ATTACKS ON RSA
KARAM GILL

ABSTRACT. Over the many technological advancements, RSA is a key part in making sure
that our messages are secure. In this paper we will go over the key attacks on RSA which
have been going on for over 20 years such as common modulus attacks, blinding attacks,
and meet in the middle attack. We will go over details about how each of these attacks
work in depth and the mathematical proofs that allow these attacks to happen.

1. INTRODUCTION

The RSA cryptosystem is a key part of our daily lives and helps us by securing online
communications and data by allowing secure key exchange.

The RSA cryptosystem was created by Ron Rivest, Adi Shamir, and Leonard Adleman
at MIT (Massachusetts Institute of Technology) in 1977. The name given was RSA as a
result of the surnames of the founders (Rivest, Shamir, and Adleman). Without RSA there
would be lack of security on websites and data breaches happening everywhere, possibly
leaking important and confidential documents to the whole world. There have been many
attacks on RSA in the past twenty years, and in this article we will go over some of the many
attacks on RSA. Some examples of these attacks on RSA are the infamous 23andMe data
breach, and the Dropbox data breach. In the October of 2023, the famous biotechnology
company 23andMe suffered a data breach which resulted in malicious hackers gaining access
to approximately 7 million peoples private information such as passwords. The 23andMe
data breach most likely happened due to a breach in the RSA system. Another example of
a data breach is the infamous Dropbox data breach. In this data breach hackers obtained
Dropbox users passwords and leaked approximately 68 million credentials because of a breach
in RSA. These are two of the many data breaches that have occurred because of insecure
RSA and these data breaches are examples of consequences that could occur if the RSA isn’t
secure enough.

1.1. How RSA Works. We will discuss how RSA works. We have the sender of the
message, Alice, and the recipient Bob. We have a hacker named Charlie who is trying to
intercept the message and find out private information. One of the key parts of the RSA
system is N otherwise known as the RSA modulus. The RSA modulus, N, is generated by
the product of two randomly chosen prime numbers p, ¢ such that p and ¢ approximately
the same number of bits. Before 2002, N used to be around 512 bits (as a result, p and
q were each 256 bits). In 2002, many realized that there was increasing need for higher
security so N was changed to 1024 bits. Today, 2048 bit keys are common to ensure security
and reduce vulnerability. The key parts of RSA are the public key which is (IV,e) and is
available for all to see, and you have the private key which is (N, d), only the recipient of
the message can access the private key. These numbers e and d are inverses modulo ¢(NV)
which is another way of saying ed =1 (mod ¢(/N)). Each message is converted to a number

Date: July 13, 2025.

2 KARAM GILL

M which is determined by the ASCII code. The first step is to encrypt M which is the same
as finding the value C' = M° (mod n), this number C' is called the cipher text. Now Bob
has to decrypt the cipher text using his private key by computing C? (mod N). Note that

the number that Bob receives is M¢ = M*WN+1 for some positive integer k since ed = 1
(mod ¢(N)). Now M*™ =1 (mod N) by Euler’s Totient Theorem. So

Mt = MENHL = AN N =18 M =M (mod N)
giving back the legitimate message to the receiver, Bob.

1.2. Difficulty of Finding Private Exponent. In this article we will talk about why is
it hard to break RSA and what are some ways to break RSA. If Charlie, the hacker, finds
the private key d, she can easily eavesdrop and find out the legitimate message. However
there is immense difficulty in finding this private key d so another way that you can find
the original message is by taking the eth root of C' but as C' and e are both large, it is
near impossible to find the eth root even with advanced and fast computers. If you can
find the factorization of N (namely if you can find p and ¢), you can find ¢(V), and you
know that d = e™! (mod ¢)N now using brute force methods or inputting the value of e and
running a code to find d, after a while you will be able to find d. Note that finding the inverse
of e is way easier than finding the eth root as it is way harder to compute large numbers
raised to the power of another large number (as in the case of the e th root) compared to
the simplicity of multiplying two numbers together to find an inverse. Think about it as
multiplying two numbers compared to multiplying e numbers which takes approximately
times longer which is massive considering that e is around 1024 bits.

1.3. Modern Day Prevention of Attacks. In almost all cryptosystems RSA is not used
by itself. RSA by itself is considered insecure due to the amount of attacks that could be
mounted on RSA. In fact, some attacks such as the meet in the middle attack could be
mounted on modern day RSA and if there wasn’t this extra padding then it would be easy
to find and leak private keys and confidential information. A common form of padding that
is used is called OAEP (Optimal Asymmetric Encryption Padding). OAEP adds randomness
and complexity to messages before the encrypting process. OAEP uses hash functions and
a random number, z in order to convert the plaintext into a more secure, padded message.
To sum it up, OAEP provides a stronger and more secure way to encrypt data into RSA,
especially against chosen-ciphertext attacks.

We will go over many attacks on RSA. These attacks include the blinding attack, common
modulus attack, Wiener attack, Hastad’s Broadcast attack, Coppersmith’s theorem, Partial
Key Exposure Attack, Franklin-Reiter Attack, Coppersmith Short Pad attack, Meet in the
Middle Attack, Timing Attacks, Random Faults, Bleichenbacher Attack, Power Analysis,
Cold Boot Attack, and Rabin-Miller Primality Testing. Furthermore, near the end of each
attack we will provide an example with numbers for better understanding of how the attack
works. Often we will use way smaller numbers than actual RSA works just for simplicity.
Some conditions may not be satisfied as we might need larger numbers, but even with larger
numbers the process will be the same.

1.4. Overview of Attacks. The blinding attack is when a malicious eavesdropper Charlie
instead of asking for a signature on a message M, he asks for a signature on the message
M’ where M and M’ are related and using this attack he can find the original message.
The Common Modulus Attack occurs when two people Alice and Bob have the same RSA

ATTACKS ON RSA 3

modulus, and using this attack you can find the factorization of N and the private key d.
The Wiener Attack occurs whenever the private exponent

=

d< - N1,

Wl =

Hastad’s Broadcast Attack occurs when somebody foolishly sends the same message M to
a large number of groups (in fact the number of groups i is greater than e¢). The Copper-
smith’s theorem targets a low public exponent and in this article we will not prove the whole
Coppersmith theorem, however we will prove a few key claims that lead up to the proof
of the theorem. The Partial Key Exposure Attack occurs when you are given the 16 most
significant (left-most) or least significant digits (right-most) of the private key d (when there
are 64 digits in d) The Franklin-Reiter Attack targets when two messages sent M, My are
related (namely by a function modulo N). The Coppersmith Short Pad Attack is an attack
that demonstrates why you should not use a simple form of padding and proves given the
public key and necessary encryptions, you can find the message M. The Meet in the Middle
Attack is an attack that exposes the vulnerability of 2DES, an old cryptosystem (currently
we use 3DES). After that we will talk a classic timing attack by Kocher that shows that
by carefully measuring the time a smartcard takes for the decryption process, the private
key d can be found. Many RSA forms compute the encryption both modulo p and ¢ then
use Chinese Remainder Theorem to find the value of M? (mod N) instead of computing
modulo N. However, if one of the ciphertexts is signed incorrectly, devastating results could
occur which we will show in the random faults section. After that attack we will discuss the
Bleichenbacher attack which exploits a vulnerability in the RSA PKCS encryption. Then
we will talk about power analysis which shows that we can find important information by
checking and graphing the power levels that a processor has over a certain time period. The
last attack we will talk about is the cold boot attack, we will briefly talk about this attack
that shows how we can store data for hours after deletion. The last section will be about
Rabin-Miller primality testing which shows how we can quickly and efficiently test if a num-
ber is prime or composite. In each attack we will talk about the process behind each attack
and connect it back to the big picture, the world we currently live in. In some sections we
will talk about how the attack is prevented in the modern day world.

1.5. Chinese Supercomputer Breaks RSA. On June 24th, 2025 a Chinese quantum
computer broke RSA encryption threatening the online security of the whole world. The
software company D-Wave systems used a quantum annealing processor (quantum annealing
is the computational process of using quantum mechanics to optimize complex problems) to
factor a 22 bit RSA key. This may not seem like much as 22 bits is only a few million if you
think about it, however, quantum annealers couldn’t break keys of size greater than 19 bits
so this was a small but impactful breakthrough. This discovery has a big impact on us as it
was one of the first times quantum computers could possibly become a threat. This threat
also displays threat against the SPN (Substitution-Permutation Network) system which was
considered secure before this research and discovery. This discovery could be the end of RSA
later as if quantum annealers keep advancing at this rate soon they might be able to factor
keys similar to the value of real RSA keys (around 2048 bits).

4 KARAM GILL

2. BLINDING ATTACK AND COMMON MODULUS ATTACK

2.1. Blinding Attack. We again have the malicious eavesdropper Charlie, and Alice who
is just minding her business. Charlie asks Alice for a signature of Charlie’s message M but
as Alice isn’t stupid she declines. So Charlie asks for a signature of a completely innocent
looking message M’ where M’ = M - r® (mod N) where r is a randomly generated positive
integer. Bob thinks that providing his signature to this message could cause no harm so he
gives his signature S’ to Charlie not knowing that he just made a grave mistake. Now note
that S = (M')? (mod N), now Charlie can find the original signature S as S = STI (mod N)
since M' = M - r® so
M= . M*=yr.M?* (mod N)

Now note that S = M? so S’ = r - M? now if we divide by r we get S = M¢ as desired. As

we can see,
I\ € le /d\e /
Sez(i) ES—EwE%EM (mod N)

r

as desired and we have proven the process behind the blinding attack. Since we have proven
the process, we will provide an example with numbers. Let N,e,d = (1147,13,11). Again
note that in this example ed # 1 (mod ¢(N)) but this doesn’t impact the example. Then
we let M = 1200. We know that Charlie doesn’t know d. Let M’ = 1200 - 3'3. Thus S’ =
(1200 - 3'3)¢ (mod 1147). Thus Charlie can find the original signature S, which is S’/r both
of which we know. The result of the blinding attack can be devastating if it is executed
successfully and can result in your private key d being leaked to the public. This is yet
another reason why you don’t give people you don’t know your signature which is a common
mistake made by people. However, this attack isn’t that serious as most webs apply a one
way hash which instead of computing the signature first computes a hash then signs the
hash.

2.2. Common Modulus Attack. First we will prove a claim that will help us with the
proof of the common modulus attack.

Theorem 1: Given the public key (N, e) and the private key d, Charlie can factor N = pq
efficiently; conversely, if Charlie can factor N then he can compute the private key d.

Proof: The converse is that given the factorization of N, the private key d can be found
efficiently. We will also demonstrate a proof to this converse on top of the proof of the
claim. First we will prove the converse.If you know the factorization of N, you know ¢(N)
thus you can find d since d = ¢! (mod ¢(N)). In order to prove the given claim we can
let k = ed — 1, we know that ed = 1 (mod ¢(N)) thus £k = 0 (mod ¢(n)). Now we can let
k = 2% -r where x,r are positive integers with r being odd. Note that k is a multiple of two
as ¢(N) = (p — 1)(¢ — 1) which is even as both terms are even. We can see that for every
m € Z4 we have m* = 1, by the Chinese Remainder Theorem we have exactly 4 square
roots of 1 (mod pg) namely 1, —1 and %I for some [. Note that this [must satisfy | = 1
(mod p), —1 (mod q) or vice versa, otherwise the square wouldn’t be 1 (mod pg). In order
to find the factorization of N, we take ged(l — 1, N), we know that { — 1 must be either a
multiple of p or ¢ so by taking the GCD, we can find either one of p and ¢. Finding the
remaining prime is easy as you can just use division. We will see how this claim is helpful
in the following common modulus attack.

For every persons RSA modulus you need to generate two primes each around the same
size to multiply to N. One might suggest to fix the same N for everybody so you don’t have

ATTACKS ON RSA)

to go through the extra struggle of generating two new primes every time. However, this
doesn’t work well as we will demonstrate. You might think generating the same modulus
is safe as an eavesdropper Charlie won’t know the private key of Alice. But using Charlie’s
private and public key as we just proved in the claim, Charlie can factor the common modulus
N. Using the converse of the claim we just proved, Charlie can find Alice’s private key. Let’s
say that N = 13- 17 = 221. Charlie doesn’t know that N = 13 - 17. Let’s say Charlie has
private key 23 and public key 29 so using the claim Charlie can find that N = 13- 17. From
here using the claim Charlie can uncover the private key of Alice. Now that we have gone
over some basic attacks, we will get into the more advanced attacks.

3. WIENER ATTACK AND MEET IN THE MIDDLE ATTACK

3.1. Wiener Attack. In this section we will talk about the M.Wiener attack named after
cryptologist Micheal J. Wiener which demonstrates why we shouldn’t have a low private
exponent.

M. Wiener: Let n = pg with ¢ < p < 2q. Let d < % . Ni. Given (N,e) with ed = 1
(mod ¢(N)), Charlie can efficiently recover d.

Proof: We will use continued fractions to prove this theorem. Let k be the integer such
that ed — a¢(IN) = 1 (there exists this k as e and d are inverses mod ¢(N)). Note that

‘ e a1
¢(N) d| dp(N)
as a result of dividing by d¢(N). Thus we can conclude that W and § are similar (since

is extremely small). Note that

d(N)=p—-1)g—1)=pg—p—q+1=N—(p+q—1).

Now we can see that p+¢— 1 < 3¢ < 3V N (where the last step follows since ¢ < p), so we
find out that [N — ¢(N)| < 3v/N. Now we can replace the ¢(N) with N to get

1
d¢(N)

e a| |ed—aN| |ed—ap(N)—aN+ap(N)| [1—a(N —¢(N))
N dl | daN | AN ’ B ' AN ‘ '
Note that

a'S\/N
dN

[ELCELUITE

_’ 3a
dv' N

Now we know that a¢(N) < ed, also e < ¢(N) thus a < d < %Ni. Using this result,

3a Ni 1 1

< = < —,
dvVN ~dJyN dNi 2d?
1 1

as desired. We can see that we could have made a stricter bound of 57 but we choose 5
since this is a classical example of an approximation relation. Using this relation we can test
all values of ¥ that approximate § (which is approximately log,(/V)) to find the correct value
of the private key d. For this example we will let N = 1147 = 37 - 31 where ¢ = 31,p = 37.
We want d < % -5.81 so d =1 (note that in this problem that is the only option for d as we
can see this is very small compared to the large N = 1147. We won’t go through the method

again as it would be redundant but given e, by Weiner attack, Charlie can recover d.

6 KARAM GILL

Another way that you could deal with this problem is by setting a really big public
exponent e, which would help reduce the risk if you still have a low d, however if e is really
large, the encryption time would be too long.

3.2. Meet in the Middle Attack. In short form there is a DES (Data Encryption Stan-
dard) you can encrypt this DES as many times as necessary, as of now, Triple DES is used.
There is a huge flaw in Double DES as it is susceptible to the meet in the middle attack.
Firstly, I will provide some historical context on DES. The Electronic Frontier Foundation
(EFF) claimed to have broken DES in 1998. So 2DES and 3DES were suggested to replace
DES. Currently, 3DES is being used but is still slow.

In double DES, the encryption is done twice. In DES, the plaintext length is 64 bits and
the key length is 56 bits. A common mistake that many make is that in double DES there
are 2°0156 — 212 kevs that you need to try to ensure success. However, there is a simple
way around trying this many that not many know about. We denote the ciphertext as C
and the plaintext at P. Then we have the two keys k1, ko. The way that 2DES works is that
you go from the plaintext, P then use k; and ks in that order to get C. This process can be
reversed going from the ciphertext C', using ko and k; in that order, and getting the result
P. In short form, C = E},(Ek, (P)) and P = Dy, (Dy,(C)).

The meet in the middle attack is a known-plaintext attack which means that you have
some knowledge of the value of P. Once you find both keys, you can find all the information
including the private key, ciphertext, and much more. Between Ej, and Ej, we have some
number x. Also between Dy, and Dy, , we have this same number z. It is certainly possible to
use a brute force method by going through all the possible 56 digit keys to find all possibilities
of this number z from the side of Ej, to the side of Dy,. Once we brute force through all
these possibilities we compare to see which number is common between the two lists to find
the number in the middle. From here we can find both the private and public key. The
name meet in the middle comes from the fact that we are meeting in the middle of Ej, and
E), (same for the private exponents) to find the number in the middle which ultimately
helps us find out the private keys. Triple DES is still susceptible to the meet in the middle
attack however it is really hard to use the meet in the middle attack in Triple DES as the
run time would be longer than most supercomputers can handle as there are 2°6 the amount
of possible combinations. We will not provide an example for this attack as it is difficult to
define so many variables and undergo intensive calculations (like trying 2*® combinations for
some 1n).

4. HASTAD’S BROADCAST ATTACK AND COPPERSMITH

4.1. Hastad Broadcast Attack. We will go over an attack discovered by computer scien-
tist Johan Hastad in 1988. First we will go over a simplified version of this attack. Let’s
say we have i groups, G, Ga, ..., G;. Each party G has it’s own public key (N, ex). Alice
wants to send an encrypted message, M to each of the groups. So Alice uses all the public
keys to send ciphertext Py to Gj. Assume that the value of M is less than the values of all
the distinct RSA modulus of the ¢ parties. To simplify this we assume that e < ¢ and that
each e; is equal to some constant e. The claim is that the malicious hacker Charlie can find
efficiently recover M given that ¢+ > 3. We have the equations

Cy =M (mod Ny),Cy =M (mod Ny),...C; = M® (mod N;).

ATTACKS ON RSA 7
Using Chinese Remainder Theorem to all Cj, we get that there exists a number A such that
A= M¢ (moleNgNz)

We know that M¢ < Ny - Ny...- N; since e < i and M < Ny for all k. Thus M°¢ = A,
and we can recover this M by simply just taking the eth root of A. Now the attack that
Hastad found out was a lot stronger than this attack and requires much more knowledge.
Hastad’s attack doesn’t work in modern day RSA due to the padding and the fact that
the public exponent is high. One of the main things that Hastad’s relies on is a low public
exponent. As we saw, if e > 7, then we can’t directly conclude that M¢ = A as M€ is not
necessarily less than Ny - Ny ... N;. In modern day RSA, e is usually around 64000 so in
order for Hastad’s broadcast to work you would need to be sending the same message to
over sixty-four thousand parties which would almost never happen. It is time to go over
an example. Let’s say there are 4 parties with public keys (187, 3), (221, 3), (323, 3), (667, 3).
Again, we have the equations

Cy = M? (mod 187),Cy = M? (mod 221),C3 = M? (mod 323),Cy = M* (mod 667).

Now we know that there exists A = M3 (mod 187 - 221 - 323 - 667), we can find A through
the Chinese Remainder Theorem so we just take v/A to find M.

4.2. Coppersmith. We will go over one of the most important theorems that enables many
low public exponent attacks just like the Hastad’s Broadcast attack which we just went over.

(Coppersmith) Let N € Z-(be a positive integer and let f(z) € Z[z] be a monic polyno-
mial with degree d. Let X = Ni~< for some € > 0. Given the pair (N, f) Charlie can find all
|zo| < X such that f(xg) =0 (mod n).

We will not fully prove Coppersmith’s as the proof requires an advanced method using
the LLL (Lenstra-Lenstra-Lovasz) which is a lattice basis reduction algorithm. Instead of
proving the theorem we will prove a few key claims leading up to the proof of the theorem.
First, we will provide an application of Coppersmith onto RSA as this theorem doesn’t seem
to directly relate to RSA. We will use a simplified version of RSA with smaller numbers
so computation isn’'t difficult. We will take N = 2026,e = 3,c¢ = 1441 where ¢ is the
ciphertext. We want to recover the message m. We know that m¢ = ¢ (mod N) so m? = 1441
(mod 2026). Let f(z) = 2® — ¢ = 23 — 1441. By Coppersmith, as long as |z| < N3, we can
find the x such that f(z) = 2® — ¢ =0 (mod N). This is the same as 2*> = ¢ (mod N). We
can see that this is the same equation as we had with m and by Coppersmith we can find
all < v/2026. This is how Coppersmith can apply in RSA.

Now it is time to prove one of the key claims that help with the proof of the theorem.

Theorem 2: Let h(x) € Z[x] be a polynomial of degree d and let X be a positive integer.
Suppose [|h(zX)]| < \%. If |zo| < X satisfies h(zg) =0 (mod N), then h(zg) = 0 holds over
the integers.

Proof: For an f(z) we can express f(z) =Y. a;z" € Z. Let || f|| = 3_ |a?|. If we can prove
that h(xg) < N, then using the condition that h(zg) =0 (mod N), we know that h(zg) =0
so we will try to prove h(zy) < N.We can express |h(zo)| as | > a;z}|. So we have

heo)l = 3 asw| = ‘ZWX"- <%>

8 KARAM GILL

Let’s say this summation has x terms. The absolute value of this sum is maximized when
all of these x terms are the same parity. So,
. To\? .
a;- X"~ (y) ‘ < Z‘az"Xz‘.

S ()]<X

Using Cauchy Schwarz inequality, 3 |a; - X?| < v/d||h(zX)|| < N. Putting everything to-

gether,
[T (@)= 2

o)l = > aia
as desired.

This is the key fact/theorem that is needed before using the LLL method. After the
application of the LLL method, there is one more key claim that is needed for the proof. We
will state the key claim but not prove it. This claim can be left as an exercise for the reader
if they wish.

(LLL) Let L be a lattice spanned by < uy, usg, ..., us > . When < uy, us, ..., u, > are given
as an input, then the LLL algorithm outputs a point v € L satisfying ||V|] < 2% det(L)w.

Coppersmith’s theorem will help in the proof of many later topics and attacks we will go
over and might be one of the most important theorems that deals with a low public exponent.

a; - X - (%)‘ <Y Jar X7 < VA|[h(zX)]| < N,

5. PARTIAL KEY EXPOSURE AND FRANKLIN-REITER ATTACKS

5.1. Partial Key Exposure Attack. Partial key exposure happens when the malicious
hacker Charlie can only find out a little of the private key d. For example, Charlie can
somehow find out only i or 16 of the bits in the private key d. Is it possible to recover the

other 48 bits? Boneh, Durfee, and Frankel discovered and proved that as long as e < v/N,
it is possible to discover the rest of the private key given a small portion of its bits. We will
prove that we can recover the rest of the digits.

Claim: Let N = pq be a n bit RSA modulus. Then given the 7 least significant bits of d
or the & most significant bits of d, one can efficiently factor N.

Proof: First we will define what we mean by least significant or most significant bits.
By most significant bits we mean the bits that carry the most value which are the leftmost
digits. By least significant we mean the rightmost digits. First we let & be the nonnegative
integer such that ed — k- ¢(N) = 1. We can express ¢(N) as (p—1)(¢—1) =pg—p—q+ 1.
So

ed—k(pg—p—q+1)=1.
Note that 0 < k < e since d < ¢(N). Since ¢ = % we have
pled) —kp(pg—p—gq+1)=p (mod 2%).
Note that —kp(—q) = kpg = Kn so
pled) —kp(pg —p—q+1) =pled) —kp(N —p+1)+ Kn=p (mod 2%).

Note that Charlie knows the % least significant digits of d thus Charlie knows d (mod 21)
so he knows

ed (mod 27).
Thus the only two variables left in the equation are p and k. Now running through all the e
possible values of k, we can run through e quadratics in terms of p to find all possible values of

ATTACKS ON RSA 9

p (mod 27). In fact, the number of attempts that is required in order to find the factorization
is elog,(e). Now in this example we let N = 13- 17 = 221. We let d = 11111...1111 where
there are 16 ones on each side and thirty-two zeros in the middle. Charlie only knows the
ones in the number and has no clue that there are 32 zeros in the middle. Then by the Partial
Key Exposure Attack, they can recover the other 48 bits as long as e < vN ~ 14.866 so we
let e = 14. Also we know that the number of attempts required is 14 log,(14) ~ 53.

5.2. Franklin-Reiter Attack. Now we will talk about the Franklin-Reiter attack. Franklin
and Reiter found a useful attack which takes place when Alice delivers two related messages
using the same modulus to Bob. If Alice sends distinct messages M7, Ms over to Bob, these
messages M, and M, satisfy M; = f(Ms) (mod N) for a polynomial f € Z where this
polynomial is available to the public. Alice encrypts messages M; and M, to get C7, Cy and
sends C] and (5 over to Bob. Franklin and Reiter state that if the malicious hacker Charlie
gains access to C7, Cy then Charlie can easily recover the messages M, My. We will prove a
simplified version of this theorem by assuming the polynomial is linear and that e = 3.

Claim (Franklin-Reiter): Let e = 3 and (V,) be an RSA public key.Let messages M, My
be two distinct messages satisfying M; = f(Ms) (mod N) for a linear polynomial f = ax+b
with b # 0. Given N, e, C,Cs, f a hacker Charlie can recover the messages My, Ms.

Proof: We know that C} = M} (mod N). We also know that M, and M; are roots of the
functions

and
h(z) = 2 — Cy

respectively. Note that M, is a root of both these polynomials as M5 —Cy = 0 and M} —C) =
0 by definition. So . — Mj is a factor of both h(z) and g(z). Now Marvin can find the greatest
common divisor of the two functions by using the Fuclidean algorithm (since he knows the
two functions). If the greatest common divisor is linear then he knows that x — My must
be a divisor of the polynomial so he can find out M, thus he can recover M;. So all we
need to prove is that the greatest common divisor is linear. To prove this we will prove that
there can only be one integer root modulo either p or q. We will first prove that cubes of
integer roots are all the same modulo p and ¢. Note that both p and ¢ must be 2 (mod 3)
as ¢(N) = (p—1)(¢ — 1) can’t be a multiple of e =3 sop—1,¢—1= 1,2 (mod 3) but p
and ¢ are primes so

p—1lg—1=1 (mod3) = p,g=2 (mod 3).
We let g be a primitive root of unity (mod p), so the list

1,9,6% 6% ..., ¢""
covers the whole residue class modulo p. If we cube this list note that we still have the whole
residue class modulo p as (¢")® = ¢g" (mod 3) by Fermat’s Little Theorem. Now note that
C) = M3 so the other roots must satisfy s> = Cy thus the cubes must be equal. Let’s say
the cubes of g*, g™ are equal so

=g = 3k=3m (modp—-1) = k=m modp—-1 = ¢"=g¢™,
which means that these two roots are equal. If two roots are equal then the third root must
be equal since by Vieta’s, the product of the roots are

M;-a=Cy=M = a= M,

10 KARAM GILL

for some third root a. If two of the roots are a, and one root is My we have
MQ'CL2202 = a = M>.

Now if all three roots are the same, by Vieta’s the sum of the rootsis 0 so 3My, =0 = M, =
0 which is clearly a contradiction. Thus there can be no roots with the same cubes (mod p)
so M, is the only integer root (mod p). We can do the same thing with (mod ¢) which
implies that M, is the only integer root of h(x). We can do the exact same thing for g(x) to
prove that the only integer root is M. So we can express g(z) = (x — M)gi(x) and h(z) =
(x — M3)go(x) where g;(z), go(z) are both irreducible quadratics. If these quadratics are the
same then g(z) = h(x) which is clearly not true, so g1(z) # g2(x) thus ged(g(z), h(z)) =
x — My which is a linear polynomial as desired. We will not provide an example for the
Franklin-Reiter attack as the process is as written in the proof.

6. RANDOM FAULTS AND TIMING ATTACKS I

Now we will move on into the side of RSA that tackles whenever there is a fault in the
system itself, not only a breaking of the RSA.

6.1. Random Faults. First we will go over Random Faults. Many forms of RSA decryption
and encryption often use Chinese Remainder Theorem to make decryption time faster. The
computation that they speed up is M? (mod N). Obviously this computation is possible but
will take a decent amount of time so we take M¢ both (mod p), (mod ¢) and use Chinese
Remainder Theorem to compute M¢ (mod N). The first step in this process is to compute
the two ciphertexts, C,, C; where

C, =M% (mod p),C, =M% (mod q).
And,

dy=d (modp—1),d,=d (modq—1).
Define T7 and T to satisfy the equations

1 (mod p),0 (modgq)and 0 (modp),1 (mod q)
respectively. Now you can find the real ciphertext
C=TC,+T2C, (mod N).
First, will prove that C' = T1C, + T>C, (mod N). Note that
T,.C,+ TC, =T Cp,=Cp =M% =C (mod N).

Similarly,

e, +1,C, =1,C, =C,=C (mod N).
Thus
C=TC,+T1C, (modp),C=TC,+1T,C, (modgq) = C=T,C,+T12C, (mod N)

as desired. The last step where we applied Chinese Remainder Theorem doesn’t take up
much time compared to the first applications of the Chinese Remainder Theorem. Now we
will prove a simple claim considering the approximate run time of calculations when we take
both (mod p) and (mod ¢) or when we just take (mod N).

Theorem: If taking (mod p) and (mod q) separately then finding the ciphertext C' takes
time x, then evaluating C' = M? (mod N) takes approximately time 4x.

ATTACKS ON RSA 11

Proof: First we will note that by definition of N, we know that p, ¢ are both approximately
half the size of N. Thus multiplication modulo p will take (%)2 as much time as multiplication
(mod N). Also, d, is half the length of d so we talk i the time from that so we take £th
of the time. But this is only from p so we have to multiply by 2 (since we have both p
and ¢) showing us that taking (mod p) and (mod ¢) separately takes ; of the time as
simply evaluating M? (mod N). We will now go over a version of this attack discovered by
Arjen Klaas Lenstra, a Dutch mathematician, cryptographer, and a computational number
theorist. This attack happens when there is an error in the process of signing. Let’s say C),
is signed correctly but C, is signed incorrectly so we have an incorrect C;. Now we have a
false signature

C'=TCp + TC,.
Given Charlie knows M, Charlie knows that C” is false since C"¢ # M (mod N).But C"* = M
(mod p) since
C'=TC,+ToC, = C, (mod p).
However, C"® # M (mod ¢). Thus
C"*—M=0 (mod p)

so you can find ged(C"® — M, N) = p hence the factorization of N is revealed. Using Theorem
1, we can find the private key d. Most of the time this attack doesn’t work as Charlie wouldn’t
have access to the message M. If Alice or Bob has random padding incorporated then this
attack wouldn’t work so we are assuming that there is no padding involved prior to the
attack. When using this attack Alice should check that everything is correct before releasing
the message as random faults are common and can be hazardous if not checked.

To finish off this subsection we will provide two examples. One of them will be of the
general procedure if everything goes correctly. The other will be if Cj is incorrect.

Let N =13-17 = 221 (so let p = 13,q = 17). Next, let M = 9,d = 5. For simplicity we
let d, = d, = d = 5. We can see that the equations

dy=d (modp—-1),d,=¢q (modgq—1)
are obviously satisfied. We know that the real ciphertext is
M%=9"=42 (mod 221).

We see that C, = 9° =3 (mod 13). Also C, = 9° =8 (mod 17). Let T} = 170 and Ty = 52.
As we can see,

T:=1 (mod 13),0 (mod 17)
and

T, =0 (mod 13),1 (mod 17).
Note that

T\C, +T5C, =170 -3+ 52-8=926=42=C (mod N)
as desired. Now if C} = 9% = 16 (mod 17), we can see that C; is obviously wrong. So
TG, 4+ ToC, =170 -3 +52-16 = 510 (mod 13) =3 (mod 13).

Now note that ed =1 (mod ¢(N)) thus ed =1 (mod 192). From this we can see that e = 77
works so we let e = 77. Thus

C*=3"=(3)%.32=9=M (mod 13)

12 KARAM GILL

as desired. Thus

C*~M=0 (mod 13) = gcd(221,3™ —9) = 13.
We will also check that C"¢ # M (mod 17). Note that

3T =393 =3 =(32.3=3 #M (mod 17)

as we expected (we used Fermat’s Little Theorem to deduce that 3' =1 (mod 17) and you
can manually compute that 3° =1 (mod 17)).

6.2. Timing Attacks. In this section we will talk about certain timing attacks. Firstly, we
will go over the basic algorithm of an important timing attack. .You have a smartcard, which
safely secures your private key and confidential information, so you would think that Charlie,
the hacker cannot find out your private key. Well that is wrong, Paul Kocher discovered that
given the amount of time it takes for the decryption process, Charlie can find the private key
d. The process is as follows, let d = dydy_1dk_s . . . dy be the binary representation of d (where
dy,dy, . ..dy donate digits either 0 or 1). We are going to use the repeated square algorithm
which basically computes the ciphertext, C' using at most 2n modular multiplications. This
algorithm has a few steps to it so we will list them. Let x = M, and C' = 1 (note that this C'
isn’t the actual value of the ciphertext). Do the following steps for all integers i ranging from
0 to k. If d; = 1, then change C' to C'-x (mod N), after that change x to 2% (mod N). After
applying these steps for all d; we get the desired plaintext C' as we get the correct value of
M?. The way that this attack works is that Charlie requests the smartcard to sign a bunch
of random messages M, Ms, ... M, and then he measures the time 7T; for each n messages
that it takes to sign each of the messages. To start off the proof we will note that as d is
odd, we know that dy = 1. Now we will continue with the procedure that we previously
listed. When we start out, C' = M and z = M? (mod N).If d, = 1 then C = M - M? = M?
(mod N), if d; = 0 then this product is not computed. We compute the amount of time ¢;
it takes the smartcard to compute

M; - M? (mod N).

1

Note that Charlie measures all the ¢;’s before mounting this attack. Kocher found out that
d; = 1 implies that T;,t; are related. For example, let’s say for some i, we discover that T;
is lower than usual then t; would also be lower than usual. This is not a strict correlation
(there is not necessarily a polynomial that maps T; to t; for all i). However, if d; = 0, there
is no correlation between T; and ¢;. Given these pieces of information, Charlie can compare
the two times to see if there is a correlation, so Charlie can find the value of d;. Using this
method, Charlie can recover d, next, then dsz, and so on so Charlie can uncover the whole
private key, d. There are two ways to prevent this timing attack. The first of which is used
more commonly is to add appropriate buffer time. So all decryption take the same amount of
time thus you cant uncover d by finding whether ¢; and T; are correlated as they are always
the same. The other way is to use blinding. We went over blinding in an earlier section and
we can use this blinding to help prevent timing attacks. Again we let

M' =M -r® (mod N)

for some random positive integer r. Then we apply d onto M’ to get M'® (mod N). The
reason this works is that we make a new message, M’ that Charlie is completely unaware of
and we apply d to this message that Charlie doesn’t know the value of so the timing attack
cannot be mounted. To finish off this section we will give an example with d = 5 = 101,.

ATTACKS ON RSA 13

Sody=1thusC=C-M =M (mod N) and x = M? (mod N). Now d; =0so C =M
(mod N),z = M* (mod N). Now dy =1 thus C = M - z* and z = 2% (mod N). Thus,

C=M-M*=M"=M*=C (mod N).

As we can see from this example, the process of the timing attack works on the example of
d=5.

7. BLEICHENBACHER AND COPPERSMITH SHORT PAD ATTACK
These attacks will focus on padding of the RSA cryptosystem and some misuses of padding.

7.1. Bleichenbacher Attack. The first attack we will go over is Bleichenbacher Attack. In
order to understand this attack we will have to learn what PCKS 1 is and how it operates.
PCKS 1 stands for Public Key Cryptography Standard 1 and is an old way of padding
messages. Let N have n digits in base 2. We pad the message M such that the message
M has n bits (assume that originally M had m bits with m < n). Note that when we are
adding these extra n — m bits, almost all of the bits are randomly generated. The way that
we pad is that we have a leading byte that is zero (otherwise the message might be more
than the RSA modulus N). Then we have 16 more bits often donated as 02. After this we
have another byte that can be anything and called the padding identifier as this byte helps
identify what operation is being used. Then we have a string of randomly generated bits
(which is as long as necessary to fulfill the condition n = m). Second to last, we have the
separator which is one bit and indicates the end of the padding and the start of the actual
message. At the end of the padded message is just the message itself. When the message is
decrypted, the initial block is checked then the block with all the randomly generated blocks
is removed. If this first byte isn’t present then an error message would be sent back. Daniel
Bleichenbacher, a Swiss cryptographer, discovered that using this error message, Charlie the
malicious hacker can successfully decrypt any ciphertexts that he chooses.

Now we will discuss the procedure behind the attack. Let’s say Charlie wants to decrypt
a ciphertext C. Similar to the blinding attack, Charlie picks a random positive integer r and
computes

C'=r-C (mod N).

Then Charlie sends this message to Alice and Alice puts the message into a decryption
machine. The machine either doesn’t respond or responds with an error giving Charlie
information about the first 16 digits. Namely he knows whether these first 16 digits are the
same as 02 of the original message. This means that Charlie has an oracle (this is an entity
that can decrypt RSA ciphertexts) to check whether the first 16 digits of C'r (mod N) are
the same as 02. Bleichenbacher proved that this oracle is sufficient enough for Charlie to
decrypt the whole message C.

7.2. Coppersmith Short Pad Attack. Now we will go over Coppersmith’s Short Pad
Attack. Coppersmith strengthened the Franklin-Reiter Attack and proved a key result on
padding. The Franklin-Reiter doesn’t sound very practical, after all why would Alice send
two related messages to Bob, that doesn’t sound like the brightest idea. So Coppersmith
proved a stronger generalization of the Franklin-Reiter Attack. As we saw in the previous
section, padding is quite complicated and has a lot of components to it. Why would we need
all these components, couldn’t we just stick a few random bits to the front or the back of
the message? This may seem like it works but in reality it doesn’t and this method isn’t

14 KARAM GILL

too hard to break as we will demonstrate. Let’s say Alice sends Bob a message and Charlie
eavesdrops gaining access of the message. Bob doesn’t reply to Alice’s message so Alice
thinks that Bob didn’t receive the message so she sends the same message again. Charlie
now has access to two ciphertexts C}, C) of the message M that was randomly padded. We
will show that from this, Charlie can find the plaintext P = M® (mod N).

We will now go over the algorithm and proof of the Coppersmith Short Pad Attack.

Theorem (Coppersmith Short Pad): Let (N, e) be a RSA public key where N has length
n bits. Set m = |Z%]. Let M be a positive integer message with length at most n —m
bits. Define My = 2™ - M + ry and My = 2™ - M + ry where r; and ry are distinct integers
with 0 < ry,ry < 2™, If Charlie is given the public key (N, e) and the encryptions Cy, Cy of
My, M5 he can efficiently recover M. Note that Charlie is not given either ry or rs.

Proof: We will start by defining two functions. Let

flx)=2°=C}

and
h(z,y) = (v +y)° — Ca.

Obviously M is a root of f(x), and when y = ry — r; we will show that M, is also a root of
h(z,y). Note that

hz,rg—11)=(x+1ro—1r)*—Co=(x+ My — M) —Cy = M5 — Cy =0,
to get to the last step we plugged in x = M;. Now we define a polynomial
h(y) = res;(g1, g2)
which has degree at most 2. We know that
ro — T <2m<Ne%.

Since 71,72 < 2™ and m = | % |. From this we know that by Coppersmith’s Theorem one can
efficiently recover ro — ry. After this application of Coppersmith’s we use Franklin-Reiter to
recover M, M, thus we can recover M.

To finish off this section we will provide yet another example for your better understanding.
Let N = 31-37 = 1147 and e = 3. Now note that N has 11 bits so m = 1 thus M has a
length of at most 11 — 1 = 10 bits. Let

1,19 = 0, 1
respectively as r1, 17 < 2™ = 2. Thus
Ml :2M,M2 :2M—|—1

We see that
flz) =2° = Cy h(z,y) = (z +y)* = Co.
When y = 15 —r; = 1 we can see that h(z,y) = (z + 1)® — Cy and using the same algorithm

that we used for the proof we can prove that 1 is a root of the second polynomial also.
8. POWER ANALYSIS AND COLD BOOT ATTACKS

In this section we will talk about two attacks that are less on the mathematical side and
require less math. We will be talking about two classical examples of implementation attacks.

ATTACKS ON RSA 15

8.1. Power Analysis. First we will talk about power analysis. Power analysis happens by
measuring the power of a microprocessor. At first this may seem harmless as how would
we find and leak important information from a microprocessor just by measuring the power.
If you have used your device before you can find that if you are actively running multiple
applications at the same time, your battery or power drains faster than if you are idle or
not using many applications. The same thing happens with the microprocessor, when it is
constantly running RSA encryptions then it drains power faster than if it is idle. Let’s say the
microprocessor is performing an encryption. Then we can measure the power constantly to
gain some important information about the encryption process (note that we won’t always
find all the information such as the ciphertext, private key, message, etc). To measure
power consumption you insert a resistor (usually 50 OHMS) then we measure current versus
time and graph it which can result in some key discoveries. Power analysis can reveal the
list of instructions executed inside the microprocessor and can break cryptographic systems
that rely on the execution being dependent on the data that is being processed. We will
demonstrate some examples of these systems that can be broken through power analysis.
The DES key schedule is very easy to break as the 28 bits of the key schedule can each
be determined individually by power analysis. When we use power analysis, the graphs if
the bit is 0 or if the bit is 1 will be distinct so by comparing graphs we can recover all the
28 bits. When we are performing exponentiation (whether its decryption or encryption) we
can see how many multiplications are being performed to find out if the bit is 1 or 0 (note
that if it is 1 we have increased run time so that’s how we can find the distinction). We
can find the exponent of the expression (which could be the private key if we are computing
the message) by comparing the power consumption characteristics. Power analysis is easy
to prevent and now most applications of RSA have implemented systems that make power
variation sufficiently small making it near impossible to do the same analysis as we can if the
power varies. To sum it all up the power analysis is a simple consequence of battery/power

consumption at different rates. Next, we will go over yet another implementation attack of
RSA.

8.2. Cold Boot Attack. It is time to go over an interesting implementation attack other-
wise known as the cold boot attack. Dynamic Random Access Memory (DRAM) is a type
of computer memory. We will not go over this attack in detail as understanding the details
of this attack takes a long time and takes us of our main topic of RSA. Instead, we will
briefly overview the key points of this attack. When your computers memory is completely
erased, you might think that it is nearly impossible to retrieve the memory almost instantly
without specialized experts. However, this is not true, as the data could be accessed for a
few hours if the chips are kept cold. The Cold Boot Attack is an attack that exploits the
DRAM system to recover important cryptographic documents such as keys.

9. FINDING THE PRIMES

In RSA as you have seen so far in the paper we must generate many large primes. For
example, p and ¢ are two important primes that must be generated to find pg = N. As you
might know, the gap between primes increase drastically and as the numbers get large the
probability that we pick a prime is pretty low. In fact if we are picking primes p and ¢ that
are around 1024 bits the probability that we actually get a prime is . This is due to there

709"
being a formula that around a number N, the approximate probability that we get a prime

16 KARAM GILL

is ﬁ We will solve the equation

In
708\" 1
oY) 22 — padol
(709) 2 A4

Note that this equation shows us that we need to test approximately 491 numbers. in order
to get a 50 percent chance of finding a prime. This may not seem like much as for a computer
491 shouldn’t be much, however we will demonstrate how the normal prime checking method
isn’t efficient enough.

The most commonly used method to check if a number is a prime is to run through all
primes less than v/N to see if they divide N. Unfortunately, there are a lot of primes to test
that are less than,/p ~ 2°'2. In fact there are approximately

N 2512 2512

_ ~ 5503
m(N) (22 " 355

primes that need to be tested for divisibility. As we can see manually running through these
many primes would be too time consuming so how do we generate primes? One might say
that you just use a supercomputer that runs for days, even weeks to find all primes then
we just store this list in a computer. However, this is not feasible given our current storage
capacity (this might be feasible in a few years, however key size probably will increase making
this unfeasible again).

The way that RSA generates primes is through a technique called Miller-Rabin primality
testing. The first step is to let n — 1 = 2°-m where s is a positive integer and m is odd (note
that we are testing if n is a prime). We will take casework based on the value of s. Firstly,
if @™ = +1 (mod n) we declare that n is a prime. Why is this? Well,

a"'=a" =1 (mod n).

Now note that we can’t find another square root other than +1 as this is basically repeated
squaring of something that’s +£1 (mod n) thus the square root is +1 so we know that n is a
prime.

The next case is when s isn’t 1. If s isn’t 1 then we square @™ to achieve a*™ (mod n).
If a®® =1 (mod n) then n has to be composite as a*™ has a square root a™ that isn’t +1.
If ¢ = —1 (mod n) then n has to be prime. Why is this? Well we know that " = 1
(mod n) thus we can’t find a square root of 1 other than +1.

Otherwise, unless s = 2, we obtain a*™ by squaring a*™. Similar to last time, if a*™ = 1
(mod n) then we have discovered a square root other than 41 this root is namely a*™ so n
is composite. We can tackle the other case when the expression is equal to —1 as we did
previously. We see that now we have an algorithm that can conclude whether a number is
a prime or not. However, we have to rely on the fact that some power of a is +1 (mod n).
What if this power is never +£17 If we haven’t stopped after we reach value 2° then we can
conclude that n is composite. This is not a straightforward claim, and we will not prove it
in this paper. This is left as an exercise for the reader.

The Miller-Rabin test can be confusing to understand so we will provide two examples to
test if numbers are prime or composite. Let a = 117 and we are trying to see if 561 is prime.
Note that

n—1=561—1=560=2*35

ATTACKS ON RSA 17

thus s = 4, m = 35. Thus we find the following values,
117% (mod 561) = 417 (mod 561),117° =540 (mod 561), 117" = 441 (mod 561)

and
117%° =375 (mod 561),117°° = 375 (mod 561).

We can see that none of these exponentiations result in +1 (mod 561) as we stated previously
if this happens then n is composite, thus we conclude 561 is composite. We can check that
this is true as 561 = 3 - 11 - 17. The last example we will tackle is when a = 117 again, and
n = 701. In this case 701 — 1 = 700 = 22 - 175 thus s = 2, m = 175. Now it is time to do a
similar computation as we did previously. The computation is as follows,

117" =700 = —1 (mod 701)

thus as we saw previously this implies that 701 is prime which it indeed is. Once we find
a prime through this message how do we indeed confirm it’s a prime in an efficient method
(just checking the veracity of the prime just in case an error is made in the process). We
can do this through a formula called Fermat’s Little Theorem. We will state and prove the
formula in this section as well.

Theorem (Fermat’s Little Theorem): If p is a prime number and a is a positive integer
such that a is not divisible by p then a” = a (mod p).

Proof: We will use proof by induction on a. If a is 1 then this statement is obviously true.
For the inductive step we assume a” = a (mod p) and we will prove that (a + 1) = a + 1
(mod p). We will use the binomial theorem. Note that every term of (a + 1)? is a multiple
of p except the first term a? and the last term 1. So

(a+1)f=d"+1=a+1 (mod p),

as desired.

10. CONCLUSION

Now that you have thoroughly learned about almost all attacks on RSA we have to go
back to the big question. Will RSA exist in the future or will we have to adapt a new form
of online security?

To answer this we will look at the likely future of RSA in the short term, medium term,
and long term. In the short term, RSA key lengths will most likely increase to 3072 bits
then 4096 bits as computational advancements will probably occur making our 2048 bit key
insecure. In the medium term (5 to 10 years) RSA will be getting closer to being broken as
factorization algorithms of large numbers will advance (such as Shor’s algorithm or quantum
computing devices). Note that once we have the factorization of the RSA modulus using
Theorem 1 we can find the private key d. In the long term (104 years) many predict that
RSA will be broken so we will have to adapt a new form of online security.

11. REFERENCES

Boneh, Dan. Twenty Years of Attacks on RSA, https://crypto.stanford.edu/ dabo/papers/RSA-
survey.pdf.

Staff, The420.in. “The End of RSA Algorithm? China’s Quantum Breakthrough Sparks
Global Panic.” The420.in, June 25, 2025. https://the420.in/china-quantum-breaks-rsa-encryption/.

18 KARAM GILL

“China Breaks RSA Encryption with a Quantum Computer, Threatening Global Data
Security.” Earth.com. Accessed July 11, 2025. https://www.earth.com/news/china-breaks-
rsa-encryption-with-a-quantum-computer-threatening-global-data-security /.

“Primality Tests.” Number Theory - Primality Tests. Accessed July 11, 2025. https://crypto.stanford.ed

	1. Introduction
	1.1. How RSA Works
	1.2. Difficulty of Finding Private Exponent
	1.3. Modern Day Prevention of Attacks
	1.4. Overview of Attacks
	1.5. Chinese Supercomputer Breaks RSA

	2. Blinding Attack and Common Modulus Attack
	2.1. Blinding Attack
	2.2. Common Modulus Attack

	3. Wiener Attack and Meet in the Middle Attack
	3.1. Wiener Attack
	3.2. Meet in the Middle Attack

	4. Hastad's Broadcast Attack and Coppersmith
	4.1. Hastad Broadcast Attack
	4.2. Coppersmith

	5. Partial Key Exposure and Franklin-Reiter Attacks
	5.1. Partial Key Exposure Attack
	5.2. Franklin-Reiter Attack

	6. Random Faults and Timing Attacks I
	6.1. Random Faults
	6.2. Timing Attacks

	7. Bleichenbacher and Coppersmith Short Pad Attack
	7.1. Bleichenbacher Attack
	7.2. Coppersmith Short Pad Attack

	8. Power Analysis and Cold Boot Attacks
	8.1. Power Analysis
	8.2. Cold Boot Attack

	9. Finding the Primes
	10. Conclusion
	11. References

