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Origination of the Galton-Watson Process
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Defining the Galton-Watson Process

@ Generation 0 has 1 individual.

@ Each individual within the same branching tree has the same
distribution for the number of offspring they produce.

@ The offspring of generation n become generation n+ 1.

Figure: Possible Branching Tree



The Key Question

What is the probability that a branching tree eventually dies out?

Answer:



The Key Question

What is the probability that a branching tree eventually dies out?

Answer: It depends on the expected number of children an
individual has.



Probability Generating Functions

Definition
X is the offspring distribution.

The probability generating function of X is denoted as g(s).

g(s)=> P(X =i)s
i=0




Preliminary Result

The probability that a branching tree eventually dies out is the
smallest nonnegative solution to the equation s = g(s).




Proof Sketch

The probability that a branching tree eventually dies out is the
smallest nonnegative solution to the equation s = g(s).
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Definition
gn is the probability that the branching tree dies out by the nth
generation.
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s = g(s)
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Main Result
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o Ifg’(1) =E(X) <1, then lim,_,» g, = 1.
o If g'(1) =E(X) > 1, then lim,_, g, < 1.




When X is geometrically distributed

Definition

o Ifp< %, then lim,_ o gn = 1.

o Ifp> %, then limp 00 gn = lpr'




Poisson V. Binomial V. Geometric (E(X) = 1)
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Poisson V. Binomial V. Geometric (E(X) = 1.5
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Bisexual Galton-Watson Process
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Figure: Possible Bisexual Branching Tree




Age-dependent Galton-Watson Process
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Figure: Possible Age-dependent Branching Tree






