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Abstract. This paper explores the theory of linear forms in logarithms and its ap-

plications to Diophantine equations. We begin with foundational results on transcen-

dental numbers, including Liouville’s theorem and the Gelfond-Schneider theorem,

before developing Baker’s theory of linear forms in logarithms. The paper concludes

with applications to Diophantine equations through the Baker-Davenport method,

illustrating these techniques with concrete examples.
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1. Introduction

The study of linear forms in logarithms sits at the intersection of number theory and

transcendental number theory. It provides tools to solve equations of the form:

αb1
1 α

b2
2 · · ·αbn

n = 1

by studying the associated linear form:

Λ = b1 logα1 + · · ·+ bn logαn

However, before we explore this form of expression further, we need to firstly under-

stand the basics of transcendental number theory.

2. Algebraic and Transcendental Numbers

2.1. Basic Definitions.

Definition 2.1 (Algebraic Number). A complex number α is algebraic if there exists

a non-zero polynomial P ∈ Z[x] such that P (α) = 0. The minimal degree of such a

polynomial is called its degree.

Example 2.2. The following are algebraic:

•
√
2 is algebraic of degree 2, since it satisfies x2 − 2 = 0.

• The golden ratio ϕ = 1+
√
5

2
is algebraic of degree 2.

• Any rational number p
q
is algebraic of degree 1 via qx− p = 0.

It is also helpful to note that algebraic numbers are countable, since they arise as

roots of polynomials with integer coefficients.

Definition 2.3 (Transcendental Number). A complex number is transcendental if

it is not algebraic; that is, it does not satisfy any non-zero polynomial equation with

integer coefficients.

2.2. Liouville’s Theorem and Constructed Transcendentals. Joseph Liouville’s

1844 theorem was the first major result to establish a criterion for transcendence.



SOLVING PROBLEMS WITH BOUNDS ON LINEAR FORMS IN LOGARITHMS 3

Theorem 2.4 (Liouville’s Approximation Theorem). For any irrational alge-

braic number α of degree d ≥ 2, there exists a constant C(α) > 0 such that for

all rational numbers p
q
with q > 0:∣∣∣∣α− p

q

∣∣∣∣ > C(α)

qd

Proof. Let P (x) = adx
d+ · · ·+a0 ∈ Z[x] be the minimal polynomial of α. By the mean

value theorem, for any rational p
q
̸= α:

|P (p/q)− P (α)| = |P ′(ξ)| ·
∣∣∣∣α− p

q

∣∣∣∣
for some ξ between α and p/q. Since P is irreducible, P (p/q) ̸= 0 and qdP (p/q) ∈ Z,
so:

|P (p/q)| ≥ 1

qd

Taking C(α) = 1/(|P ′(α)|+ 1) completes the bound. □

Liouville’s theorem was the first to give a concrete analytic tool to distinguish certain

irrational numbers from transcendental ones. Although it only applies to algebraic

irrationals of degree at least two, it introduced the crucial idea that algebraic numbers

cannot be too well-approximated by rationals. The strength of this result becomes

more apparent when contrasted with explicit constructions of numbers that violate

this bound, which Liouville cleverly used to create the first provably transcendental

numbers.

Example 2.5 (Liouville’s Constant). The number

L =
∞∑
k=1

1

10k!
= 0.110001000000000000000001000 . . .

is transcendental. For any partial sum pn
qn

=
∑n

k=1
1

10k!
, we have:∣∣∣∣L− pn

qn

∣∣∣∣ < 2

10(n+1)!

But qn = 10n!, so this approximation is much better than allowed by Liouville’s theorem

for algebraic numbers.
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3. The Gelfond-Schneider Theorem

Having established Liouville’s foundational result and introduced the idea of tran-

scendental numbers, we now turn to a much deeper theorem that marks a major

breakthrough in the subject. For many years after Liouville, the known examples of

transcendental numbers remained artificially constructed and somewhat isolated from

classical constants. Mathematicians sought to understand whether natural exponential

expressions like 2
√
2 or eπ were transcendental but existing methods were insufficient.

This problem was formalized as Hilbert’s 7th problem, and its resolution came in the

1930s through the independent work of Aleksandr Gelfond and Theodor Schneider. [3].

Their theorem established that a wide class of exponential expressions involving alge-

braic numbers are transcendental, giving the first general and natural transcendence

criterion for powers of algebraic numbers raised to irrational algebraic exponents. What

follows is a proof of this remarkable result.

Theorem 3.1 (Gelfond-Schneider Theorem). If α and β are algebraic numbers with

α ̸= 0, 1 and β irrational, then αβ is transcendental.

Proof. We proceed by contradiction. Suppose α ̸= 0, 1 is algebraic, β is irrational

algebraic, and αβ is algebraic. Define K = Q(α, β, αβ) and let d = [K : Q].

3.1. Auxiliary Parameters. Let N be a large integer. Define parameters:

L = ⌊N1/2⌋, τ = ⌊N/ logN⌋, R = 2N1/2

These control complexity, vanishing, and radius respectively.

Remark 3.2. The parameters L, τ, R are carefully balanced to ensure feasibility of

our function construction and analytic estimates. These will appear frequently in our

bounding steps.

The crux of the Gelfond–Schneider proof lies in designing an analytic function with

carefully engineered vanishing properties. Such a function is meant to contradict the

assumption that αβ is algebraic, by exhibiting both extremely small and nonzero be-

havior. Constructing this function known as an auxiliary function requires balancing

flexibility with arithmetic control. This step draws from a blend of ideas from complex

analysis, combinatorics, and algebraic number theory.
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3.2. Auxiliary Function Construction. We define:

f(z) =
L∑

k=0

L∑
m=0

pkmα
kzzm

where pkm ∈ Z are coefficients to be chosen.

Exponential terms αkz allow zero transfers due to the identity αz+n = αzαn. The

zm terms help impose derivative vanishing.

3.3. Vanishing Conditions. We require that:

f (t)(j) = 0 for 0 ≤ j < N, 0 ≤ t < τ

This gives N · τ linear conditions in (L+ 1)2 unknowns.

The derivatives:

dt

dzt
[αkzzm] = αkz

min(t,m)∑
s=0

(
t

s

)
m!

(m− s)!
zm−s(logα)t−skt−s

3.4. Siegel’s Lemma Application. We now invoke Siegel’s lemma to guarantee a

non-trivial solution:

Let A be an M × N integer matrix with entries ≤ B. If M < N , then there

exists non-zero x ∈ ZN such that Ax = 0 and

max |xi| ≤ (NB)M/(N−M)

Set:

M = Nτ ≈ N2/ logN, N = (L+ 1)2 ≈ N, B ≤ (3N)CN

Siegel’s lemma guarantees bounded pkm with:

max |pkm| ≤ (3N)8dN/ logN

Why This Bound? The exponential and derivative structure inflates entries in

the system; this bound ensures a small integer solution still exists.
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3.5. Extending the Zeros. Using the identity αz+n = αz · αn, we obtain:

f(β + n) =
∑
k,m

pkmα
kβαkn(β + n)m = αnβg(n)

where

g(z) =
∑
k,m

pkmα
kz(z + β)m

So f(β + n) = 0 for n = 0, 1, . . . , N − 1.

3.6. Order of Vanishing. Let s be the smallest integer with f (s)(β) ̸= 0. Then s ≥ τ

and f has many zeros in a disk around β.

3.7. Maximum Modulus Estimate. We now use a tool from complex analysis to

deduce the upper bounds of the function.

Maximum Modulus Principle: If f is analytic in a domain D and continuous

on D, then |f(z)| attains its maximum on the boundary ∂D.

On the circle |z| = R = 2N1/2:

|f(z)| ≤ (L+ 1)2 ·max |pkm| · |α|LR ·RL

Substituting:

|f(z)| ≤ N · (3N)8dN/ logN · |α|2N · (2N1/2)N
1/2

Taking logs:

log |f(z)| ≤ 8dN

logN
log(3N) + 2N log |α|+N1/2 log(2N1/2) ≤ CN

3.8. Schwarz Lemma Refinement. To complement the global bound obtained via

the maximum modulus principle, we invoke a refined Schwarz-type lemma to estimate

the derivatives near β. This allows us to bound |f (s)(β)| in terms of the global maximum

modulus and the order of vanishing, setting up the contradiction with the algebraic

lower bound, which we will see in the subsequent subsection.

Refined Schwarz Lemma: If f has n zeros in |z| < R, then for |z| = r < R,

|f(z)| ≤ |f(0)|
n∏

k=1

R

|zk|

( r
R

)n

max
|w|=R

|f(w)|
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We get:

max |f(z)| ≤
(
R

N

)N ·τ

=

(
2

N1/2

)N2/ logN

So:

log |f(z)| ≤ −N
2

2
+ o(N2) ⇒ |f(z)| ≤ e−cN2/ logN

3.9. Lower Bound via Diophantine Approximation. Since αβ is assumed alge-

braic and f (s)(β) ̸= 0, we apply the following:

Liouville’s Theorem (for algebraic numbers): Let ξ be algebraic of degree

d ≥ 2. Then there exists C(ξ) > 0 such that:∣∣∣∣ξ − p

q

∣∣∣∣ > C(ξ)

qd

for all rationals p/q.

We write f (s)(β) as a polynomial in α, β, αβ, with integer coefficients bounded using

earlier results. Hence:

|f (s)(β)| ≥ (3N)−8d2N

Why This Bound? This bound is derived by estimating the minimal polynomial

of the algebraic number f (s)(β). The exponent arises from the number of terms

and height estimates in the auxiliary function.

3.10. Cauchy Integral Bound and Contradiction. Using Cauchy’s integral for-

mula:

f (s)(β) =
s!

2πi

∫
|z|=R

f(z)

(z − β)s+1
dz

Taking absolute values:

|f (s)(β)| ≤ s! · 2πR
2π(R/2)s+1

·max |f(z)| = s! · 2s+1 · e−cN2/ logN

Rs

Now s ≥ τ = N/ logN implies s! ≤ eDN/ logN and Rs ≥ (2N1/2)N/ logN . So we get:

|f (s)(β)| ≤ eDN/ logN · e−cN2/ logN

NN/(2 logN)
= e−c′N2/ logN

But this contradicts the lower bound:

(3N)−8d2N ≤ |f (s)(β)| ≤ e−c′N2/ logN
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Taking logs:

−8d2N log(3N) ≤ − c′N2

logN
⇒ Contradiction for large N

□

3.11. Proof Framework. The proof of the Gelfond-Schneider theorem reflects a gen-

eral template used in transcendence theory:

• Construct an auxiliary function with controlled complexity.

• Impose vanishing conditions at many points.

• Use functional equations to extend zeros.

• Bound the size of the function above using complex analysis.

• Establish lower bounds via Diophantine approximation.

• Derive a contradiction between the two bounds.

This methodology has been extended to:

• Values of the exponential function at algebraic points (Hermite–Lindemann).

• Logarithms of algebraic numbers (Gelfond–Schneider).

• Elliptic and abelian functions at algebraic points (Schneider).

• Periods of algebraic varieties (conjecturally).

Remark 3.3. The Gelfond-Schneider theorem resolved part of Hilbert’s 7th problem.

It proves that 2
√
2 is transcendental, and that eπi = −1 involves transcendentality as

well.

4. Baker’s Theory of Linear Forms in Logarithms

[1].

The Gelfond–Schneider theorem represents a major advance in transcendence theory,

settling Hilbert’s 7th problem and providing the first general results for the transcen-

dence of values like αβ where both α and β are algebraic. However, many problems in

number theory involve more complicated expressions—particularly linear combinations

of several logarithms of algebraic numbers. A natural question arises: what can be said

about expressions such as

Λ = b1 logα1 + b2 logα2 + · · ·+ bn logαn,
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where the αi are fixed non-zero algebraic numbers and the bi are integers? If such a

form is nonzero, how small can it be in terms of the sizes of the coefficients and the

complexity of the numbers involved?

In the 1960s, Alan Baker developed a powerful generalization of the Gelfond–Schneider

theorem, proving that any nontrivial linear form in logarithms of algebraic numbers

is not only nonzero, but also bounded away from zero by an explicit, effective lower

bound. This result, now known as Baker’s theorem, laid the foundation for a large

part of effective Diophantine analysis and provided new methods for bounding the size

of solutions to exponential equations.

We now state a simplified version of Baker’s theorem, emphasizing its effectiveness

and applicability.

Theorem 4.1 (Baker, 1966). Let α1, . . . , αn be non-zero algebraic numbers, none equal

to 1, and suppose that the logarithms logαi are taken with respect to a fixed branch of

the logarithm on C \ (−∞, 0]. Let b1, . . . , bn ∈ Z, not all zero. Define

Λ = b1 logα1 + · · ·+ bn logαn.

Then if Λ ̸= 0, we have

|Λ| > exp (−C1 · logB · logA1 · · · logAn) ,

where

• B = max{|b1|, . . . , |bn|},
• each Ai ≥ max{Dh(αi), | logαi|, 0.16},
• h(αi) is the (logarithmic) height of αi,

• D is the degree of the number field Q(α1, . . . , αn),

• and C1 is an effectively computable constant depending only on n and D.

This bound is significant for several reasons. First, it gives a concrete inequality—if

one knows the coefficients bi, and the heights and degrees of the αi, then the right-

hand side becomes a computable quantity. Second, the bound allows one to conclude

that Λ is not too small. In many number-theoretic applications, this means that the

expression Λ must actually be bounded away from zero, and therefore, an integer linear

combination of logarithms cannot vanish.

The logarithmic height h(α) measures the arithmetic complexity of an algebraic

number. For rational numbers α = p
q
in lowest terms, we have h(α) = logmax{|p|, |q|}.
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For general algebraic numbers, this extends via consideration of the minimal polynomial

and the archimedean absolute values of its conjugates. The appearance of h(αi) in the

lower bound reflects the intuitive idea that the more complicated the input numbers

are, the more flexibility they allow in small linear combinations.

For a full and rigorous proof of Baker’s theorem, the reader is referred to Transcen-

dental Number Theory by Alan Baker [1].

It is also worth emphasizing that Baker’s theorem is effective: the constant C1 can

be computed explicitly given the input data. This is a major departure from earlier

transcendence theorems, which often proved existence results without providing any

computational information.

The power of this theorem is best appreciated through its applications. For instance,

it enables one to solve Diophantine equations involving exponential expressions by first

proving that a certain linear form in logarithms is nonzero and then bounding how small

it can be. These bounds, though typically extremely small, are nonetheless finite and

lead directly to constraints on the size of possible integer solutions.

In the next section, we will see how this theoretical result can be made more practical

using a method developed by Baker and Davenport, which allows one to reduce the

resulting bounds significantly by incorporating ideas from Diophantine approximation

and continued fractions.

5. Computing Effective Bounds Using Baker’s Theorem

The true power of Baker’s theorem lies not just in its qualitative assertion of tran-

scendence or linear independence, but in its capacity to provide explicit lower bounds

on expressions involving logarithms of algebraic numbers. This is crucial in many Dio-

phantine contexts, where the goal is to prove that certain equations admit only finitely

many solutions, or even to identify those solutions completely.

Suppose we have algebraic numbers α1, . . . , αn, each not equal to 0 or 1, and define

the linear form:

Λ = b1 logα1 + · · ·+ bn logαn

where the coefficients b1, . . . , bn are integers, not all simultaneously zero. We assume

Λ ̸= 0. The question is: how small can |Λ| be?
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Baker’s theorem provides a compelling answer. If we let B = max |bi|, let h(αi)

denote the logarithmic height of αi, and let D be the degree of the number field

generated by all αi, then there exists a computable constant C1, depending only on n

and D, such that:

|Λ| > exp (−C1 · (logB)(logA1) · · · (logAn))

Here, each Ai is defined as:

Ai = max{Dh(αi), | logαi|, 0.16}

To see this in action, consider the expression Λ = x log 2 − y log 3, which arises in

problems like finding solutions to 2x = 3y. If x, y ≤ 1000, then B = 1000, and both 2

and 3 are rational, so h(2) = log 2, h(3) = log 3, and D = 1.

Plugging in, the bound becomes:

|Λ| > exp (−C1 · log(1000) · log log 2 · log log 3)

With standard estimates for the logarithms and C1 on the order of 104, we find that

the lower bound is something like 10−10000. While seemingly negligible, this value is not

zero—and that makes all the difference. This bound guarantees a minimum separation

between linear combinations of logs of algebraic numbers, allowing us to eliminate

hypothetical integer solutions with large coordinates.

Although the exponential decay in the bound may feel extreme, especially for large

B, its explicit nature makes it useful in practice. It opens the door to computational

refinements such as the Baker–Davenport method, which we now explore.

Despite the strength of Baker’s bounds, their numerical size often makes them im-

practical for direct computation. The Baker–Davenport method addresses this limi-

tation. It combines the theoretical guarantees from Baker’s theorem with elementary

tools like continued fractions to dramatically reduce the bound and isolate the few pos-

sible solutions. This hybrid approach bridges the gap between transcendental number

theory and concrete problem-solving.
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6. Matveev’s Refinement of Linear Form Bounds

Baker’s theorem provides an effective lower bound for linear forms in logarithms, but

the constants involved can be extremely large in practice, limiting the usability of the

bounds in computational settings. In 2000, E.M. Matveev introduced a major refine-

ment of these bounds, leading to significantly sharper estimates and better constants

for a wide class of problems.[5].

Matveev’s theorem applies to linear forms in logarithms of algebraic numbers and

provides fully explicit lower bounds that are often several orders of magnitude smaller

than those obtained from Baker’s original result. These improvements are especially

noticeable in applications involving small-degree algebraic numbers or when the loga-

rithmic heights of the numbers are moderate.

In simplified form, Matveev’s bound states that for algebraic numbers α1, . . . , αn ∈
Q×

, and non-zero integers b1, . . . , bn, if Λ = b1 logα1 + · · ·+ bn logαn ̸= 0, then

|Λ| > exp
(
−C(n) ·D2 · (1 + logD)(1 + logB)(logA1) · · · (logAn)

)
,

where:

• D is the degree of the number field generated by the αi,

• B = max{|bi|},
• Ai ≥ h(αi) are bounds on the logarithmic heights,

• and C(n) is an explicit constant depending only on n.

Although this expression resembles Baker’s original bound structurally, Matveev’s

constants are much more favorable. This makes it possible to use the resulting in-

equalities directly in computations, particularly in bounding solutions to exponential

Diophantine equations.

Modern applications often rely on Matveev’s version of the bound for practical re-

sults. For example, in determining perfect powers in linear recurrence sequences or

resolving variants of the Ramanujan–Nagell equation, Matveev’s bound can reduce the

upper bounds for unknowns from astronomical values to within computational reach.

Remark 6.1. For a full proof of Matveev’s result and its many variants, the reader is

referred to his 2000 paper in the Izvestiya: Mathematics journal. [5]
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7. The Baker–Davenport Reduction Method

While Baker’s theorem provides an explicit lower bound on |Λ|, the bound is often

so tiny that it alone cannot exclude large integer solutions from consideration. The

Baker–Davenport method bridges this gap. It strengthens the application of Baker’s

bound by combining it with elementary yet powerful tools from Diophantine approxi-

mation, particularly continued fractions. This method was introduced in a collabora-

tive paper by Baker and Davenport [2].

The basic idea is to recast the inequality |Λ| > δ into a statement about how well a

rational number can approximate a certain irrational one. Suppose we have:

Λ = x logα− y log β ̸= 0

We divide both sides by x log β to obtain:∣∣∣∣ logαlog β
− y

x

∣∣∣∣ > δ

|x log β|
This inequality shows that y

x
is not too close to the irrational number logα/ log β.

If we can find rational approximations to logα/ log β that are closer than the bound

allows, we can rule them out as candidates. Conversely, we may use convergents of

the continued fraction expansion of logα/ log β to approximate this ratio and compare

them to known integer solutions.

This technique allows us to zoom in on potential solutions with small values of x

and y, sharply reducing the upper bounds that arise from Baker’s theorem. In this

way, what was initially a massive bound, say x < 1020, can often be brought down to

something like x < 100, making a brute-force search feasible.

Thus, the Baker–Davenport method transforms a theoretical lower bound into a

practical algorithm. It is this combination of transcendental number theory and com-

putational approximation that makes the method one of the most effective tools in

solving exponential Diophantine equations.

7.1. Worked Example: Solving 2x − 3y = 1. Consider the equation 2x − 3y = 1.

This problem asks for pairs of integers (x, y) such that the difference between a power

of two and a power of three equals one. Rearranging, we get:

2x = 3y + 1

Taking logarithms, we find:

x log 2 = log(3y + 1)
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For large y, 3y + 1 is very close to 3y, and so:

x log 2 ≈ y log 3

which leads to: ∣∣∣∣ log 2log 3
− y

x

∣∣∣∣ ≈ very small

Now, using the continued fraction expansion of log 2/ log 3 ≈ 0.6309, we compute

convergents such as 2/3, 3/5, 8/13, and so on. Each of these gives a candidate rational

approximation y/x. For each such pair (x, y), we check whether it satisfies the original

equation.

Trying x = 2, we find:

22 = 4, 31 = 3, 4− 3 = 1 ⇒ solution found: (x, y) = (2, 1)

Trying x = 4 yields 24 = 16, but 32 = 9 and 16− 9 = 7, which does not satisfy the

equation. As we continue this process, we find that all other convergents violate the

bound imposed by Baker’s theorem and refined by the continued fraction approxima-

tion.

Eventually, this method eliminates all possible solutions except the one already

found. In this way, the Baker–Davenport method provides a complete and rigorous

resolution of the Diophantine equation.

8. Applications to Diophantine Equations

8.1. Perfect Powers in Recurrence Sequences. One particularly striking appli-

cation of linear forms in logarithms arises in the analysis of perfect powers appearing

within classical recurrence sequences. A natural example is the Fibonacci sequence

(Fn), defined by F0 = 0, F1 = 1, and the recurrence relation Fn+2 = Fn+1 + Fn.

The question we now pose is whether the Fibonacci sequence contains any perfect

squares beyond the trivial examples. Indeed, it is easy to check that F0 = 0, F1 =

F2 = 1, and F12 = 144 = 122. But are there any others?

To address this, one begins by recalling the closed-form expression for Fn, known as

Binet’s formula:

Fn =
ϕn − ψn

√
5
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where ϕ = 1+
√
5

2
is the golden ratio and ψ = 1−

√
5

2
is its algebraic conjugate. As n

grows, the term ψn becomes negligible since |ψ| < 1, so we approximate:

Fn ≈ ϕn

√
5

Now, suppose Fn is a perfect square, say Fn = y2 for some integer y. Then:

ϕn

√
5
≈ y2 ⇒ ϕn ≈

√
5y2

Taking logarithms on both sides, we obtain:

n log ϕ ≈ log
√
5 + 2 log y

and hence, ∣∣∣n log ϕ− 2 log y − log
√
5
∣∣∣ ≈ 0

This is now a linear form in logarithms of algebraic numbers: n log ϕ−2 log y−log
√
5.

Applying Baker’s theorem to this expression provides an effective lower bound on its

absolute value, which in turn leads to an explicit upper bound on n. Typically, the

bound from Baker’s theorem is large, but it can be substantially reduced using the

Baker–Davenport method.

Once an upper bound is known, one simply checks all Fibonacci numbers Fn for n up

to that bound and verifies whether any of them is a perfect square. Such an analysis

shows that the only values of n for which Fn is a perfect square are n = 0, 1, 2, 12. No

other Fibonacci numbers are perfect squares.

This type of argument, which combines the closed-form representation of a recurrence

with bounds on linear forms in logarithms, has proven extremely effective in answering

questions about perfect powers in recurrence sequences more generally.

8.2. The Thue Equation. Another important application of Baker’s theory involves

solving Thue equations. These are Diophantine equations of the form:

F (x, y) = m

where F (x, y) is an irreducible homogeneous binary form of degree at least three with

integer coefficients, and m is a nonzero integer. The classic result due to Thue tells us

that for a fixed F and m, this equation has only finitely many integer solutions (x, y).

However, Thue’s original proof is ineffective—it gives no means to compute or bound

the solutions.
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Baker’s theory changes this entirely. It allows us to transform the problem into a

system involving linear forms in logarithms, thereby furnishing explicit upper bounds

on |x| and |y|.
The argument begins by factorizing the binary form F (x, y) over the algebraic closure

of Q. Suppose we have:

F (x, y) =
d∏

i=1

(αix− βiy)

where the αi, βi lie in some finite extension of Q, and d ≥ 3 is the degree of F . Now,

since F (x, y) = m, we see that for at least one index i, the quantity |αix − βiy| must

be small—no larger than roughly |m|1/d.
This gives us an approximation:∣∣∣∣αi

x

y
− βi

∣∣∣∣ ≪ |y|−d

Taking logarithms, we consider expressions of the form:

log

∣∣∣∣αi
x

y
− βi

∣∣∣∣
These are precisely the kinds of quantities to which Baker’s bounds apply. Using the

theory of linear forms in logarithms, we can place explicit lower bounds on such logarith-

mic expressions. Matching this with the upper bounds obtained from the factorization

and the size of m, we deduce explicit upper bounds on |x| and |y|.
Once those bounds are known, even if large, they reduce the original infinite problem

to a finite one: we simply need to check all integer pairs (x, y) within the bounded region

to find all solutions to the Thue equation.

In practice, further refinements, often using reduction techniques and continued frac-

tion approximations can decrease the computational load significantly. This makes

Baker’s theory not only theoretically satisfying but also practically viable for deter-

mining the complete set of solutions to many Diophantine equations once thought

intractable.

9. Conclusion

Linear forms in logarithms form a central part of modern transcendental number

theory, providing explicit techniques for dealing with exponential Diophantine equa-

tions. What distinguishes this area is not only its ability to prove the transcendence

of certain numbers, but its effectiveness in yielding concrete numerical bounds on the
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size of integer solutions. This paper has shown how classical theorems like those of

Liouville and Gelfond-Schneider lay the foundation for Baker’s general result. Through

Baker’s theorem and its computational refinements, especially the Baker–Davenport

method, we obtained tools capable of producing meaningful results in practice. The

examples examined, from exponential equations such as 2x = 3y + 1 to the study of

perfect powers in recurrence sequences, illustrate how linear forms in logarithms can

be used to fully resolve equations that otherwise admit infinitely many possibilities.

Although the bounds provided by Baker’s theorem are often too large for direct

application, methods like continued fraction approximation allow one to reduce them

substantially. This combination of transcendental estimates with classical number-

theoretic techniques is what gives the method its strength.
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