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Abstract

In this paper we will go over the proof of the Isoperimetric Inequal-
ity. We will briefly talk about the Fourier Series, Parseval’s Theorem, and
Wirtinger’s Inequality. Later on, we will also look at a simpler version of
the problem and its applications.
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1 Introduction

The history of the Isoperimetric Inequality goes all the way back to the
ancient times in 814 BC when Queen Dido founded Carthage in Northern Africa.
Queen Dido came from the City of Tyre where her brother, Pygmalion, ruled.
Facing the tyranny, she took a group of inhabitants to leave the city and headed
westwards along the coast of the Mediterranean Sea. They eventually came
across a patch of land that they decided to settle on. The original inhabitants
in the area were not happy and the chief decided to mock Dido by granting them
any land that could be encircled by an ox’s hide. The Phoenicians decided to
cut the ox’s hide into thin strips. They then tied the strips together into a long
rope and encircled a large piece of land on which Dido later founded the City
of Carthage.

The problem now shows up. Dido had to encircle the largest possible piece
of land she could using a limited length of ropes. What is the most optimal
shape for the largest area? It turns out that the answer is a circle. This is
where the Isoperimetric Inequality comes in.

The Isoperimetric Inequality is an inequality that relates the area to the
perimeter. The intuitive idea of the inequality is that, given a fixed length L,
the shape with the largest area having a perimeter L is a circle. Another way
of saying this is given a fixed area A, the shape with the least perimeter is a
circle.

The formal statement is as follows. If L is the perimeter of a simple closed
curve C, and A is the area it bounds, then

L2 ≥ 4πA

Additionally, equality holds when C is a circle. Before going into the proof,
I’d like to introduce some of the prerequisites.

2 Prerequisites

This proof of the Isoperimetric Inequality utilizes 3 important concepts,
Fourier Series, Parseval’s Theorem, and Wirtinger’s Inequality.

2.1 Fourier Series

The Fourier Series is a powerful tool to help approximate any function using
only sine and cosine functions. The main idea is that it adds up a collection of
waves made from a combination of sines and cosines to estimate the function.
As the number of terms in the sum increase, the approximation gets finer and
finer. When there are an infinite number of terms in the sequence, the sum is
exactly equal to the function.
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Figure 1: Fourier Series

The figure above shows how the sum of 3 waves made of both sine and
cosine functions can sum up to be the new wave. Remember that another way
of representing sine and cosine waves are circles on complex planes with vectors
rotating inside. Using the circles to lay out the Fourier Series we can see that
it becomes a sequence of vectors connected tip to tail, each with a different
radius and rotating at different frequencies. This chain of arrows can trace out
anything in the 2 dimensional complex plane with enough vectors.
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Figure 2: Fourier Series in the Complex Plane

2.2 Parseval’s Theorem

Parseval’s Theorem [1] states that if a function has a Fourier Series

f(x) =
1

2
a0 +

∞∑
n=1

ancos(nx) +

∞∑
n=1

bnsin(nx)

then

1

π

∫ π

−π

[f(x)]2dx =
1

2
a20 +

∞∑
n=1

(a2n + b2n)

Now we will prove the theorem. Squaring the Fourier Series of f(x), we get

[f(x)]2 =
1

4
a20 + a0

∞∑
n=1

[ancos(nx) + bnsin(nx)]+
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∞∑
n=1

∞∑
m=1

[anamcos(nx)cos(mx)+

anbmcos(nx)sin(mx)+

ambnsin(nx)cos(mx)+

bnbmsin(nx)sin(mx)]

Taking the integral on both sides we get∫ π

−π

[f(x)]2dx =
1

4
a20

∫ π

−π

dx+

a0

∫ π

−π

∞∑
n=1

[ancos(nx) + bnsin(nx)]dx+

∫ π

−π

∞∑
n=1

∞∑
m=1

[anamcos(nx)cos(mx)+

anbmcos(nx)sin(mx)+

ambnsin(nx)cos(mx)+

bnbmsin(nx)sin(mx)]dx

We will calculate each term separately. For the first term, we get

1

4
a20

∫ π

−π

dx =
1

4
a20(2π)

For the second term, we notice that because sine and cosine are 2π periodic
functions

a0

∫ π

−π

∞∑
n=1

[ancos(nx) + bnsin(nx)]dx = 0

For the third term, we will use the Orthogonality Relations [7]. By the
Orthogonality Relations, we can see that the following 3 equations hold.∫ π

−π

cos(nx)cos(mx)dx =

{
0 if n ̸= m

π if n = m∫ π

−π

sin(nx)sin(mx)dx =

{
0 if n ̸= m

π if n = m∫ π

−π

cos(nx)sin(mx)dx = 0

Plugging it into the third term, we get

5



∞∑
n=1

∞∑
m=1

[anamπδnm + 0 + 0 + bnbmπδnm]

π

∞∑
n=1

(a2n + b2n)

Summing the 3 terms together, we get∫ π

−π

[f(x)]2dx =
1

4
a20(2π) + 0 + π

∞∑
n=1

(a2n + b2n)

So,

1

π

∫ π

−π

[f(x)]2dx =
1

2
a20 +

∞∑
n=1

(a2n + b2n)

Note that Parseval’s Theorem is the equality case of Bessel’s Inequality [3].

2.3 Wirtinger’s Inequality

Wirtinger’s Inequality [2] says that let f : R → R be a periodic function
of period 2π. The function is continuous and also has a continuous derivative
throughout R. If ∫ 2π

0

f(x) = 0

then ∫ 2π

0

f ′(x)2dx ≥
∫ 2π

0

f(x)2dx

The equality case only holds when f(x) = acosx+ bsinx for some a and b.

To prove it, we first see that because f(x) is continuous, its derivative is
continuous, and its period is 2π, Dirichlet’s conditions [4] are met and we can
write the Fourier Series for f(x) to be

f(x) =
1

2
a0 +

∞∑
n=1

(ansinnx+ bncosnx)

Note that a0 = 0 because ∫ 2π

0

f(x) = 0

Therefore the Parseval’s Theorem now becomes
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1

π

∫ 2π

0

f(x)2dx =

∞∑
n=1

(a2n + b2n) (1)

Note that we changed the parameters of the integral from −π and π to 0
and 2π. This doesn’t change anything because f(x) is a 2π periodic function.
We can first take the derivative of f(x) to get

f ′(x) =

∞∑
n=1

(anncos(nx)− bnnsin(nx))

Plugging this into Parseval’s Theorem gives us

1

π

∫ 2π

0

f ′(x)2dx =

∞∑
n=1

n2(a2n + b2n) (2)

Note that the minus sign in the equation for f ′(x) is canceled out due to
squaring on the right hand side of the Parseval’s Theorem. Because n ≥ 1, (2)
≥ (1), which proves the Wirtinger’s Inequality.

3 Isoperimetric Inequality on a Triangle

Let’s start things off with a simpler version of the problem. We will be
proving the Isoperimetric Inequality on a triangle.

The Isoperimetric Inequality for Triangles states that if L is the perimeter
and A is the area

L2 ≥ 12
√
3 ·A

To prove this, we first need to prove the AM-GM Inequality.

3.1 Proof of the AM-GM Inequality

The AM-GM Inequality states for all nonnegative reals a1, ..., an

a1 + ...+ an
n

≥ n
√
a1 · ... · an

The equality case holds when ai = aj for all i, j.

We will prove this via Cauchy Induction. Cauchy Induction is a form of the
regular induction. In Cauchy Induction, we first prove the base case, which is
with 2 elements. Then we prove all the cases with 2n elements. Finally, we
prove that given n elements work, n− 1 elements work.
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3.1.1 The Base Case

The base case is the AM-GM Inequality with 2 elements.

x+ y

2
≥ √

xy

The more obvious and boring way to prove this is by doing some simple
algebra.

(x− y)2 ≥ 0

x2 − 2xy − y2 ≥ 0

x2 + 2xy − y2 ≥ 4xy

(x+ y)2

4
≥ xy

x+ y

2
≥ √

xy

But we are here to have fun, so here is a much more interesting proof.

Figure 3: AM-GM Base Case

We set the circle to have diameter x + y, where CG has length x and GB
has length y. AD is perpendicular to CB and is the radius, so it has length
x+y
2 . EF is perpendicular to CB which makes EG = GF .
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By using Power of the Point on the chords CB and EF , we can see that
xy = EG ·GF . Thus, EG = GF =

√
xy. We can see that by changing x and y,

the position of the point G on the line CB changes. However, no matter where
G is, EG will always be smaller than AD, which means x+y

2 ≥ √
xy.

3.1.2 Powers of Two

Suppose the AM-GM Inequality works for n elements. We want to prove that
it works for 2n elements. Suppose that we have a list of 2n elements a1, ..., a2n.
We can split this into two sequences of n elements a1, ..., an and an+1, ..., a2n.
From this we can write two inequalities.

x1 + ...+ xn

n
≥ n

√
x1...xn

and
xn+1 + ...+ x2n

n
≥ n

√
xn+1...x2n

Now we add them and divide by 2.

x1 + ...+ x2n

2n
≥

n
√
x1...xn + n

√
xn+1...x2n

2

Notice that now we can apply the AM-GM on the 2 elements n
√
x1...xn and

n
√
xn+1...x2n to get

n
√
x1...xn + n

√
xn+1...x2n

2
≥ 2n

√
x1...x2n

Which means that

x1 + ...+ x2n

2n
≥ 2n

√
x1...x2n

Since the base case is 2 elements, this proves the AM-GM Inequality for all
powers of 2.

3.1.3 Stepping Backwards

Assuming that AM-GM works for n elements, we must prove that it works
for n− 1 elements. First, we substitute xn with x1+...+xn−1

n−1 . Plugging it in, we
get

x1 + ...+ xn−1 +
x1+...+xn−1

n−1

n
≥ n

√
x1...xn−1

(
x1 + ...+ xn−1

n− 1

)
Note that because we assumed the inequality to be true with n elements,

equality must hold if and only if x1 = x2 = ... = xn−1 = x1+...+xn−1

n−1 . However

notice that if x1 = x2 = ... = xn−1,
x1+...+xn−1

n−1 must be equal as well. So, the
equality case holds if and only if x1 = x2 = ... = xn−1.
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We can now continue by multiplying n−1 to the numerator and the denom-
inator of the left hand side.

x1 + ...+ xn−1 +
x1+...+xn−1

n−1

n
=

nx1 + ...+ nxn−1

n(n− 1)
=

x1 + ...+ xn−1

n− 1

Plugging it back in, we get

x1 + ...+ xn−1

n− 1
≥ n

√
x1...xn−1

(
x1 + ...+ xn−1

n− 1

)
(
x1 + ...+ xn−1

n− 1

)n

≥ x1...xn−1

(
x1 + ...+ xn−1

n− 1

)
(
x1 + ...+ xn−1

n− 1

)n−1

≥ x1...xn−1

x1 + ...+ xn−1

n− 1
≥ n−1

√
x1...xn−1

Thus, by Cauchy Induction, we have proved the AM-GM Inequality.

3.2 Applying the AM-GM Inequality

Figure 4: Triangle

First, we will define s = a+b+c
2 . Now, we will apply AM-GM on the 3 terms

(s− a), (s− b), and (s− c) to get
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(s− a) + (s− b) + (s− c)

3
≥ 3

√
(s− a)(s− b)(s− c)

s

3
≥ 3

√
(s− a)(s− b)(s− c)

s3

27
≥ (s− a)(s− b)(s− c)

Using Heron’s Formula, we get

s4

27
≥ A2

s2 ≥ 3
√
3 ·A

L2 ≥ 12
√
3 ·A

4 A General Idea

When it comes to intuition, with a slight bit of reasoning, one can come to
the conclusion that if the perimeter is fixed, the largest possible area is from
a circle. The intuitive logic will most likely go like this. The shape will most
likely be uniform throughout, and the only shape that is absolutely uniform is
a circle. However, the truth is that the proof is more complicated than this.

Some interesting parts I noticed about the problem included my observation
that the shapes cannot be concave, since one could just invert the part caving
inward to get a larger area with the same perimeter.
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Figure 5: Cannot be concave

Alas, I wish that I could say that I have a good geometric proof, but we
all must face the truth that most geometric questions are answered via algebra.
The main idea for this proof is that it calculates the area of the shape, and
compares it to another quantity using the Wirtinger’s Inequality. The other
quantity is cleverly set up so that the result directly gives us the Isoperimetric
Inequality.

5 Adolf Hurwitz’s Proof of the Isoperimetric In-
equality [5]

5.1 Parameterizing by Arc Length

We start off by noticing that we can represent the closed curve using 2
piecewise functions x(s) and y(s) where s ∈ [0, L] that satisfy(

dx

ds

)2

+

(
dy

ds

)2

= 1 (3)
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We can make this assumption because this is what it means to parameterize
by arc length. It essentially limits how much you go around the perimeter in
each step to 1. We can think of this as a “speed” of 1.

5.2 Rescaling to 2π Periodicity

Because the functions x(s) and y(s) are L periodic (the perimeter is a closed
curve of length L), we can make new functions f(θ) and g(θ) to be functions of
x(s) and y(s) so that they are 2π periodic, where θ ∈ [0, 2π].

f(θ) = x

(
Lθ

2π

)
g(θ) = y

(
Lθ

2π

)
We will also define

s =
Lθ

2π

Notice that we have the ability to shift the shape around the plane since it
does not affect the inequality in any way. So for later convenience, we will shift

the graph so that
∫ 2π

0
f(θ)dθ = 0. Now, we can take the derivative d

dθ and plug
it back into (3). Using the chain rule, we get

f ′(θ) = x′
(
Lθ

2π

)
· L

2π

g′(θ) = y′
(
Lθ

2π

)
· L

2π

So,

(f ′(θ))2 + (g′(θ))2 =

[(
x′

(
Lθ

2π

))2

+

(
y′
(
Lθ

2π

))2
]
·
(

L

2π

)2

But because of (3), everything inside the square brackets equals to 1.

(f ′(θ))2 + (g′(θ))2 =
L2

4π2
(4)

5.3 Writing the Area Integral in Terms of f and g

Recall that the formula for the area enclosed by a curve is [6]

A =
1

2

∫ L

0

(x(s)y′(s)− y(s)x′(s))ds (5)

This is similar to how the determinant of a matrix calculates the area of
the shape it represents. In fact, the area of a triangle can be calculated by
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multiplying 1
2 to the determinant of the matrix, similar to the equation above.

Now we need to define and calculate a few conditions that we will use later.
Because

s =
Lθ

2π

the following conditions hold.

ds =
L

2π
dθ

x(s) = f(θ)

y(s) = g(θ)

Now we need to calculate what f ′(θ) and g′(θ) are.

f(θ) = x

(
Lθ

2π

)
By the chain rule,

f ′(θ) = x′
(
Lθ

2π

)
· L

2π

x′(s) =
2π

L
· f ′(θ)

Similarly,

y′(s) =
2π

L
· g′(θ)

Now, substituting everything back into (5) we get

A =
1

2

∫ 2π

0

(
2π

L
f(θ)g′(θ)− 2π

L
g(θ)f ′(θ)

)
L

2π
dθ

2A =

∫ 2π

0

(f(θ)g′(θ)− g(θ)f ′(θ))dθ (6)

The formula for integration by parts says∫ 2π

0

f(θ)g′(θ)dθ = [f(θ)g(θ)]2π0 −
∫ 2π

0

g(θ)f ′(θ)dθ

Since f(θ) and g(θ) are 2π periodic functions,

f(0) = f(2π)

and

g(0) = g(2π)
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Then,

[f(θ)g(θ)]2π0 = f(2π)g(2π)− f(0)g(0) = 0

So, ∫ 2π

0

f(θ)g′(θ)dθ = −
∫ 2π

0

g(θ)f ′(θ)dθ

Returning back to (6) we can rewrite it into this.

2A = 2

∫ 2π

0

f(θ)g′(θ)dθ (7)

5.4 Reorganizing the Equation

We can complete the square so that (7) becomes

2A =

∫ 2π

0

(f(θ)2 + g′(θ)2 − (f(θ)− g′(θ))2)dθ

Because the last term is non-negative,

2A ≤
∫ 2π

0

(f(θ)2 + g′(θ)2)dθ

Wirtinger’s Inequality states that∫ 2π

0

f(θ)2dθ ≤
∫ 2π

0

f ′(θ)2dθ

We are able to use the inequality because we shifted the graph earlier so

that
∫ 2π

0
f(θ)dθ = 0. It follows that∫ 2π

0

(f(θ)2 + g′(θ)2)dθ ≤
∫ 2π

0

(f ′(θ)2 + g′(θ)2)dθ

So,

2A ≤
∫ 2π

0

(f ′(θ)2 + g′(θ)2)dθ

Substituting the right hand side with (4) gives

2A ≤
∫ 2π

0

L2

4π2
dθ =

L2

4π2
· 2π =

L2

2π

Rearanging the equation gives us the Isoperimetric Inequality.

L2 ≥ 4πA
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6 Generalization of the Problem

The first step one should take after proving something is to attempt to
generalize. I will not be able to prove these generalizations in this paper, but I
will give out some ideas of how they work. The usual Isoperimetric Inequality
works on a 2 dimensional plane. The natural move is to generalize to more
dimensions. For example in 3 dimensional space, the inequality would relate
the surface area to the volume of an object. It turns out that it is possible to
generalize to any higher dimension, but it is extremely complex.

Another way of generalizing the inequality is to do it in different spaces.

Figure 6: Isoperimetric Inequality on a Sphere

For example, on a sphere, the Isoperimetric Inequality becomes

L2 ≥ 4πA− A2

R2

where R is the radius of the sphere. Other generalizations include the Isoperi-
metric Inequality in Hadamard Manifolds and in metric measure spaces.
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7 Applications of the Isoperimetric Inequality

The Isoperimetric Inequality is useful in many situations. For example in
geometry and calculus, it can be used to solve problems involving identifying
optimal configurations of shapes with constraints. In probability and statistics,
it can be used to bound mixing times of Markov Chains and analyzing random
walks.

However, if we take a closer look, pure mathematics isn’t the only thing it is
useful in. In physics and engineering it is used to explain that a bubble always
forms in a sphere because it minimizes surface area for a given enclosed volume
and it also explains how to use the least material for the greatest strength in
buildings. Most liquid droplets on surfaces often obey the isoperimetric princi-
ples as well.
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