On the Galton–Watson Process and Its Modeling Capabilities

Kevin Zhu

Euler Circle IRPW

July 2025

Origination of the Galton-Watson Process

Francis Galton

Henry William Watson

Defining the Galton-Watson Process

- Generation 0 has 1 individual.
- Each individual within the same branching tree has the same distribution for the number of offspring they produce.
- The offspring of generation n become generation n + 1.

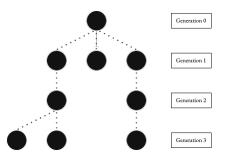


Figure: Possible Branching Tree

The Key Question

What is the probability that a branching tree eventually dies out?

Answer:

The Key Question

What is the probability that a branching tree eventually dies out?

Answer: It depends on the expected number of children an individual has.

Probability Generating Functions

Definition

X is the offspring distribution.

The probability generating function of X is denoted as g(s).

$$g(s) = \sum_{i=0}^{\infty} \mathbb{P}(X=i)s^{i}$$

$\mathsf{Theorem}$

$$\mathbb{E}(X) = g'(1).$$

Preliminary Result

Theorem

The probability that a branching tree eventually dies out is the smallest nonnegative solution to the equation s = g(s).

Proof Sketch

Theorem

The probability that a branching tree eventually dies out is the smallest nonnegative solution to the equation s = g(s).

Definition

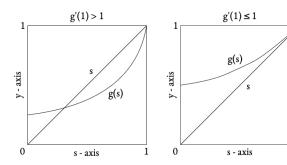
 q_n is the probability that the branching tree dies out by the nth generation.

Proof.

$$g(q_{n-1}) = \sum_{i=0}^{\infty} \mathbb{P}(X=i)(q_{n-1})^i = q_n$$

$$\lim_{n\to\infty}q_n=\lim_{n\to\infty}g(q_{n-1})=g\left(\lim_{n\to\infty}q_n\right)$$

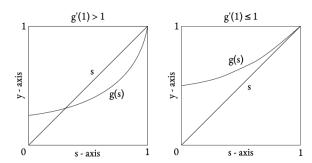
s = g(s)



Theorem

- g(1) = 1.
- $g''(s) > 0 : s \in (0,1)$.
- $0 \le g(0) \le 1$.

Main Result



Theorem

- If $g'(1) = \mathbb{E}(X) \le 1$, then $\lim_{n \to \infty} q_n = 1$.
- If $g'(1) = \mathbb{E}(X) > 1$, then $\lim_{n \to \infty} q_n < 1$.

When X is geometrically distributed

Definition

$$\mathbb{P}(X=i)=(1-p)p^{i}.$$

i 0 1 2 3 ...

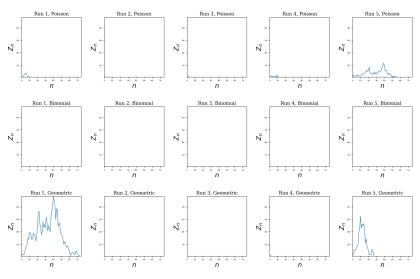
$$\mathbb{P}(X = i)$$
 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{16}$...

Table: $p = \frac{1}{2}$

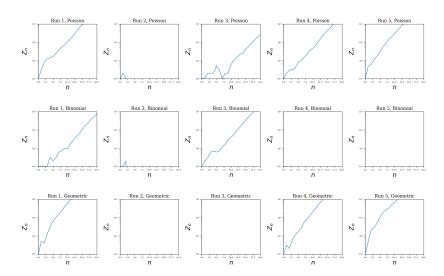
Theorem

- If $p \leq \frac{1}{2}$, then $\lim_{n\to\infty} q_n = 1$.
- If $p > \frac{1}{2}$, then $\lim_{n \to \infty} q_n = \frac{1-p}{p}$.

Poisson V. Binomial V. Geometric ($\mathbb{E}(X) = 1$)



Poisson V. Binomial V. Geometric ($\mathbb{E}(X) = 1.5$)



Bisexual Galton-Watson Process

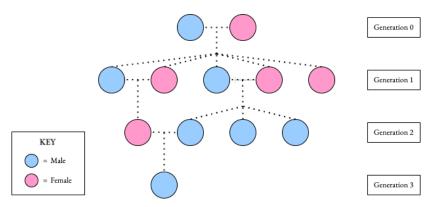


Figure: Possible Bisexual Branching Tree

Age-dependent Galton-Watson Process

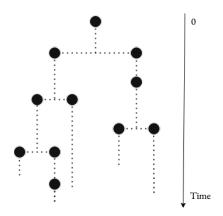


Figure: Possible Age-dependent Branching Tree

