ON THE GALTON-WATSON PROCESS AND ITS MODELING
CAPABILITIES

KEVIN ZHU

ABSTRACT. This paper introduces Galton-Watson processes and the prerequisites necessary
to understand it. Topics include probability generating functions, variance, and expected
value, properties of generation size, key results regarding the extinction of a branching tree,
the process’s modeling capabilities for different distributions, and variations of the standard
branching process.

1. INTRODUCTION

In the late 19th century, there was concern among the British people that certain aris-
tocratic last names would die out. As a result, British Mathematicians Francis Galton and
Henry William Watson set out to model the propagation of family names; their model, ref-
erencing both of their last names, has subsequently been named the Galton-Watson process.
Let us first define this process informally:

e Generation 0 has 1 individual.

e Fach individual within the same branching tree has the same distribution for the
number of offspring they produce.

e The offspring of Generation n become Generation n + 1.

These criteria result in a branching tree that either goes on infinitely or goes extinct at
some point in time, one example of which is shown in figure[l] Galton and Watson, interested
in figuring out the probability that a certain last name would go extinct, questioned how
the probability of a branching tree going extinct would differ given different distributions for
the number of offspring an individual produces; the answer to their query is one of the main
focuses of this paper and arguably the most important result of the Galton-Watson process.
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Figure 1. Possible Branching Tree
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Before we delve into the meat of the mathematics, though, it is necessary to cover some
of the fundamentals of probability theory in order to understand the proofs provided later
in the paper.

1.1. Expected Value. The expected value of a discrete random variable X is denoted as
E(X) and is defined as

i=1

where {X1, Xs, X3,..., Xy} is the support for X and P(X = X;) denotes the probability
that the random variable X is equal to X;. Intuitively, the expected value of X is just the
weighted average of all values of X where the weights are the probabilities of attaining those
values.

The law of total expectation is helpful to know because it often allows us to simplify
calculations for expected value. In the following theorem, Y is an arbitrary random variable.

Theorem 1.1. E(X) =E(E(X | Y)) [Hua20].

It will be applied in a later section to help us find the expected number of individuals in
the nth generation.

Expected value is an important concept to know while studying the Galton-Watson process
since it plays a significant role in determining the probability of a branching tree going
extinct. In addition, finding the expected number of individuals in generation n is often a
desired result.

1.2. Variance. Intuitively, variance describes how spread out a data set is. If most values
are congregated around the mean, the variance will be relatively small. On the other hand,
if most values are quite far from the mean, the variance will be relatively large. It is defined
quite similarly to standard deviation (¢); in fact

Variance = 2.

The more useful variance expression for analyzing the Galton-Watson process is in terms of
expected value though:
Var(X) = E(X?) — (E(X))%
This equation is especially useful for finding the variance of a known distribution and will
help us out in a later section.
The law of total variance is also helpful to know. Again, Y is just an arbitrary random
variable.

Theorem 1.2. Var(X) = E(Var(X | Y)) + Var(E(X | Y)).

It can be applied to help us find the variance of the number of individuals in the nth
generation.

1.3. Probability Generating Functions. The probability generating function of a dis-
crete random variable X taking nonnegative integer values is denoted as g(s) and is defined
to be

ZIP’(X =i)s'

where 7 takes on the possible values of X.
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Understanding probability generating functions is very important while studying the
Galton-Watson process, since they are used as a tool to represent the expected number
of offspring an individual has and to calculate the probability of a geometric branching tree
going extinct.

Before we jump into the next section, to avoid confusion on the reader’s end, notation
that will be frequently used shall be defined right now:

e X;: the discrete random variable denoting the number of offspring individual ¢ has
e g(s): the probability generating function of X, Y = P(X =1)s’

e /.. the discrete random variable denoting the number of individuals in the nth
generation

gn: the probability that the branching tree is extinct by the nth generation, P(Z,, = 0)
lim,, ,~ qn: the probability that the branching tree eventually goes extinct

p: the expected number of offspring an individual has, E(X)

o: the standard deviation of the number of offspring an individual has

2. PROPERTIES OF Z,

It is desirable to find the expected value and variance of Z,, if predicting the number of
individuals at a later time is of interest. First, let us look at E(Z,)

Theorem 2.1. E(Z,,) = p".

Proof. Let us prove this theorem via induction.

Base case (n = 0): By the definition of the Galton-Watson process, generation 0 has 1
individual. Thus, E(Zy) = 1 = 1%, showing that the theorem holds when n = 0.

Inductive hypothesis: Assume that E(Z,) = u"™ for n = k.

Inductive step: Let n =k + 1. It follows that

Z;
Zyir =) Xi.
=1

Taking the expected value of both sides, we get that

E(Zp1) = (Z X; )

Applying theorem [I.1]

E(Zj1) = (ZEX yzk>
= E(uZ)
= pE(Zy)
= u(p)"
e
By the principle of mathematical induction, the theorem holds for all n > 0. [
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no? if =1,

Theorem 2.2. Var(Z,) =< o?(p® — )™t .
(0" = Dp ifut,
pw—1
Proof. Case 1: Var(Z,) = no? if u = 1.

Let us first prove the case where ;i = 1 since it is much simpler than the other case. By
theorem [1.2] [Tsi18],

Var(Z,y1) = B (Var(Zoi1 | Zo)) 4+ Var(E(Zog | Zn))
=E(0°Z,) + Var(uZ,)
= 0’E(Z,) + Var(uZ,),

and by Theorem [2.1]
(2.1) Var(Z, 1) = ou™ + Var(uz,).

When p =1,
Var(Z,41) = o + Var(Z,).

Let us finish via induction.

Base case (n = 0): By the definition of the Galton-Watson process, generation 0 has a
fixed number of individuals. Thus, Var(Z,) = 0 = 0(c?), showing that the theorem holds
for this case when n = 0.

Inductive hypothesis: Assume that Var(Z,) = no? for n =k if p = 1.

Inductive step: Let n =k + 1. It follows that

Var(Zy,1) = 0* + Var(Z,)
= 0% + ko?

= (k+ 1)02.

By the principle of mathematical induction, the theorem holds for all n > 0 if p = 1.
2(,n n—1
Case 2: Var(Z,) = % if p# 1.
Let us now direct our attention to the case where p # 1. Again, we can use an inductive

process to derive the result.
2¢,,1 0
Base case (n = 1): By Equation , Var(Z,) = o?u® + Var(uZy) = o* = U(’L%)“,
showing that the theorem holds for this case when n = 0.
2(,n n—1
Inductive hypothesis: Assume that Var(Z,) = % forn=Fkif pu# 1.
Inductive step: Let n =k + 1. By Equation [2.1

Var(Zy41) = o*u® + Var(uZy)
= o2y + p? Var(Zy)
2(,,k _ 1 k—1
202ﬂk+ﬂ2(0 (p )1 >
pw—1

o2( 1k — 1)k +!
:O_2Mk+< (1 ) )7
pw—1
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and by factoring out o2u*,

k1
Var(Zy41) = o*p” (1 + u)
w—1
. p—1 + (1 = Dp
pw—1 pw—1
-1 k+1
— o2u* (# H M)
pw—1 pw—1
B 0.2 (’uk+1 1),uk
= T
By the principle of mathematical induction, the theorem holds for all n > 1 if u # 1. Since
we have proved all cases, the theorem holds for all plausible p. [ |

3. EXTINCTION PROBABILITY

The probability of a branching tree eventually going extinct was the main result that
Galton and Watson wanted to determine in their initial investigation of the process. It
turns out, though, that there is only a closed-form expression for this probability for certain
distributions of X.

3.1. Generalized Extinction.
Theorem 3.1. Unless P(X =1) = 1,lim, ,oo g, =1 if p<1.
Remark 3.2. When P(X =1)=1,Z, =1:n > 0. Thus, lim,_,o ¢, = 0 even though p < 1.

Proof. Let us begin by looking at the probability generating function of X, which is g(s).
As defined previously,

g(s) = ZIP’(X =1)s".
i=0
Letting s = ¢q,,_1,
g(Qn—l) = ZP(X = i)(Qn—l)i'
i=0

Intuitively, this power series represents the probability that the lineages of Generation 0’s X
offspring all go extinct within another n — 1 generations or, in other words, the probability
that the branching tree goes extinct in n generations. Thus,

(3.1) 9(@n-1) = Gn-
Since we are interested in the probability of eventual extinction, it is logical to look at this

expression specifically when n approaches co. Because ¢(s) is continuous,

lim an = lim g(Qn—l)
n—00 n—00

implies that

lim ¢, =g (hm qn) .
n—oo n—oo
This is a very useful result, as we can see that lim,,_, ¢, is simply a solution to the equation
s=g(s):s€l0,1].
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A problem arises, though, when it is realized that the equation often has multiple solutions on
that interval. Thus, it is important to clarify which of the solutions represents the probability
of eventual extinction.

Lemma 3.3. lim,_, ¢, is the smallest solution to the equation s = g(s) : s € [0, 1].

Proof. Let us define r to be the smallest solution to the equation s = g(s) where s € [0, 1].
Since we already know that lim, .., ¢, is a solution, to prove that lim, ., g, = r, we just
have to show that ¢, < r for n > 0.

It is perhaps easiest if we use an inductive proof.
Base Case (n=0): By the definition of the Galton-Watson process, generation 0 has 1
individual. Thus, gy = P(Zy = 0) = 0 < r, showing that the lemma holds when n = 0.
Inductive hypothesis: Assume that ¢, < r for n = k.
Inductive step: Let n = k + 1. By equation [3.1], proving

Q1 <7 = g(r)
is equivalent to proving
9(ar) < g(r).
Since we have assumed that ¢, < r, we can complete this proof just by showing that g(s) is
a nondecreasing function on the specified interval, which is accomplished if it is shown that
g'(s) >0:s€[0,1]. As defined previously,

Taking the derivative,

Since P(X = i7),4, and s~ ! are all nonnegative, their product will be nonnegative as well,
making ¢'(s) > 0 and completing the inductive step. By the principle of mathematical
induction, ¢, < r holds for all n > 0, and the lemma is subsequently proven. [ |

To find the smallest solution to the equation s = g(s) : s € [0, 1], it is helpful to look at
some properties of g(s).

Lemma 3.4. ¢'(1) = pu.
Proof. As derived in the proof of lemma

Substituting 1 for s,

(1) =) P(X =1,
i=1
which is precisely the formula for E(X). Since u = E(X), ¢'(1) = p. |

g'(1) = p is a useful equation since it allows us to consider the more nebulous p as a
feature of the graph.

Lemma 3.5. g(1) = 1.
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Proof. As defined previously,
g(s) = ZIP(X = i)s'.
Substituting 1 for s, -
g(1) =Y P(X =i).
=0

Since lim,, ,,{0,1,2,...,n} is the entire sample space of X, g(1) = 1. [ |

The equation g(1) = 1 tells us that ¢, = 1 if g(s) —s # 0 : s € [0,1). To prove that
g(s) —s#0:s€[0,1) when u = ¢’(1) < 1, it is helpful to analyze how g(s) — s changes
with respect to s on this interval. Let f(s) = g(s) — s. Taking the derivative of both sides,

f'(s)=4'(s)

—1
Y P(X =i)is -1

=1

Since s < 1,
Y P(X=i)is ' —1<Y P(X=i)i—1=p—1:5€[0,1),
i=1 i=1

and because yu < 1,

fls)<p—1<1-1:s5€]0,1).

Thus, f'(s) < 0 : s € [0,1), indicating that f(s) is always decreasing on this interval.
Therefore,

f(s)=g(s) —s>f(1)=9(1) —1=0:5€[0,1),
proving that g(s)—s # 0 : s € [0, 1) and the subsequent fact that lim, oo ¢, = 1ifp <1. W

Theorem 3.6. lim, ., q, <1 if u>1.

Proof. We can utilize the relationship between g(s) and s to prove this as well. However,
the approach is slightly different and another property of g(s) needs to be introduced.

Lemma 3.7. ¢(0) =P(X =0).
Proof. As defined previously,

g(s) = ZP(X =1)s"
=0
Substituting 0 for s,
g9(0) => P(X =)0’
1=0
=P(X =0)0°+P(X =1)0" + P(X = 2)0* + - -
=P(X =0).
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Figure 2. Possible Graphs of y = s and y = g(s)

In other words, the y-intercept of g(s) is at (0,P(X = 0)). The usefulness of this lemma
only becomes clear when we look at the y-intercept’s position with respect to the line y = s.
Since P(X = 0) > 0, we know that it is on the left side of the line y = s or on top of the line.
Because ¢(s) is continuous, it is not hard to see that finding a point (s, ¢g(s)) : s € (0,1) on
the right side of the line y = s implies that s = g(s) for at least one s € (0,1).

Proving that such a point exists is rather easy. To do so, let us revisit the equation
f(s) = g(s) — s. Because f(1) = 0 and f'(1) > 0, there exists a value of s € (0,1) where
f(s) = g(s) — s < 0, showing that there exists a point to the right of the line y = s in the
specified interval.

Though it is visually obvious, mathematically justifying that the existence of (0, P(X = 0))
and a point right of y = s : s € [0,1) implies a solution to s = g(s) : s € [0,1) is not too
difficult either. The point (0, P(X = 0)) tells us that

g(s) —s>0:5=0,
and the existence of a point right of y = s tells us that
ds € (0, 1) such that g(s) — s < 0.

Since ¢(s) — s is continuous, as a result of g(s) being continuous, the intermediate value
theorem tells us that

ds € [0,1) such that g(s) —s =0,
proving that ¢, < 1if p > 1. |

Visual representations of the two scenarios can be seen in figure 2] With our additional
understanding of g,, let us circle back to our earlier discussion about finding a closed-form
expression for it. The reason ¢, cannot often be expressed as a closed form expression is that
g(s) — s, being an arbitrary power series, is unlikely to have roots that can be expressed in
a closed form.

Only in special cases where X is distributed a certain way is there a closed form expression
for ¢,. In the next subsection, we shall take a look at one such case — when X is geometrically
distributed.
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3.2. Extinction for Geometric Offspring Distribution. Normally, geometric distribu-
tions define the number of trials required to get the first “success”; all of the trials before the
“success” are considered “failures”. In the context of the Galton-Watson process, “success”
represents the event that an individual stops reproducing and each offspring is considered a
“failure”.

At any given point in time, let us define the probability of the individual having at least 1
more offspring to be p. Consequently, the probability that the individual stops reproducing
is 1 — p. It follows that

P(X = i) = (1 - p)p".
This equation is very helpful for finding lim,, . ¢p-

Theorem 3.8. lim,, ¢, = 1if p < %
Proof. Substituting (1 — p)p’ for P(X = 1),

g(s) =Y (1—-p)p's’
i=0
Taking the derivative of both sides,
g(s) =) i(l—pp's .
i=1

Substituting 1 for s,

Thus,

Simplifying,

Using the well-known result

Y o =2 [Will3),
i=1 2
we can deduce that
L 4 Qi+l 9 9i
i=1 =
1
= (2
5(2)
Thus, p < 1ifp < %, and theorem tells us that lim, .o, q, = 1if p < 1. [ |
Theorem 3.9. lim,,_,, ¢, = % if p> %
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Proof. As derived in the previous proof,

o0

g(s) =Y (1—p)p's',

1=0

and since g(s) is an infinite geometric series with first term 1 — p and ratio ps,

l—p
s) = )
9(s) s
Because lim,,_,« ¢, is a solution to s = g(s), we are interested in solving for s when
1—-p
5 = )
1 —ps

Multiplying both sides by 1 — ps,
s—pst=1—p.
Moving the terms with p to the same side of the equation and factoring out p,
s—1=p(s*—1),
and applying the difference of squares identity,
s—1=p(s+1)(s—1),

which becomes

l=ps+p
when both sides are divided by s — 1. Thus,
l—p
§=—,
p
and subsequently lim,, . g, = % if p>1/2. [ |

4. COMPARING DIFFERENT DISTRIBUTIONS OF X

As shown previously through our analysis of the geometric offspring distribution, prop-
erties of Galton-Watson branching trees depend not only on p, but also on the specific
distribution of X. As it turns out, there are many other statistical distributions that pro-
duce interesting results when used to model the offspring distribution of a Galton-Watson
process. Specifically, in this section, we will introduce the Poisson distribution, binomial
distribution, and talk more about the geometric distribution as offspring distributions.

Definition 4.1. Poisson distributions only take on nonnegative integer values. As a result,
they are often used to model the number of times an event happens in a given period.
Poisson distributions are most notable for always having the same mean and variance — A.
Intuitively, A represents the expected number of times the event will happen in the period.
When A is small, the Poisson distribution tends to be skewed right. However, as A increases,
its probability mass function increasingly resembles the bell shape of a normal distribution
with mean and variance \. The Poisson distribution has probability mass function

e AN

2!

and has infinite support.
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Definition 4.2. Binomial distributions also only take on nonnegative integer values. How-
ever, they differ from Poisson distributions in that they take 2 parameters, n and p, rather
than one. n indicates the number of trials and p indicates the probability of “success” on any
given trial; the outcome is the number of times success is attained. The mean is np and the
variance is np(1 — p). The skewness of the distribution is determined by p. When p = 0.5,
the distribution is symmetric. When p < 0.5, the distribution is skewed right. When p > 0.5,
the distribution is skewed left. The binomial distribution has probability mass function

n

P(X =1) = <Z.)pi(1 —p)"
and has finite support.

Geometric distributions, defined in the previous section, take on only nonnegative integer
values as well.

Since individuals can only have nonnegative quantities of offspring, the binomial distri-
bution, Poisson distribution, and geometric distribution are all great choices for being the
offspring distribution.

Let’s first take a look at the case where = 1 for these three distributions. Specifically, let
us set A = 1 for the Poisson distribution, n = 10 and p = 0.1 for the binomial distribution,
and p = % for the geometric distribution. Simulations for 5 runs of each of the distributions
can be seen in figure 3]

The variance of the Poisson distribution is

A=1,
the variance of the binomial distribution is
np(1 —p) =10(0.1)(0.9) = 0.9,
and the variance of the geometric distribution is
E(X?) — (E(X))" = Z 9i+1 (Z 2i+1>
i=0 i=0
=3-1
=2.

These variances will prove to be useful for comparing graphs of different offspring distribu-
tions.

The reason that some graphs appear empty in figure (3| is because they die out almost
instantly.

All graphs shown, regardless of offspring distribution, eventually die out. This is expected
though, since theorem tells us that eventual extinction is imminent if p < 1.

Remark 4.3. To avoid unnecessary wordiness, graphs where X is Poisson distributed, bi-
nomially distributed, and geometrically distributed will be referred to as Poisson graphs,
binomial graphs, and geometric graphs, respectively, from now on.

Despite sharing the common fate of extinction in the end, the graphs of different offspring
distributions display stark differences marked by sporadic behavior.

For one, the binomial graphs all die out almost instantly while there are at least a few
Poisson and geometric graphs that exercise brief growth. This difference occurs because the
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Run 1, Poisson Run 2, Poisson Run 3, Poisson Run 4, Poisson Run 5, Poisson
= = = = =
N N N | N N
n n n n n
Run 1, Binomial Run 2, Binomial Run 3, Binomial Run 4, Binomial Run 5, Binomial
c I~ I~ o o
N N N | N N
n n n n n
Run 1, Geometric Run 2, Geometric Run 3, Geometric Run 4, Geometric Run 5, Geometric
c I~ I~ o o
N N N, N N
© » w & 3 o w o b ® = & % @ w 6 b ® w b W @ m o b o® w b % @ w © b o® oW w
n n n n n

Figure 3. Poisson V. Binomial V. Geometric (u = 1)

Poisson and geometric distributions have a higher variance than the binomial distribution,
resulting in the probability that some individuals have significantly more offspring than the
mean being higher. Subsequently, population bursts are also more likely.

It is also worth noticing that the longest surviving geometric graphs seem to grow a lot
faster initially than the longest surviving Poisson graphs. This difference is also attributable
to variance, as the probability of extreme events, such as rapid growth, increases when
variance increases; both the Poisson and geometric distributions have a higher variance than
the binomial distribution, but the geometric distribution still has a variance twice that of
the Poisson distribution.

Let us also take a look at these graphs when p = 1.5 to see what happens when extinction
is not imminent. Specifically, let us set A = 1.5 for the Poisson distribution, n = 10 and
p = 0.15 for the binomial distribution, and p = % for the geometric distribution. Simulations
for 5 runs of each of the distributions can be seen in figure [4, with the y-axis of each graph
now logarithmically scaled to better show behavior in early generations.

The variances, despite taking on different values, still increase from the binomial distribu-
tion to the Poisson distribution to the geometric distribution.

Now, a lot more graphs seem to grow exponentially with no signs of stopping regardless
of the offspring distribution. This is expected though, since theorem tells us that the
chance of survival is nonzero if g > 1. We can assume that graphs reaching ~100 individuals
will never die out since the probability of that happening would be equal to the probability
of 100 distinct branching trees all dying out — an astronomically small number.
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Run 1, Poisson . Run 2, Poisson . Run 3, Poisson . Run 4, Poisson - Run 5, Poisson
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>>>>>> n e — . .n = " n
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—— n A — . .n = " h

Figure 4. Poisson V. Binomial V. Geometric (= 1.5)

The main difference between graphs of different offspring distributions is now growth rate.
To compare the growth rates of different graphs, we can look at the generation number where
Z,, first crosses 1000.

There are 4 Poisson graphs where eventual extinction does not occur. They reach 1000
individuals in the 13th, 15th, 16th, and ~22nd generations. On average, the surviving
Poisson graphs reached 1000 individuals in the

13+ 15+ 16 + 22
4

There are 2 binomial graphs where eventual extinction does not occur. They reach 1000
individuals in the 17th and ~21st generations. On average, the surviving binomial graphs
reached 1000 individuals in the

= 16.5th generation.

17+ 21
2

There are 3 geometric graphs where eventual extinction does not occur. They reach 1000
individuals in the 11th, 11th, and 13th generations. On average, the surviving geometric
graphs reached 1000 individuals in the

11+11+13
3

Again, it is the geometric graphs that have more explosive growth than both the binomial
and Poisson graphs due to their higher variance.

= 19th generation.

= 11.6th generation.
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4.1. Choosing a Distribution for Modeling. Of course, we do not actually know exact
offspring distributions in the real world. The best we can do for making models is to pick
a distribution to mimic it. This begs the question: how do we choose between the Poisson,
binomial, and geometric distributions when tasked with modeling a branching process?

There is often no trivial answer to this question, as it is not rare to have multiple distri-
butions work equally well. For certain scenarios, though, one distribution shines above the
rest. The Poisson distribution, for instance, is very good at modeling disease transmission in
the early stage of pandemics since the number of new infections per person is approximately
Poisson distributed. Nevertheless, the Poisson distribution has many limitations; its prop-
erty of having the same mean and variance greatly restricts the number of scenarios where it
can be feasibly used. In addition, it has infinite support, making the Poisson distribution a
bad choice for modeling human reproduction, where there is a biological upper limit on the
number of children a woman can birth. The binomial distribution, on the other hand, has
finite support, making it a much better choice for modeling human reproduction and similar
events with finite support. What happens when neither finite support nor equal mean and
variance is appropriate though? Often, if this is the case, the geometric distribution is a
good fit.

5. VARIATIONS OF THE GALTON-WATSON PROCESS

The standard Galton-Watson process, despite being widely generalizable, is overly simplis-
tic; it does not take into account many factors present in the circumstances that it aims to
model. This shortcoming results in the standard process being lackluster even for modeling
human population dynamics — its original use.

One of the biggest flaws that comes from using the standard Galton-Watson process to
model humans is the negligence of females. Since men were the ones passing on family names
to their children in the vast majority of scenarios, the original model considered only men as
individuals, disregarding the key role that women play in reproduction. Since it takes one
man and one woman to generate an offspring, the number of offspring in generation n+ 1 is
not only dependent on the number of males in generation n and the distribution of X; it is
also dependent on the number of females in generation n. Thus, researchers in the mid 20th
century, realizing this, introduced the bisexual Galton-Watson process.

5.1. Bisexual Galton-Watson Process. As mentioned previously, the key difference be-
tween the bisexual Galton-Watson process and the standard Galton-Watson process is that
both males and females are considered instead of just males; as a consequence, generation
0 is often defined to have 1 male and 1 female. As a result of this difference, key terms are
defined slightly differently.

Definition 5.1. Z,,, instead of representing the number of individuals in generation n,
indicates the number of “mating pairs” in generation n. The number of “mating pairs” in
generation n is defined to be the maximum number of monogamous heterosexual relationships
that can be formed between 2 individuals in generation n. Mathematically,

Z, = min(M,, F,),

where M,, represents the number of males in generation n and F}, represents the number of
females in generation n.
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Figure 5. Possible Bisexual Branching Tree

Definition 5.2. u, instead of representing the expected number of offspring an individual
has, indicates the expected number of mating pairs added to Z,,; by a mating pair from
generation n. Mathematically,

w=E(Z).

The probability of eventual extinction is the main result for the bisexual Galton-Watson
process as well. In a similar fashion to the standard Galton-Watson process, ¢, is still
dependent on p for the bisexual Galton-Watson process. In fact, it is still the case that

: =1, if p <1,
lim q, ]
n—00 <1, ifpu>1.

This is because the bisexual Galton-Watson process can just be considered as a standard
Galton-Watson process if mating pairs are thought of as individuals; therefore, the proofs
and results covered in the previous section can just be reused.

Although the bisexual Galton-Watson process was originally intended to model human
population dynamics, it can also be used to model population dynamics for other monoga-
mous species and even disease models where transmission requires pairwise contact.

Despite eliminating certain shortcomings of the standard Galton-Watson process, the bi-
sexual Galton-Watson process is still not perfect in many ways. For one, the model only
considers heterosexual relationships even though homosexuality is at record levels in our
modern world. In addition, only individuals from the same generation are allowed to re-
produce with one another; this is highly unrealistic in real-world scenarios, as individuals
mate with one another under the constraint of the time period they live in rather than their
generation number. Thus, some researchers believe that it is more useful if the number of
individuals existing at a certain time is considered instead of the number of individuals in a
certain generation; the age-dependent Galton-Watson process is the implementation of this.

5.2. Age-dependent Galton-Watson Process. The introduction of time results in the
concept of generations becoming quite useless; as a result, the age-dependent Galton-Watson
process is defined very differently from the other two variations:

e One individual is born at time 0.
e Fach individual within the same branching tree has the same distribution for the
amount of time they live.
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Figure 6. Possible Age-dependent Branching Tree

e Fach individual within the same branching tree has the same distribution for the
amount of offspring they have.
e The offspring of an individual start their lives at the time of the individual’s death.

Since Z,, is now useless, let us replace it with the similar Z(¢).

Definition 5.3. Z(t) is the discrete random variable indicating the number of alive individ-
uals at time ¢.

Definition 5.4. T is the continuous random variable indicating the lifespan of an individual.

Generating functions are also very helpful for analyzing the age-dependent Galton-Watson
process. In particular, we like to focus on the generating function of Z(t).

Definition 5.5. G;(s) is the probability generating function of Z(t). It is given by the
following equation:

Gyi(s) = /0 G(Gi—u(9)) fr(u) du + /OO s fr(u)du [GSO1],

t
where fr(u) is the probability density function of 7T'.

Even though this equation cannot be solved aside from some special cases, it is useful
since it can be used to study the probability of eventual extinction and growth rates over
time using techniques similar to the ones used in previous sections.
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Although the age-dependent Galton-Watson process is seen as an improvement on the
standard Galton-Watson process, some see it as less helpful than the bisexual Galton-Watson
process since it still only models 1 gender. In addition, some fault the elementary age-
dependent Galton-Watson for doing nothing to account for humans not often giving birth
to offspring at their time of death and all at once. Nonetheless, this variation of the Galton-
Watson process does have many strengths; for one, it is very good at modeling bacteria
populations, especially the ones that split to form new organisms.
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