An Overview of Analytic Combinatorics

Kanad Bhattacharya kanad bhattacharya .725@gmail.com

Euler Circle

July 2025

History

 In 1751, Euler wrote the generating function of Catalan numbers to Goldbach.

History

- In 1751, Euler wrote the generating function of Catalan numbers to Goldbach.
- In 1917, Ramanujan and Hardy found the asymptotics of partitions.

History

- In 1751, Euler wrote the generating function of Catalan numbers to Goldbach.
- In 1917, Ramanujan and Hardy found the asymptotics of partitions.
- Many of the modern problems in Analytic Combinatorics have been proposed by Knuth.

History

- In 1751, Euler wrote the generating function of Catalan numbers to Goldbach.
- In 1917, Ramanujan and Hardy found the asymptotics of partitions.
- Many of the modern problems in Analytic Combinatorics have been proposed by Knuth.
- Flajolet did much of the pioneering work in the field.

Combinatorial Classes

Definition

A combinatorial class is a set A such that

- There is a function $| \bullet | \mathcal{A} \to \mathbb{Z}_{>0}$. This function is called the *size*.
- The sets $A_n = \{a | a \in A, |a| = n\}$ are finite. We denote $A_n = |A_n|$.

Combinatorial Classes

Definition

A combinatorial class is a set A such that

- There is a function $| \bullet | \mathcal{A} \to \mathbb{Z}_{>0}$. This function is called the *size*.
- The sets $A_n = \{a | a \in A, |a| = n\}$ are finite. We denote $A_n = |A_n|$.

Example

- Binary words. $A = \{e, 0, 1, 00, 01, 10, 11, ...\}$. Here the size function gives us the size of the word. $A_n = 2^n$.
- Number of Partitions. What is A_n here?

Generating Functions

Definition

For a combinatorial class A, we define its corresponding *generating* function as

$$A(z) = \sum_{n \geq 0} A_n z^n.$$

Generating Functions

Definition

For a combinatorial class A, we define its corresponding *generating* function as

$$A(z) = \sum_{n \geq 0} A_n z^n.$$

Example

For the case of binary words, our generating function is

$$1 + 2z + 4z^2 + \dots = \frac{1}{1 - 2z}.$$

Constructing Generating Functions I

Definition

- SEQ(\mathcal{A}) consists of sequences constructed from elements of \mathcal{A} .
- MSeT(\mathcal{A}) consists of elements of SeQ(\mathcal{A}) which are distinct up to permutations.

Constructing Generating Functions II

History

The Theory of Polya (1937) gives us a systematic way to construct the generating functions by considering symmetries.

Constructing Generating Functions II

History

The Theory of Polya (1937) gives us a systematic way to construct the generating functions by considering symmetries.

Theorem

We can arrive at the corresponding generating functions via the following operations

•
$$\mathcal{B} = Seq(\mathcal{A}) \implies B(z) = \frac{1}{1 - A(z)}$$

•
$$\mathcal{B} = MSet(\mathcal{A}) \implies B(z) = \prod_{n \geq 1} \frac{1}{(1-z^n)^{A_n}}$$
.

Constructing Generating Functions III

Proof.

• We have $\mathcal{B} = \mathsf{SEQ}(\mathcal{A}) = \mathcal{E} + \mathcal{A} + \mathcal{A} \times \mathcal{A} + \mathcal{A} \times \mathcal{A} \times \mathcal{A} + \cdots$. Hence

$$B(z) = 1 + A(z) + A(z)^{2} + A(z)^{3} + \cdots = \frac{1}{1 - A(z)}.$$

• Similarly for $\mathcal{B} = \mathsf{MSet}(\mathcal{A}) \cong \prod_{a \in \mathcal{A}} (\mathcal{E} + \{a\} + \{a\}^2 + \cdots) \implies$

$$B(z) = \prod_{a \in \mathcal{A}} (1 + z^{|a|} + z^{2|a|} + \cdots) = \prod_{n \ge 1} \frac{1}{(1 - z^n)^{A_n}}.$$

Constructing Generating Functions IV

Example

The generating function for partitions can be calculated as follows

$$\mathcal{P} = \mathsf{MSet}(\mathbb{Z}_{>0})$$

$$\implies P(z) = \prod_{n>1} \frac{1}{1-z^n}.$$

Analysis on one variable generating functions I

Theorem (Cauchy 1826)

Let ρ be the radius of convergence of A(z). Then

$$A_n = \frac{1}{2\pi i} \oint_{|z|=r} A(z) \frac{dz}{z^{n+1}}$$

where $r < \rho$.

Analysis on one variable generating functions I

Theorem (Cauchy 1826)

Let ρ be the radius of convergence of A(z). Then

$$A_n = \frac{1}{2\pi i} \oint_{|z|=r} A(z) \frac{dz}{z^{n+1}}$$

where $r < \rho$.

Theorem

We also can establish the following trivial bound

$$\left| \int_{\gamma} f(z) \, dz \right| \leq ||\gamma|| \sup |f(z)|.$$

Analysis on One Variable Generating Functions II

Convergence

Hence it makes sense to work with generating functions that $\underline{\text{converge}}$ over some domain.

Definition

The exponential generating function is given by

$$\sum_{n\geq 0} A_n \frac{z^n}{n!}.$$

Analysis on One Variable Generating Functions II

Convergence

Hence it makes sense to work with generating functions that $\underline{\text{converge}}$ over some domain.

Definition

The exponential generating function is given by

$$\sum_{n\geq 0} A_n \frac{z^n}{n!}.$$

Definition

A Mellin transform $\mathcal M$ on a function f(s) is defined as

$$\mathcal{M}f(s) = \int_0^\infty s^{t-1}f(s)\,ds = g(t).$$

Methods

The following methods are commonly used

• Singularity Analysis and Tauberian Theorems

Methods

The following methods are commonly used

- Singularity Analysis and Tauberian Theorems
- Saddle Point Method.

Methods

The following methods are commonly used

- Singularity Analysis and Tauberian Theorems
- Saddle Point Method.

We try to approximate integrals of the form

$$\int e^{Nf(z)} dz.$$

Methods

The following methods are commonly used

- Singularity Analysis and Tauberian Theorems
- Saddle Point Method.

We try to approximate integrals of the form

$$\int e^{Nf(z)} dz.$$

We try to do so using Gaussian integrals.

Some Results in Analytic Combinatorics

Interesting Results

We can derive the following results

Factorials

$$n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$$

Some Results in Analytic Combinatorics

Interesting Results

We can derive the following results

Factorials

$$n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$$

Involutions

$$I_n = n! \frac{e^{-1/4}}{2\sqrt{\pi n}} n^{-n/2} e^{n/2 + \sqrt{n}} \left(1 + O\left(\frac{1}{n^{1/5}}\right) \right)$$

Some Results in Analytic Combinatorics

Interesting Results

We can derive the following results

Factorials

$$n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$$

Involutions

$$I_n = n! \frac{e^{-1/4}}{2\sqrt{\pi n}} n^{-n/2} e^{n/2 + \sqrt{n}} \left(1 + O\left(\frac{1}{n^{1/5}}\right) \right)$$

Set Partitions (Bell numbers)

$$S_n = n! \cdot \frac{e^{e^r - 1}}{r^n \sqrt{2\pi r(r+1)e^r}} \left(1 + O\left(e^{-r/5}\right) \right)$$

where r satisfies $re^r = n + 1$ (i.e. $r = W_0(n + 1)$).

Asymptotics of Partitions I

Generating Function

We cover the asymptotics for the number of integer partitions. The generating function for partitions is given by

$$P(z) = \prod_{n \geq 1} \frac{1}{1 - z^n}.$$

Asymptotics of Partitions I

Generating Function

We cover the asymptotics for the number of integer partitions. The generating function for partitions is given by

$$P(z) = \prod_{n \geq 1} \frac{1}{1 - z^n}.$$

Theorem

Taking the Mellin transform, we arrive at the following result

$$\log P(e^{-w}) \stackrel{\mathcal{M}}{\to} \int_0^\infty w^{v-1} P(e^{-w}) dw = \zeta(v) \zeta(v+1) \Gamma(v).$$

Asymptotics of Partitions II

Theorem

When
$$|z| < 1$$
 and $|1 - z| \le 2(1 - |z|)$, we have that

$$\log(P(z)) = \frac{\pi^2}{6(1-z)} + \frac{1}{2}\log(1-z) - \frac{1}{2}\log(2\pi) - \frac{\pi^2}{12} + \mathcal{O}(1-z).$$

Asymptotics of Partitions II

Theorem

When |z| < 1 and $|1 - z| \le 2(1 - |z|)$, we have that

$$\log(P(z)) = \frac{\pi^2}{6(1-z)} + \frac{1}{2}\log(1-z) - \frac{1}{2}\log(2\pi) - \frac{\pi^2}{12} + \mathcal{O}(1-z).$$

Definition

Let Q(z) denote the asymptotic of P(z) as $z \to 1$

$$Q(z) := \left(\frac{1-z}{2\pi}\right)^{\frac{1}{2}} e^{-\frac{\pi^2}{12}} e^{\frac{\pi^2}{6(1-z)}}.$$

Also let $Q_n := [z^n]Q(z)$.

Asymptotics of Partitions III

Lemma

When |z| < 1, we have

$$|\log P(z)| \le \left(\frac{1}{1-|z|} + \frac{1}{|1-z|}\right).$$

Asymptotics of Partitions III

Lemma

When |z| < 1, we have

$$|\log P(z)| \le \left(\frac{1}{1-|z|} + \frac{1}{|1-z|}\right).$$

Theorem

Using the saddle point radius $|z| = 1 - \frac{\pi}{6\sqrt{n}}$, we arrive at

$$P_n = Q_n + O\left(n^{-5/4} \exp\left(\pi\sqrt{2n/3}\right)\right).$$

Asymptotics of Partitions IV

Lemma

When |z| < 1

$$\int_{-\infty}^{\infty} e^{\pi t \sqrt{\frac{2}{3}} - (1-z)t^2} dt = \frac{\pi \sqrt{2}}{(1-z)} e^{\frac{\pi^2}{12}} Q(z).$$

Asymptotics of Partitions IV

Lemma

When |z| < 1

$$\int_{-\infty}^{\infty} e^{\pi t \sqrt{\frac{2}{3}} - (1-z)t^2} dt = \frac{\pi \sqrt{2}}{(1-z)} e^{\frac{\pi^2}{12}} Q(z).$$

Theorem (Ramanujan-Hardy 1917)

Using a Power Series expansion of the integral, we arrive at

$$P_n \sim Q_n \sim rac{e^{\pi \sqrt{rac{2n}{3}}}}{4n\sqrt{3}}.$$

Multivariable Generating Functions I

Definition

 \bullet For a dimension n, we define

$$\mathbf{z} = (z_1, z_2, \dots, z_n)$$

$$d\mathbf{z} = dz_1 dz_2 \cdots dz_n$$
.

For $\mathbf{i} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}^n$, we define

$$\mathbf{z^{i}} = z_1^{i_1} z_2^{i_2} \dots z_n^{i_n}.$$

Multivariable Generating Functions I

Definition

 \bullet For a dimension n, we define

$$\mathbf{z} = (z_1, z_2, \dots, z_n)$$

$$d\mathbf{z} = dz_1 dz_2 \cdots dz_n$$
.

For $\mathbf{i} = (i_1, i_2, \dots, i_n) \in \mathbb{Z}^n$, we define

$$\mathbf{z}^{\mathbf{i}} = z_1^{i_1} z_2^{i_2} \dots z_n^{i_n}.$$

Definition

We define a multivariable power series as

$$f(\mathbf{z}) = \sum_{\mathbf{i}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}.$$

Multivariable Generating Functions II

Definition

We define an open polydisk D as a set of the form

$$D = \{ \mathbf{z} \in \mathbb{C}^n : r_i > |z_i - a_i|, r_i \in \mathbb{R}^+, a_i \in \mathbb{C} \}.$$

Multivariable Generating Functions II

Definition

We define an open polydisk D as a set of the form

$$D = \{\mathbf{z} \in \mathbb{C}^n : r_i > |z_i - a_i|, r_i \in \mathbb{R}^+, a_i \in \mathbb{C}\}.$$

Theorem

We have the following generalization of Cauchy's Theorem

$$f_{\mathbf{i}} = \frac{1}{(2\pi i)^n} \oint f(\mathbf{z}) \, \frac{d\mathbf{z}}{\mathbf{z}^{\mathbf{i}+1}}.$$

Enumerating Paths on Lattices I

Definition

A lattice path model consists of

- ullet a finite set of steps $\mathcal{S}\subset\mathbb{Z}^d$
- ullet a region $\mathcal{R}\subset\mathbb{R}^d$
- ullet a starting point ${f p} \in \mathcal{R}$
- ullet a terminal set $\mathcal{T}\subset\mathcal{R}$
- the combinatorial class of all finite tuples called *paths* $(\mathbf{s}_1, \dots, \mathbf{s}_r) \in \mathcal{S}^r$ such that $\mathbf{p} + \mathbf{s}_1 + \dots + \mathbf{s}_r \in \mathcal{T}$ and $\mathbf{p} + \mathbf{s}_1 + \dots + \mathbf{s}_k \in \mathcal{R}$ for all $1 \leq k \leq r$.

Enumerating Paths on Lattices II

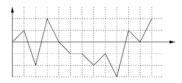


Figure: Path on $\mathcal{R} = \mathbb{R}$

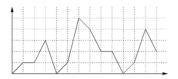


Figure: Path on $\mathcal{R}=\mathbb{R}_{\geq 0}$

Enumerating Paths on Lattices II

Definition

- A weighted path model assigns a weight w_i for each $i \in S$.
- The weight of a path $(\mathbf{s}_1, \dots, \mathbf{s}_r) \in \mathcal{S}^r$ is the product of the weights $w_{\mathbf{s}_1} \cdots w_{\mathbf{s}_r}$.

Enumerating Paths on Lattices II

Definition

- A weighted path model assigns a weight w_i for each $i \in S$.
- The weight of a path $(\mathbf{s}_1, \dots, \mathbf{s}_r) \in \mathcal{S}^r$ is the product of the weights $w_{\mathbf{s}_1} \cdots w_{\mathbf{s}_r}$.

Definition

We look at the following generating functions

•

$$S(\mathbf{z}) = \sum_{\mathbf{i} \in S} w_{\mathbf{i}} \mathbf{z}^{i}$$

•

$$W_n(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{Z}^d} f_{\mathbf{i},n} \mathbf{z}^{\mathbf{i}}$$

where $f_{\mathbf{i},n}$ is the number of paths of length n from \mathbf{p} to \mathbf{i} .

The Kernel Method

Definition

We define

$$W(\mathbf{z},t) = \sum_{n\geq 0} W_n(\mathbf{z})t^n.$$

The Kernel Method

Definition

We define

$$W(\mathbf{z},t)=\sum_{n\geq 0}W_n(\mathbf{z})t^n.$$

Lemma

When $\mathcal{R} = \mathbb{R}^d$, we have

$$W_{n+1}(\mathbf{z}) = S(\mathbf{z})W_n(\mathbf{z}).$$

The Kernel Method

Definition

We define

$$W(\mathbf{z},t)=\sum_{n\geq 0}W_n(\mathbf{z})t^n.$$

Lemma

When $\mathcal{R} = \mathbb{R}^d$, we have

$$W_{n+1}(\mathbf{z}) = S(\mathbf{z})W_n(\mathbf{z}).$$

Theorem

When $\mathcal{R} = \mathbb{R}^d$, we have

$$W(\mathbf{z},t) = \frac{\mathbf{z}^p}{1 - tS(\mathbf{z})}.$$

Acknowledgments

I would like to thank the following people.

- Dr. Simon Rubinstein Salzedo
- Rachana Madhukara
- My fellow students at Euler Circle.