. For c = 1, the only
simplex is a 0-simplex, giving us m0 = b0 = 0. This proves the base case.
Assume the inductive hypothesis that there is a c ≥ 1 such that for every simplicial

complex with 1 ≤ n ≤ c simplices, any discrete Morse function satisfies mi ≥ bi. Now,
suppose that K is any simplicial complex with c+1 simplices and f : K → R is an excellent
discrete Morse function. Now, consider the value m = max{f}. If m is a critical value with a
corresponding critical p-simplex σ, we can now consider the subcomplex K ′ := K−{σ} and
the function f ′ = f |K′ : K ′ → R; in other words, f ′ is equivalent to f on the values of the
simplices of K ′. f ′ is a discrete Morse function with one less critical p-simplex than f , and by
Lemma 7.6, the removal of σ results in either bp(K) = bp(K

′)+1 or bp−1(K) = bp−1(K
′)− 1,
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while bi(K) = bi(K
′) for i ̸= p − 1, p. Plugging in the inductive hypothesis, we obtain the

equation
bp(K)− 1 = bp(K

′) ≤ mp(K
′) = mp(K)− 1

for the first case and

bp−1(K) + 1 = bp−1(K
′) ≤ mp−1(K

′) = mp−1(K)

for the second case.
Otherwise, if σ is a regular simplex, it must be part of a free pair. By Lemma 7.5, removing

this free pair through elementary collapse preserves the Betti numbers of the complex. By
the inductive hypothesis, we obtain the equation

bi(K) = bi(K
′) ≤ mi(K

′) = mi(K)

for all i.
Now, we will prove the second part of the Weak Discrete Morse Inequalities. Since ev-

ery regular pair consists of two simplices σ(i) and τ (i+1), its Euler characteristic is (−1)i +

(−1)i+1 = 0. Thus, if we take the sum χ(K) =
n∑

i=0

(−1)ici and cancel out every regular pair,

we will be left with the alternating sum
n∑

i=0

(−1)imi. ■

There also exists the Strong Discrete Morse Inequalities, the proof of which requires the
following three results. These are by [5], [9], and [8], respectively.

Lemma 8.2. Let K be a simplicial complex of dimension n and f : K → R be a discrete
Morse function. Then

(a) K is homotopy equivalent to a CW complex X where the p-cells of X are in bijective
correspondence with the set of critical p-simplices of f ;

(b) bi(X) = bi(K) for all nonnegative integers i;
(c) For each nonnegative integer p, we have

bp(X)− bp−1(X) + bp−2(X)− . . .+ (−1)pb0(X) ≤ cp − cp−1 + cp−2 − . . .+ (−1)pc0.

This lemma essentially tells us that for any simplicial complex K, there exists a homotopy
equivalent CW complex X such that ci = mi for all i. (A definition of CW complexes can
be found in [7].)

We can now state the Strong Discrete Morse Inequalities.

Theorem 8.3. Let K be a simplicial complex of dimension n and f : K → R be a discrete
Morse function. Then, for each p = 0, 1, 2, . . . , n, n+ 1, we have the following equation:

bp − bp−1 + bp−2 − . . .+ (−1)pb0 ≤ mp −mp−1 +mp−2 − . . .+ (−1)pm0.

Proof. From Lemma 8.2, we know there exists a CW complex X with p-cells in bijective
correspondence with the critical p-simplices of K. Lemma 8.2 and Theorem 8.1 yield the
following:

bp(K)− bp−1(K) + bp−2(K)− . . .+ (−1)pb0(K)

=bp(X)− bp−1(X) + bp−2(X)− . . .+ (−1)pb0(X)

=cp − cp−1 + cp−2 − . . .+ (−1)pc0

=mp −mp−1 +mp−2 − . . .+ (−1)pm0.

■
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Example 8.4. We will give an example of the Discrete Morse Inequalities with the following
simplicial complex K and discrete Morse function f : K → R.

11

8

6 7

54

10

8

4 2

1

3
12

We can observe that the c-vector of K is {5, 6, 2}, b0 = 2, b1 = 1, b2 = 0, b3 = 0, m0 = 4,
m1 = 4, m2 = 1 and m3 = 0. Then, we obtain

m0 = 4 ≥ 2 = b0

m1 = 4 ≥ 1 = b1
m2 = 1 ≥ 0 = b2

and
m0 −m1 +m2 = 4− 4 + 1 = 1 = 2− 1 + 0 = b0 − b1 + b2

for the Weak Discrete Morse Inequalities and

m0 = 4 ≥ 2 = b0

m1 −m2 = 4− 4 = 0 ≥ −1 = 1− 2 = b1 − b0
m2 −m1 +m0 = 1− 4 + 4 = 1 ≥ 1 = 0− 1 + 2 = b2 − b1 + b0

m3 −m2 +m1 −m0 = 0− 4 + 4− 1 = −1 ≥ −1 = 0− 0 + 1− 2 = b3 − b2 + b1 − b0
for the Strong Discrete Morse Inequalities.

9. Morse Sequences

Morse sequences are a way of visualizing discrete Morse functions introduced by [3].

Definition 9.1. Let K and L be simplicial complexes. If σ ∈ K is a facet of K and if
L = K \ {σ}, we call L an elementary perforation of K, and K an elementary filling of L.

Definition 9.2. Let K be a simplicial complex. A Morse sequence on K is a sequence W⃗ =
(∅ = K0, K1, K2, . . . , Kn = K) of simplicial complexes such that, for every i = 1, 2, 3, . . . , n,

Ki is either an elementary expansion or an elementary filling of Ki−1. We also write W⃗ (K)

for a Morse sequence W⃗ on K.

Below are two potential algorithms for building a Morse sequence for a simplicial complex
K.
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Algorithm 3 Maximal Increasing Morse Sequence Algorithm

INPUT: A simplicial complex K.

(0) Initialize W⃗ = (∅).
(1) Consider the last simplicial complex Kn in W⃗ . Is it identical to K? If yes, then

STOP; otherwise, go to (2).
(2) Can we perform elementary expansions on Kn that create structures identical to

those in K? If yes, go to (3); if no, go to (4).
(3) Elementary Expansion: Perform one such elementary expansion to get a new simpli-

cial complex Kn+1, and add it to W⃗ . Go back to (1).
(4) Elementary Filling : Use an elementary filling to add a simplex in K to Kn to get a

new simplicial complex Kn+1, and add it to W⃗ . Go back to (1).

OUTPUT: The Morse sequence W⃗ .

Algorithm 4 Maximal Decreasing Morse Sequence Algorithm

INPUT: A simplicial complex K.

(0) Initialize W⃗ = (K).

(1) Consider the first simplicial complex Kn in W⃗ . Is it identical to ∅? If yes, then
STOP; otherwise, go to (2).

(2) Can we perform elementary collapses on Kn? If yes, go to (3); if no, go to (4).
(3) Elementary Collapse: Perform one such elementary collapse to get a new simplicial

complex Kn−1, and add it to W⃗ . Go back to (1).
(4) Elementary Perforation: Use an elementary perforation to remove a facet from Kn

to get a new simplicial complex Kn−1, and add it to W⃗ . Go back to (1).

OUTPUT: The Morse sequence W⃗ .

Definition 9.3. Let W⃗ = (K0m =, K1, K2, . . . , Kn) be a Morse sequence. For each i =
1, 2, 3, . . . , n, let κi be defined as such:

(a) If Ki is an elementary filling of Ki−1 and Ki = Ki−1 ∪{σ}, then κi = σ. We say that

κi is critical for W⃗ .
(b) If Ki is an elementary expansion of Ki−1 and Ki = Ki−1 ∪ {σ(p−1), τ (p)}, then κi =

{σ, τ}. We say that κi is regular for W⃗ , σ is a lower regular for W⃗ , and τ is a higher

regular for W⃗ .

We will use C(W⃗ ) to denote the set of critical simplices of W⃗ in K, R(W⃗ ) to denote the

set of regular pairs, U(W⃗ ) to denote the set of upper regular simplices, and L(W⃗ ) to denote
the set of lower regular simplices.

An important concept in Morse sequences are reference and coreference maps, which assign
a set of critical p-simplices to each p-simplex of a simplicial complex; this provides an efficient
method to label each simplex of a Morse sequence with a set of critical simplices. Specifically,
critical simplices map to themselves, upper regular simplices map to the mappings of the
coboundaries of their respective lower regular simplices, and lower regular simplices map to
the mappings of the boundaries of their respective upper regular simplices. Just like with
discrete Morse functions, Morse sequences can be used to analyze the topological structure
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of a simplicial complex; however, Morse sequences provide a more connected and dynamic,
albeit complicated representation of simplicial complexes.
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