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Abstract

This paper discusses o-minimal structures and a number of related results and
applications. After covering some basic motivations and notions from model theory,
three primary theorems will be proven. We will primarily aim to understand the Pila-
Wilkie theorem and a few of its generalizations, after covering the more fundamental
results of Monotonicity and Cell Decomposition.

1 Introduction

We frequently want to discuss the solutions to polynomials, and possibly understand a
property of them. This motivates a number of theorems estimating or bounding the number
of rational points that are solutions to those polynomials.

The Pila-Wilkie theorem (Theorem is one such result, and it provides a particularly
small bound for the number of rational points that are not solutions for any polynomial
or polynomial inequality. It provides this bound only given a certain property we call o-
minimality, which is applied from model theory. This property has many useful implications,
which allow it to provide a helpful setting for theorems such as the one we will prove in this
paper.

O-minimal structures are the main concept we will explore in this paper. However, this
was not originally developed with results similar to the Pila-Wilkie theorem in mind. A
major motivation for its use was |Gro84|, written in 1984 , when Alexandre Grothendieck
advanced a program of 'tame topology’, which he proposed as a topology that would exclude
certain pathological spaces and behaviors.

This in turn motivated Lou van den Dries to argue in [vdD98| that o-minimal structures
could allow for a tame topology over the reals, and meet Grothendieck’s conditions. This
relied on progress already made in the theory of o-minimal structures, developed from model
theoretic results about the real numbers.

Several major theorems about o-minimal structures had already been proven then, begin-
ning with [PS86] where Pillay and Steinhorn introduced the theory and some initial results.

The Pila-Wilkie theorem was proven more recently in [PW06], and used previous work
in [BP89], [Yom87] and |Gro87] to provide an important application of o-minimality.

In this paper, we will begin our discussion of o-minimality with an overview of some
preliminary ideas and definitions in model theory. We will then prove one of the early
results in the area, the Monotonicity Theorem.



In the next section, we will prove the Cell Decomposition Theorem, another foundational
result. We will then turn to an exploration of the Pila-Wilkie theorem, beginning with a
discussion of some basic concepts outside of o-minimality, as well as some important lemmas.
In the last section, we will prove the Pila-Wilkie theorem and some of its generalizations to
definable families.

2 Preliminaries

We begin by covering the necessary knowledge of model theory and o-minimality in
general to understand the later theorems and proofs in this paper.

Definition 2.1. A structure A is a set M, which we call its domain or universe, along with:
1. a collection of relations, or subsets R C M™,
2. a collection of functions f : M™ — M,
3. and a collection ¢ € M of constants.
We often call a subset of the domain of a structure A a subset of A.
Definition 2.2. A signature o is a collection of relation, function, and constant symbols.

When a structure has signature o we say that it is a o-structure. We can also discuss
the relations and functions on a structure with respect to their arity, which is n € N for the
number of arguments taken by a relation or function.

For example, the rational numbers, the real numbers and the complex numbers can each
be considered as structures of the same signature. We specify the signature

o={+,x,-,0,1}

with + and x as binary function symbols, a unary function symbol — for change of sign,
and two constants 0 and 1. Then the rational, real and complex numbers are o-structures
over Q, R, and C, respectively.

Additionally, when discussing functions on structures, we say that f(z) is the image of
x, and that for y = f(z), = is the preimage of y. We also say that a set S of points x is the
fiber of y if it is the preimage of the singleton set {y}.

Other fundamental concepts for defining o-minimal structures include those of definable
subsets and intervals.

Definition 2.3. A definable subset of a structure A is a subset of its domain M that can
be specified with a formula using logical symbols, or the symbols on the signature of A, or
both.

Definition 2.4. A subset C of M is convex if for all ¢, € C and every m € M with
c<m <, we have that m € C.

Definition 2.5. An interval of M is a convex subset of M with endpoints in M U{—o0, +00}.
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In o-minimal structures, we will largely deal with open intervals, i.e. those that do not
include their endpoints. We will use the usual notation for intervals, i.e. (a,b) for an open
interval from a to b, and [a, b] for a closed interval.

Definition 2.6. A box is the cartesian product of n finite intervals.

We also define some additional concepts in topology considered relative to the other
notions we develop.

Definition 2.7. A homeomorphism is a function f : A — B that is:

1. bijective, i.e., it maps unique elements in A to unique elements in B and maps at least
one element in A to each element in B.

2. continuous.
3. an open map, meaning that it maps open sets on A to open sets on B.
Definition 2.8. The interior of a set .S is the largest open set contained in S.

Definition 2.9. A neighborhood of a point p is a set S that contains an open set containing
p.

We also say that for some neighborhood S, p is an interior point of S.

Definition 2.10. The boundary bd(S) of a set S is the set of all points p such that each
neighborhood of p contains at least one point in S and one point not in S.

Definition 2.11. A closed set is a set that contains all of the points on its boundary.

Now we define some concepts of ordering, for the convenience of the reader, before defining
o-minimal structures.

Definition 2.12. A partial order or strict partial order on a set M is a binary relation <
such that, for all a,b,c € M:

1. we never have a < a,
2. if a < b then we do not have that b < a,
3. and if a < b and b < ¢ then a < c.

Alternatively, we say that a strict partial order is irreflexive, asymmetric, and transitive,
respectively.

Definition 2.13. A linear or total order is a partial order < on M such that for any a,b € M,
if a # b, then either a < b or b < a.

Definition 2.14. A dense order is a partial order such that where a,b € M and a < b, there
exists ¢ € M suh that a < ¢ < b.



Definition 2.15. An order on M without endpoints is one such that there is no greatest or
lowest element in M.

Definition 2.16. An o-minimal structure is a structure S such that it has a dense linear
order without endpoints < defined on its domain, and where every definable subset of S is
a finite union of points and open intervals.

The following are o-minimal structures:
1. the rational numbers Q with a dense linear ordering without endpoints,
2. the real numbers R with addition and multiplication and the above ordering,

3. and the real numbers R with addition, multiplication and exponentiation and the above
ordering.

The proof of the o-minimality of these structures is outside the scope of this paper, but
proofs can be found in |[PS86|, some of which rely heavily on quantifier elimination, which
in turn is discussed in [Hod97], for example.

However, R and < with the function sin(z) is not o-minimal, because we can specify
infinitely many points by defining the set where sin(z) = 0.

3 Monotonicity Theorem

The first theorem we cover proves a result about the strict monotonicity and continuity of
functions on o-minimal structures. By strictly monotonic we mean that that on each interval
on which a function is defined, it is constant, strictly increasing or strictly decreasing.

Theorem 3.1 (Monotonicity Theorem). Let I be an open interval from a to b on o-minimal
structure A and f : I — G be a definable function, where M C A™. Then there is a finite
sequence

a=ap<a;1<---<a,=>

such that f is continuous on the open interval from a; to a;v1 and strictly monotone for
0<17<n.

To prove the Monotonicity Theorem, we will first require a series of lemmas about func-
tions on A.

Lemma 3.2. If f : I — G is definable, then there is a subinterval I' C I on which [ is
strictly monotone.

To prove this, we require the following additional lemma.

Lemma 3.3. Let f : I — G be a definable function such that f(x) > 0 for all x € I. Then
there is a subinterval I' C I and some € > 0 in G such that f(2') > € for all 2’ € I'.



Proof. Define the subset V' C I by:
V={xel: fly) < f(z)forall y <z}

Since V' is definable, it must either be finite or contain an interval by o-minimality. If V'
contains an interval, then f is strictly increasing on a subinterval of I and we have proven
Lemma 3.3

If V is finite, then we may redefine V' on a subinterval of [ instead of I, and assume that
V = (. By our definition of V', we may choose an infinite decreasing sequence xg > xq > - - -
in I such that f(xy) < f(z1) < ---. The set of points where f(x) > f(x¢) = € is infinite and
definable, and therefore, it must contain an interval I’ that proves Lemma because f is
everywhere at least € > 0 there. [ |

We now prove Lemma |3.2]

Proof. For a point x € I, we may consider the three definable sets of points such that
fly) > f(x), f(y) = f(z) or f(y) < f(x), respectively. Thus, we have that, for every y on
the open interval from x to 2/, there is some 2’ > x such that one of those three conditions
is the case.

Since the set of points x for each of these conditions is definable and the union of these
three sets completely covers I, one of them will contain an interval. Therefore, if we shrink
I to exclude the points on the other sets, we may assume without loss of generality that
only one of these circumstances occurs, for example, the first. In the first case we define
g : I — G such that g(z) is the infimum (or greatest lower bound) of the following set:

y>x: fly) < flz)

By assuming the first condition above, we have that g(x) > x for all z € I. As g is definable,
Lemma [3.3| gives us that there is some subinterval I’ C I and some ¢ > 0 in G where
g(x) > x + ¢ for every x € I'. If we then shrink I’ to have length less than e, we have from
g > x + ¢ that f is strictly increasing on I’, and we have proven Lemma (3.2

|

We will require a further lemma for the proof of the Monotonicity Theorem.

Lemma 3.4. If f : I — G s definable and strictly monotonic, then there is a subinterval
I' C I on which f is continuous.

Proof. Assume that f is strictly increasing, so it must be injective, i.e. it maps unique
elements from [ to unique elements of G. The image f(I) of I is infinite and definable, so
there is some interval J that is a subset of f(I). For every ¢ < d in the interval J, the
preimage of the open interval from ¢ to d is the open interval in J from the preimage of ¢
to the preimage of d. Therefore because this interval is open in I’, we can restrict f to the
interval I’, which is the preimage of J. Then f is continuous because its preimage is open,
and we have proven Lemma [ |

We are now ready to prove the Monotonicity Theorem.



Proof. We call f locally continuous and strictly monotone at x € I when it is continuous
and strictly monotone on a subinterval containing x. Thus, by and the set of points
x at which f is locally continuous and strictly monotone is open and dense in I (i.e. every
point in [ is a point = or arbitrarily close to one such point). As this set is definable, it is
cofinite, meaning that the difference of I and the collection of all z is finite.

Shrinking I as necessary, we can then assume that f is continuous and everywhere locally
strictly monotone. We now prove that f is strictly monotone.

Consider the set of points a’ < b in the closed interval from a to b, such that f is strictly
monotone on the open interval from a to b. As this set is definable, we have that there exists
an open interval of I from a’ to b’ on which f is strictly monotone and is of maximal size
with this property. As a’ > a, then by the local strict monotonicity of f, in this case on a
neighborhood of a/, it follows that f is strictly monotonic on (a’ — ¢,b’) for some € > 0 in
R. This contradicts the maximality of (a’,b), and therefore a’ = a, ¥’ = b and f is strictly
monotonic on I. Hence, we have proven Theorem [3.1] |

4 Cell Decomposition

In this section, we will prove the Cell Decomposition Theorem, one of the primary early
results regarding o-minimal structures. Here we will write I'(f) for the graph of a function
f, and f|S for a function f restricted to a set S.

When studying o-minimal structures, we will often want to specify the points and intervals
contained in each definable subset. To generalize this across dimensions, we have the notion
of a cell.

Definition 4.1. Let 1= (i1,...,im) € {0,1}™ (i.e. a sequence of zeroes and ones of length
m). Then an i-cell C C M™, where M is the domain of an o-minimal structure, is defined
inductively:

1. A O-cell is a point.
2. A 1-cell is an open interval on M.

3. (We suppose that i-cells have been defined) An (7, 0)-cell is the graph I'(f) of a function
f: C — M that is definable and continuous where C' is an i-cell.

4. An (i,1)-cell is the image of a pair of functions (f,g) on C where C is an i-cell, f,g
are definable functions either C — M or a constant function on C' to either —oo or
+o00, and for all z € C, f(z) < g(z).

In particular, our theorem concerns cell decompositions.

Definition 4.2. A partition of a set A is a family of sets S such that S does not contain
the empty set, S covers A (or the union of the sets in S is A), and the sets in S are pairwise
disjoint (or their intersection is the empty set).

Definition 4.3. A decomposition of M™ the domain of some o-minimal structure is a
partition defined by induction on m:



1. A decomposition of M' = M is a collection of points and open intervals (where a; <
-+ < ag) are points in M:

{(—0o0,a1), (a1,as2),...,(ag, +00),{ar}, ..., {ax}}.

2. A decomposition of M™*! is a finite partition of M™*! into cells A such that the set
of m(A) is a decomposition of M™. (Where 7 is the map M™! — M™)

We say that a decomposition D of M™ partitions a set B C M™ if each cell in D is either
part of B or disjoint from B, i.e. of B is a union of cells of B.

Lastly, we have the following notion of definable connectedness, which will be useful for
the proofs of some initial lemmas:

Definition 4.4. A set is connected if it is not the union of two nonempty disjoint open sets.

Definition 4.5. We say that a nonempty definable set .S is definably connected when S is
not the disjoint union of two nonempty definable open subsets.

Theorem 4.6 (Cell Decomposition). Given any definable sets Ay, ..., Ay € M™, there is a
decomposition of M™ partitioning each of Aq, ..., Ag.

To prove this theorem, we proceed by an induction on m. For this induction, we use the
following result from the monotonicity theorem.

Theorem 4.7. For each definable function f : A — M, A C M™, there is a decomposition
D of M that partitions A such that the restriction f|B : B — M to each cell B € D with
B C A is continuous.

By o-minimality, Theorem holds for m = 1. We assume that Theorem holds for
m = 1...n, so it remains to prove the theorem for the m + 1 case. Additionally, Theorem
follows directly from monotonicity (as we proved that each such f is continuous), and so
we also assume that it holds for m =1...n.

We begin this induction with a finiteness lemma.

A set Y C M™ is finite over M™ if for each x € M™ the fiber Y, := {w € M : (z,w) € Y}
is finite, and Y is uniformly finite over M™ if there is N € N such that |Y,| < N for all
xeMm™.

Lemma 4.8. Suppose the definable subset Y of M™ + 1 is finite over M™. Then Y 1is
uniformly finite over M™.

To prove this lemma, we will make and justify a number of claims about boxes.

Definition 4.9. A box B C M™ is Y-good if for each point (z,w) € Y with z € B there
is an interval I around w where Y N (B x I) is the graph of f for some continuous function
f:B— M.

Claim 4.10. If the box B C M™ 1is Y -good, then there are continuous definable functions
fi<- < fr:B— M such that Y N (B x M) is the union of the graphs of fi,..., fx.



To prove this claim, we will require two further subclaims.

We fix x € B and we write that Y, = {ry,..., 7} with r; <--- <r,. We take intervals
Ii,..., Iy around r; < --- < rg respectively, and continuous functions fi,...,fx : B = M
such that Y N (B x I;) =I'(f;) where j =1,... k.

Claim 4.11. f; < --- < f.

We will prove the following definable connectedness theorem, and then proceed to prove
the above claim.

Theorem 4.12. Fvery cell is definably connected.

Proof. For a 0-cell, it is a point and thus cannot be the disjoint union of two subsets. We
suppose that a 1-cell U is not definably connected. We then have that U = A U B for
nonempty, open and disjoint A, B C U. We can express each subset as a union of intervals
A= A1U---UA; and B = ByU- - -UB;. We can express these unions as (a1, a12), - - -, (a1, @:2)
and (by1,b12), ..., (b1, bio) respectively. Each such interval has limit points, and therefore we
can consider agy such that it bounds (ax;, ax2) and is not in any other interval. It cannot
be in B by its disjointness with A, so this contradicts U = AU B and U must be definably
connected. Now if K is a cell in M™! then we assume inductively that the cell 7(K) where
7 M™T1 — M™ is definably connected, and use the fact that each fiber 771(z) N K is
definably connected to complete the proof. [ |

Now we turn to a justification of Claim [4.11]

Proof. We can prove that f; < f, and the other inequalities will follow by the same method.
Assume that there is a point p € B with fi(p) = fo(p). Thus fo(p) € I1, and because f5 is
continuous there is a neighborhood U C B of p such that fo(U) C I;. Since Y N (U x I;) =
C(f1|U), and T(fo|U) C (Y N (U x I), we have that fi|U = fo|U. It follows that the set
{r € B: fi(p) = f2(p)} is open. Since p € B: fi(p) < fo(p) and p € B : fi(p) > fa(p) are
also open, and B is definably connected, by Theorem [4.12]and with fi(z) = r1 < r2 = fo(z),
we have that fi(x) < fa(x). Similarly, we obtain that f; < --- < fi across each f; < fii1.
|

Claim 4.13. Y N (B x M) =T(f)U---UT(f).

Proof. Consider some point (a,s) € Y N (B x M) and let f : B — M be a continuous
definable function such that f(a) = s and I'(f) C Y. As (z,f(z)) € Y, it follows that
f(z) =r; = fi(z) for some i € {1,...,k}. As above, this gives that f = f;, and therefore we
have justified Claim [4.10] |

We now require a further two claims, to prove Lemma [4.8 We will say that some point
x is Y-good if x belongs to a Y-good box.

Claim 4.14. If A C M™ is a definably connected set and all points of A are Y -good,
then there are continuous functions fi < -+ < fr : A — M such that Y N (A x M) =

L(f1)U---UT().



Proof. We can choose a point = € A, if A is nonempty, and let k = |Y,|. By our first claim
the set {a € A:|Y,| =k} is open and closed in A, hence |Y,| =k for all a € A. |

Claim 4.15. Every open cell in M™ contains a Y -good point.

Proof. It suffices to show that each box B in M™ contains a Y-good point. We write that
B = B’ x (a,b) for B' a box in M™~!. For each point p € B consider that Y (p) := {(w, s) €
M?:a <w < band (p,r,s) € Y} which is finite over M. We can thus apply the following
theorem to A = Y (p) and conclude that the set {w € M : w is not Y (p)-good} is finite.

Theorem 4.16. Let A C R? be definable such that A, is finite for each x € R. Then

there are points aq < --- < ag in R such that the intersection of A with each vertical strip
(ai, aiv1) X R has the form T'(fir) U - U (finw)) for certain definable continuous functions
fij + (aisaip) — Rowith fi(x) < -+ < fin@)(x) for € (ai,aip1). (Here we have set
ap := —00, g4y = +00.)

A proof of this theorem can be found in [vdD98|, Chapter 3, Section 1.7.

Therefore, the definable set Bad(Y') := {(p, w) € B : w is not Y (p)-good} has no interior
point. By our inductive assumption on m there is a decomposition which partitions B and
Bad(Y'). Take an open cell C' of this partition such that C' C B. Then CNBad(Y") = ), hence
if we replace B by a box contained in C' we have then reduced to the case that Bad(Y') = 0,
i.e. for each p € B’ we can apply Claim above (with Y (p) C M? instead of Y) to find
a number k(p) € N such that |Y,| = k(p) for each point x = (p,w) € B. We now must show
that the numbers k(p), p € B have a finite bound.

Thus, we choose a w € (a,b) and we consider the set:

Y :={(p,s): (p,w,s) €Y} T M™.

As Y is finite over M™, the set Y is finite over R™~!, so by the inductive assumption Y%
is uniformly finite over M™~! i.e. there is N € N such that for each p € B' : [{s € M :
(p,s) € YV} < N, or |Ypu| < N for all p € B'. Therefore k(p) < N for all p € B’ and
Y| < N for all z € B.

We let B; := {z € B : |Y,| = i} for each i € {0,..., N} and we define the functions
fit,-.., fij on each B; by fi < --- < fi;, and Y, = {fu(x),..., fij(z)}. Applying the
inductive assumption for Theorem @ on dimension m to each f;; separately, and then using
the inductive hypothesis for Theorem [4.6|to find a common refinement of the decompositions
obtained via the induction by Theorem [4.7] we get a decomposition D of M™ partitioning
each of the sets B;, such that for each A € D, if A C B;, then f;;|A is continuous for
j =0,...,7. Since B is open and partitioned by D, we have that there exists an open cell
A € D with A C B. With B = |, B;, it follows that A C B; for some 4, and therefore
the functions fi1,..., fi; are continuous on A. Hence each part of A is Y-good and we have

established Claim because A C B. [ |
We can now prove Lemma [4.§|

Proof. Consider a decomposition D of M™ that partitions the set of Y-good points, and let
A e D. If Ais open, then by Claim there is a number N4 € N such that |Y,| < N4 for
all z € A.



We then rely on the proof in [vdD98|, Chapter 3, Section 2.7 using the definable homeo-
morphism p 4, to show that such a number N4 also exists for the non-open cells A € D. Now
take N := max{N, : A € D}. Then |Y,| < N for all z in M™, and Lemma[4.§is proven. M

We note that a definable set S C M has finite boundary bd(S), and that the interval
between two successive boundary points is either part of S or disjoint from 5.
For a definable set A C M™*! we write

by (A) == {(z,w) € M™ : w € bd(A,)}

and we can note that bd,,(A) is a definable set that is finite over M™, so the uniform
finiteness property is therefore applicable, which we employ in the proof below.
We now directly prove Theorem [4.6|

Proof. Define Ay, ..., A as subsets of M™%, Define
Y :=bd,, (A1) U---Ubd,,(Ax).

Then Y C M™*! is definable and finite over M™, so there is P € N such that |Y,| < P for
all z in M™. For each i € {0,..., M}, let B; := {x € M™ :|Y,| =i}, and define functions
fir; fiz, - -+, fi on By by

Yo ={fu(®)... fu(x)}, fulz) < - < fu(z).

Further, we let f;p = —oo and f;+1 = +00 be functions on B;. Finally we define for each
Aed{l,... k},ie{0,...., M} and 1 < j <1

Cxij = {z € By : fij(w) € (Ay).},
and for each A € {1,...,k},i € {0,..., M} and 0 < j <1,
Dyij = {x € By : (fij(x), fij1(7)) C (Ar)o}

We then take a decomposition D of M™ which partitions each set B;; each set C);; and each
set Dy;j, and furthermore, which has the property that if £ € D is contained in B;, then
fulE, ..., fiu|E are continuous functions. By our inductive assumptions for Theorems
and this decomposition must exist.

For each cell E € D we let Dy be the following partition of F x M:

Dg = A{(folE, fulE), ..., (ful B, fisa|E), T(fal E), ..., T(ful E)}

where ¢ € {0,..., M} is such that E C B;. Then D* := |J{Dg : E € D} is a decomposition
of M™*! which partitions each set A1, ..., Ay, and we have proven Theorem [4.6| [
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5 Preliminaries for the Pila-Wilkie Theorem

In this section, we will provide a preliminary understanding of the notions and lemmas
from number theory that are required to understand the Pila-Wilkie theorem.

Note that we will work in a structure over R for this section and the proof of the Pila-
Wilkie theorem, and we will use the following notation:

Throughout, we will define d,e, k,I,m,n € N, and ¢,¢, K € R”, or are positive real

numbers. For a = (ay,...,a,) € N we set |a| :== a3 + -+ + ap.
For ay,...,a, € R”? the number max{ay,...,a,} € R>? will equal 0 by convention if
n=0. For a = (ay,...,a,) € R" we write w(a) := max{|a1],...,|a,|} € R”.

The Pila-Wilkie theorem relies on a number of definitions about polynomials and subsets
of structures, which we now define.

Definition 5.1. We say that a set S C R" is semialgebraic if it is a finite union of sets defined
by some polynomials P where {(xy,...,x,) € R" : P(xy,...,2,) = 0} or {(z1,...,2,) €
R"™: P(xy,...,x,) > 0} for each P.

Definition 5.2. The algebraic part X*# of definable X C R" is the union of the connected
infinite semialgebraic subsets of X. So for n > 1, the interior of X is part of X8,

Definition 5.3. The transcendental part X" of X is the difference of X and X?.

Over these sets, we will be interested in counting rational points, which will require the
following definitions.

Definition 5.4. The multiplicative height function H : Q@ — R is defined as H (%) =
max(|al, |b]) € N>! for coprime a,b € Z, b # 0.

For this, we also use the following further notation:
L. X(Q):=XnQ"

2. X(Q,T) :={a € X(Q) : H(a) < T} is the set of rational points of X of height < T
where T' € R.

3. N(X,T) := the number of points in X(Q,T).
We can now introduce the Pila-Wilkie theorem:

Theorem 5.5. Let X C R™ withn > 1 be definable in some o-minimal structure on the real
field. Then for all € there is a ¢ such that for all T,

N(X',T) < T,

To prove this theorem, we will rely on a series of major theorems and lemmas. We first
define some foundational concepts for presenting those theorems and lemmas, and then state
the results themselves.

We first define the necessary notions of parametrization.

Definition 5.6. A C*-map f is a function that has k continuous derivatives.
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Definition 5.7. For definable X C R™ X is strongly bounded if X C [-N, N|™ for some
N in N, and a definable function f : X — R™ is strongly bounded if its graph T'(f) C R™*"
is strongly bounded; i.e., X C R™ and f(X) C R" are strongly bounded.

Definition 5.8. A partial k-parametrization of X is defined as a definable C*-map f :
(0,1)) — R™ such that [ = dim X (so X # (}), the image of f is contained in X, and f(* is
strongly bounded for all 8 € N! with |8| < k.

Definition 5.9. A k-parametrization of X is a finite set of partial k-parametrizations of X
whose images cover X; i.e. X is strongly bounded.

Definition 5.10. For k,n > 1 and X C R" a strong k-parametrization of X is a C*-map
f:(0,1)™ — R*,m < n, with image X, such that w(f®(a)) < 1 for all a € N™ with
w(a) <k and all a € (0,1)™.

Definition 5.11. A hypersurface in R™ of degree < e is the set of solutions in R” of a
nonzero polynomial in = (z1,...,x,) over R of degree less than e.

The following theorems rely are results of the proofs found in [BP89], [Yom87] and
[Gro87].

Theorem 5.12. Let n > 1 be given. Then for any e > 1 there are k = k(n,e) > 1,
e =¢(n,e), and c = c(n,e), such that if X C R™ has a strong k-parametrization, then for all
T at most ¢T® many hypersurfaces in R™ of degree less than e are enough to cover X (Q,T),
with e(n,e) — 0 as e — 0.

Theorem 5.13. Given an o-minimal structure on R, every definable set X C [—1,1]™ with
empty interior and n > 1 is for every k > 1 a finite union of definable subsets, each having
a definable strong k-parametrization.

The proofs of both theorems can be found in [BvdD22|, for example.
We depend also on a number of lemmas, which we now state.

Lemma 5.14. If X = X; U---U X,,, then X% D Xflg U UX% and thus X" C
Xru---uXxjr,

Proof. X®# includes the finite unions of semialgebraic sets in different X,jlg for k € N so it
may be larger than X™ U--- U X2 and hence X" C X" U... U X" |

Lemma 5.15. We assume that S C R" is semialgebraic, f : S — R™ is semialgebraic and
injective, and f maps the set X C S homeomorphically onto Y = f(X) C R™. Therefore
f(X4) =Y qnd thus f(XT) =Y. (We allow m =0 for later inductions.)

Proof. We have that f(X®#) C Y## and for any connected infinite semialgebraic set C C Y,
the set f~}(C) C S is semialgebraic because C' and f are, contained in X because f is
injective. Hence f~!(C') C S is connected and infinite, and f~'(C) C X?&. This gives us
that f~1(Y?8) C X?¢ and thus f(X?#) = Y#ale, [
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An initial step we make towards proving Theorem is to reduce to the case of subsets
of [-1,1]™, so that Theorem can be applied, which we do below
For X CR" and I C {1,...,n}, we define

Xr={a€e X :w(a;)>1foralliel,wla)<1foralli¢l}.

We also define the semialgebraic map f; : R® — R” by f;(a) = b where b; := a;* for i € I
and b; := a; for ¢ ¢ I. Thus f; maps R™ homeomorphically onto its image, a subset of
[—1,1]™. If I = 0, then f; is the inclusion map R™ = [—1,1]" — R". Note that for a € Q™ we
have fr(a) € Q" and H(a) = Hy,(4). Moreover, X is the disjoint union of the sets X;, and for
Y; = f1(X;) we have Y; C [—1,1]", Y* = f1(X¥) by Lemma 2.2, so N(Y*,T) = N(X™ T)
for all T'.

6 Proof of the Pila-Wilkie Theorem

In this section, we will complete the proof of Theorem [5.5]

We first prove the theorem as it is stated above. However, we will see that it relies
on a final assumption, and then briefly discuss definable families, which allows for two
generalizations of the proof.

Proof. We let X C R" be definable, and then proceed by induction on n. By we have
that if X is open in R”, then X = (). Then we can remove the interior of X in R" from
X and arrange that X has empty interior. Additionally, we arrange that X C [—1,1]" as
above.

We let & be given and we take some e > 1 large enough that ¢(n, €) < £/2 in Theorem[5.12]
Also taking k = k(n,e), we have from Theorem for the structure over R that M € N
where X = X,..., Xy where X is definable and admits a strong k-parametrization.

Then by Theorem [5.12{ we have that X (Q,T") C Uf\il szl H,;, where H;; is a hypersur-
face in R” of degree < e, J €N, J < T%? and ¢ = ¢(n,e). If a € X"(Q,T) and a € H,j,
then we have a € (X N H;j)" and thus X*(Q,T) € UL, UL, (X N Hy)"(Q,T).

We let H be any hypersurface in R™ of degree < e. We will now prove an upper bound
on N((X N H)" T) of the form ¢;7/? with ¢; € R> independent of H and T. By applying
this to the hypersurfaces H;;, we have N(X",T) < MJey T2 < MeyT/2¢,T¢/? = MeyeTe
and complete the proof.

We take semialgebraic cells C1,...,Cp in R® and L € N, such that H = C; U---UCT.
Then assume that C' = () is one such cell. By the result from [vdD98|, Chapter III, Section
2.7 we have a semialgebraic homeomorphism p = po : C' — p(C) = p(C)) onto an open cell
p(C)) in R™ with n; < n. Thus p maps homeomorphically onto its image Y; C p(C;) C R™.
p is now given by omitting n —n; of the coordinates, so for a € C;(Q) we have p(a) € Q™ and
H(p(a)) < H(a). The hypersurfaces of degree < e in R™ belong to one semialgebraic family.
Now by [vdD98], Chapter III, Section 3.6, we take L < L(e,n), with L(e,n) € N=! depending
only on e,n. By Lemma [5.14] we then have that (X N H;;) € (X NCy)™,..., (X NCY)™. As
n; < n we can assume inductively that for all 7', N(Y;*', T') < B, T¢/? where l = 1, ..., L with
B; € R” independent of T. Then for all T, N(((X N C)™),T) < BiT/?,1 =1,...,L when
Lemma5.15|is applied to the maps p = p¢,, and then N (((XNC)¥), T) < (By+---+Bp )T/
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We assume that we can take By, ..., By < B with B € R” dependent only on X, e and not

on H,Y1,...,Yy. Therefore ¢; := L(e,n)B is a positive real number and we have Theorem
b5 |

We now provide a brief discussion of definable families, before proving two generalized
versions of the Pila-Wilkie theorem.

Definition 6.1. For £ C R™ and X C EF x R", and s € E, we define a section X(s) as
{a e R": (s,a) € X}.

For the family { X (s) }sep of sections X (s) C R"; and we call these sets X (s) the members
of the family described by E, X. If £ and X are definable, we write that it is a definable
family, and it follows that its members are definable subsets of R".

Definition 6.2.

We will usually divide the family given by E, X into the subfamilies that we have from
some covering £ = Fy;U---U Ey, where E, is the set of s € F for which X (s) satisfies some
specified condition e,. Then X = X;U---U Xy with X, := X N (E, x R"), such that X,(s)
satisfies e, for all s € F,.

For the next lemma, (which follows from the proof in [vdD9§|, Chapter III, Section 3),
for i = (i1,...,1,) € {0,1}" we have from [vdD98], Chapter III, Section 2 that there is

pi R" = RY  di=iy+ - +ip,
which maps every i-cell homeomorphically onto its image, an open cell in R

Lemma 6.3. Let e > 1 and define that D = (QZ"), the dimension of the set of polynomials
over R in n variables and of degree < e. Then there are L € Nsy and semialgebraic sets
H,Cy,...,Cp CF xR, F:=RP\ {0}, such that

{H(t) : t € F'} = set of hypersurfaces in R"™ of degree < e,

H(t) = Ci(t) U---UCL(t) for all t € F, and for each | € {1,...,L} there is an i =
(11,...,1n) € {0,1}", @ # (1,...,1), with the property that every Ci(t) with t € F is a
semialgebraic i-cell in R™ or empty.

In the following proofs we assume that £ C R™ and X C E x R" are definable.

Theorem 6.4. Let any € be given. Then there is a constant ¢ = c¢(X,¢e) such that for all
s € F and all T we have N(X(s)",T) < cT*.

Proof. As in the proof above, we proceed by induction on n and reduce to the case where
X(s) is for every s € E a subset of [—1,1]" with empty interior. We take e > 1 sufficiently
large that e(n,e) < ¢/2 in Theorem , and set k = k(n,e). Then for every Z C R"
with a strong k-parameterization we can cover Z(Q,T) with at most ¢IT/? hypersurfaces
of degree < e such that ¢ = c(n,e) is as in Theorem [5.12] From Theorem we have
that there are definable sets Xi,..., Xy € E x R", M € N, such that for all s € F,
X(s) = Xi1(s)U---UXp(s) and each X;(s) is empty or has a strong k-parametrization. We
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let s € F/, and let H be a hypersurface of degree < e. As in the previous proof we see that
by our choice of k, e it suffices to prove:

N((X(s) "H)",T) < e, T2, for all T,

where ¢; € R depends only on X ¢, not on s, H,T. Now we provide some such ¢;. With the
above values of e and n, we define D := (62”), F :=RP\{0}, and let H,C},...,C, C FxR"
be as in Lemma. Forl=1,...,L, take 5; = (3;,...,4") in {0, 1}", not equal to (1,...,1),
such that for all ¢ € F' the subset C)(t) of R™ is a semialgebraic i;-cell or empty, so

1 .
pi, R" = R™ =14 +--- 414 <n,

maps C;(t) homeomorphically onto its image. Then we have for [ = 1,..., L a definable set
Y, C (E x F) x R™ such that for all (s,t) € E x F,

Yi(s, t) = pi, (X (s) N Ci(t)) .-
Since all n; < n we can assume inductively that for all (s,¢) € E'x F and all T,
N(Yiy(s, )", T) < BT*?, 1=1,...,L
with B, = B;(Y},¢) € R independent of s,¢,T. Since H = H(t) for some t € F,
N ((X(s)nH)™,T) < (By + -+ + Bp)T*?,
as in the sketch. Thus ¢; := By + - - - 4+ By, is as promised. [ |

Lastly, we prove a variant of Theorem |6.4] where from the sets X (s) only a definable part
V(s) of X(s) alg is removed instead of all of it.

Theorem 6.5. Theorem 2.5. Let any € be given. Then there is a definable set V =V (X, ¢e) C
X and a constant ¢ = ¢(X,€) such that for all s € E and all T, V(s) C X(s) alg and N
X(s)\V(s), T <cT*.

Proof. The proof follows similarly to that of Theorem [6.4 We let V; C X be given by
Vo(s) = the interior of X (s) in R" for s € E. This definable set V; will be part of some V' as
necessary. By replacing X by X \ Vj we arrange that X (s) has empty interior for all s € E.
Then we also arrange that X (s) C [—1,1]" for all s € E. Now take e and k = k(n,e) as in
the proof of Theorem [6.4] It now suffices to find a definable V' C X and a constant ¢; € R
> such that for all s € E, every hypersurface H of degree < e in R”, and all T" we have
V(s) C X(s) alg, N

(X(s)NH)\V (), T < c;T/%. We now take the semialgebraic sets H, C,...,Cp C F xR
and the definable sets Y, C E x F x R™ for [ = 1,..., L as in the proof of Theorem [6.4]
For such [ we have n; < n, so we can assume inductively that there is also a definable set
W, C Y, and a number B, = By(Y;,¢) € R > such that for all s € E, t € F', and T we have
Wi(s,t) C Yi(s,t) alg and N(Y;(s,t) \ Wi(s,t),T) < B/T¥/%. Now the definable set V C X
such that for all s € E, V(s) = Ulel User Ci(t) N p; 'Wi(s, t) has the specified property and
the proof is complete. [
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