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Abstract. In this expository paper, we give a an overview of Analytic Combinatorics and
the various techniques used in the field. We try to include classical and modern ideas in
the topic. We cover the symbolic method, Boltzmann sampling, the saddle point method,
asymptotics of partitions, the kernel method and the analysis of single and multivariable
generating functions.

1. Introduction

Generating functions are ubiquitous in mathematics. They can be used to systematically
reduce several enumerative combinatorial problems. They also provide an inroad for (com-
plex) analytic methods into combinatorics. Analytic Combinatorics is a field built around
doing exactly this. However, the idea of “doing Analytic Combinatorics” is a relatively new
notion, although many of the methods in the topic are classical. As we shall see in the next
two paragraphs, the history of the field also displays this duality.

The concept of generating functions began with the work of Euler (see page 20 in [FS09]),
who in 1751 wrote a letter to Goldbach, mentioning the generating function for Catalan
numbers. He worked out the generating function for various other combinatorial objects,
such as the one for partitions. However, the next big leap in the history of partitions came
with the 1917 landmark work of Ramanujan and Hardy when they found the asymptotic
for partitions [HR18] (which we discuss in Section 7). Their approach involved doing some
clever analysis on the generating function for partitions. In 1938, Rademacher improved
upon their work and found an infinite series that gave the exact expression for Pn [Rad38].
In the meantime, Redfield in 1927 [Red27] and Pólya in 1937 [Pól37] found the Redfield-
Pólya enumeration theorem, which used generating functions to capture the contribution of
the symmetry group in the enumeration of combinatorial structures (refer to [Har08] for a
good exposition on this).

The idea that all the above-mentioned classical results, along with some modern develop-
ments, could be brought under a single field came to prominence with the work of Flajolet
and Knuth [Pro15], [Pro21]. Knuth in his books [Knu73], [Knu98] developed the topic Anal-
ysis of Algorithms, which would be hugely influential. For instance, the roots of the kernel
method can be traced back to exercise 2.2.1.-4 in [Knu73]. Flajolet would find the solution to
many such topical problems proposed by Knuth and others (for example, see [FO82]). His
approach often involved often drew inspiration from the previously mentioned traditional
mathematics. They also involved more and more analysis, such as in [Fla03]. For instance,
Ramanujan’s works were a source of inspiration for him. Flajolet coined the term Analytic
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Combinatorics for his field of work, drawing inspiration from Analytic Number Theory. In
2009, he, along with Sedgewick, wrote a famous textbook on the topic [FS09].

Originally, a large section of the work in Analytic Combinatorics has been in the case of
single-variable generating functions. In recent times, there has been an increase in interest
in multivariable generating functions. For instance, there has been some work in enumer-
ating paths on lattices [BF02], [FR12] (which we discuss in 9) as well as smooth Analytic
Combinatorics in Several Variables (smooth ACSV) [BP11], [BMPS18]. A few books have
also been published in the topic such as [Mel21], [PWM24].

In this expository paper we aim to provide an overview of Analytic Combinatorics and re-
veal how it consists of a wide variety of interesting approaches. We cover the preliminaries in
2. The rest of the paper is structured as follows: we begin with the combinatorial (algebraic)
techniques in Sections 3, 4 where we cover symbolic methods and Boltzmann sampling. Then
we move onto doing analysis over single variable generating functions in Sections 5, 6, 7. We
cover various strategies such as analyzing singularities and the saddle point method. In
Section 7, which is the largest section, we cover the asymptotics of partitions. In Sections 8,
9 we cover multivariable generating functions, discussing their properties and using them in
the kernel method to enumerate paths on lattices. As analytic combinatorics consists of an
assortment of clever arguments, it is important that we look at how the methods mentioned
in this paper can be applied to solve various problems.

2. Preliminaries

We begin with the basic definitions and terminology in this section.

Definition 2.1. A combinatorial class is a set A such that

• There is a function | • |A → Z≥0. This function is called the size.
• The sets An = {a|a ∈ A, |a| = n} are finite. We denote An = |An|.

Example (BinaryWords). Consider the combinatorial class of all binary wordsW = {e, 0, 1, 00, 01, 10, . . . }.
Here the size function gives us the length of the word. Observe that Wn = 2n.

Two combinatorial classes A are isomorphic (denoted A ∼= B) if ∀n,An = Bn. Combina-
torial classes are helpful in defining generating functions.

Definition 2.2. For a combinatorial class A, we define its corresponding generating function
as

A(z) =
∑
n≥0

Anz
n.

We also denote the coefficient of zn in A(z) (which in this case is just An) as

[zn]A(z).

Observe that, we could equivalently define the generating function in the following way

A(z) =
∑
α∈A

z|α|.
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Example (Binary words). We have

W (z) =
∑
n≥0

2nzn
if |z|< 1

2=
1

1− 2z
.

We also define a few other combinatorial classes which will be helpful later on.

Definition 2.3. We have the following definitions.

• Let E be a combinatorial class with a single element with size 0.
• Let Z be a combinatorial class with a single element of size of 1.

There are two aspects of generating functions: the formal series aspect for algebraic ma-
nipulations and the functional series aspect for analysis arguments. In the next two sections
we shall focus on the algebraic aspects. However, being able to do analysis on generating
functions is a huge advantage. Sometimes the generating functions themselves do not con-
verge over any radius, hence it is useful to work with the exponential generating function
instead as they can help issues related to convergence.

Definition 2.4. The exponential generating function is given by∑
n≥0

An
zn

n!
.

More analytic properties can be extracted if one works with the Mellin transform.

Definition 2.5. A Mellin transform M on a function f(s) is defined as

Mf(s) =

∫ ∞

0

st−1f(s) ds = g(t).

For instance Mellin transforms help convert a power series into a Dirichlet series. [ASS25] as
well as Appendix B in [FS09] contains further details on this. Now we look into the problem
of methodically constructing generating functions which really highlights the combinatorial
aspect of generating functions.

3. Constructing Generating Functions

Suppose we can construct a combinatorial class A out of two other combinatorial classes
B and C. Then how is A(z) related to B(z) and C(z)? In this section we provide an overview
of systematically constructing generating functions using symbolic methods.
We begin things with the following definitions.

Definition 3.1. We define the following.

• Suppose A = B × C = {(β, γ) : β ∈ B, γ ∈ C}. Then we define the size of an element
α = (β, γ) ∈ A as |α|A = |β|B + |γ|C.
• Suppose A = B+ C where + is the symbol for disjoint union (also called a combina-
torial sum). Then we define the size for an element α ∈ A

|α|A =

{
|α|B if α ∈ B,
|α|C if α ∈ C.

This leads naturally to the following lemma.
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Lemma 3.2. We have the following results

A = B + C =⇒ A(z) = B(z) + C(z)

A = B × C =⇒ A(z) =
∑
n≥0

zn

(
n∑

i=0

BiCn−i

)
= B(z) · C(z).

Proof. Follows upon expanding the power series. ■

Now we turn our attention to more sophisticated scenarios.

Definition 3.3. We define the following.

• SEQ(A) consists of sequences constructed from elements of A.
• MSET(A) consists of elements of SEQ(A) which are distinct up to permutations.
• PSET(A) consists of elements of MSET(A) that are constructed only from distinct
elements of A.
• CYC(A) consists of elements of SEQ(A) that are distinct up to cycle permutations.

Theorem 3.4. We have the following results.

• Sequence: If A = SEQ(B), then

A(z) =
1

1−B(z)
.

• Powerset: If A = PSET(B), then

A(z) =
∏
n≥1

(1 + zn)Bn = exp

(∑
n≥1

(−1)n−1

n
B(zn)

)
.

• Multiset: If A = MSET(B), then

A(z) =
∏
n≥1

(1− zn)−Bn = exp

(∑
n≥1

1

n
B(zn)

)
.

• Cycle: If A = CYC(B), then

A(z) =
∑
n≥1

ϕ(n)

n
log

(
1

1−B(zn)

)
.

Proof. For the first part, observe that

A = SEQ(B) = E + B + B × B + B × B × B + · · · = E +
∑
n≥1

Bn.

Hence,

A(z) = 1 +B(z) + (B(z))2 + (B(z))3 + · · · = 1

1−B(z)
.

For the second part, observe the isomorphism

A = PSET(B) ∼=
∏
β∈B

(E + {α}).

Hence,

A(z) =
∏
β∈B

(1 + z|β|) =
∏
n≥0

(1 + zn)Bn .
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Now we can write

A(z) = exp

(∑
n≥0

Bn log (1 + zn)

)

= exp

(∑
n≥0

Bn

(∑
k≥1

(−1)k−1 z
nk

k

))

= exp

(∑
k≥1

(−1)k−1

k
B(zk)

)
.

For the other parts we ask the reader to refer to page 27 in [FS09]. ■

Many more such formulae can be derived from Redfield-Pólya enumeration formula [Red27],
[Pól37]. The idea of this theorem is to analyze symmetry group of the thing we wish to count.
It provides a generalization of Burnside’s formula in the context of multivariable generating
functions. We now use Theorem 3.4 to work out a few examples.

Example (Integer Partitions). Observe that the combinatorial class for integer partitions P
is given by P = MSET(I) where I is the combinatorial class defined on the set of positive
integers Z>0, where each positive integer n is assigned a size |n| = n. Notice that I =
ZSEQ(Z). Hence,

I(z) = z + z2 + z3 + · · ·
Hence,

P (z) =
∏
n≥1

1

1− zn
.

Example (Rooted Plane Trees). A rooted tree consists of a tree with one of its vertices
specified (the root). A plane tree is a tree where the order in which the sub-trees are
attached to a node matters. The size of a tree is the number of vertices. Their combinatorial
class is denoted G. Observe that we can think of an element of G as consisting of a root
attached to a sequence of other rooted trees. We capture this self-similarity in the following
isomorphism

G ∼= Z × SEQ(G).
Hence, we have that

G(z) =
z

1−G(z)

which can be solved for as a quadratic equation for G(z). Checking base cases, we arrive at
the following expression

G(z) =
1

2

(
1−
√
1− 4z

)
=
∑
n≥1

1

n

(
2n− 2

n− 1

)
zn.

See how systematic things have become!
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The symbolic method gives an algorithmic flavor to the process of constructing generating
functions. This same combinatorial/ algebraic idea of systematically constructing objects
carries over to Boltzmann samples, which we discuss in the next section. Additionally in
discussing Boltzmann samples we shall find an interesting way to interpret the notion of a
combinatorial class (refer to equations (4.1),(4.2) and (4.3)).

4. Combinatorial Classes in Boltzmann Sampling

The idea behind Boltzmann sampling is to assign a probability proportional to x|α| to
an element α ∈ A. Here x is some fixed positive real number. In order to normalize the
probabilities, we need to divide by the generating function A(x) as∑

α∈A

x|α| =
∑
n≥0

Anx
n = A(x).

Therefore the probability assigned to the element α is just

PA(α) =
x|α|

A(x)
.

The Boltzmann sampler associated with the class A, denoted ΓA(x), returns elements of
A with above mentioned probability. The motivation for working with Boltzmann samples
comes from the Boltzmann distribution from statistical mechanics which assigns the following
probability to a state s

P(s) =
e
−E(s)

kBT

Z(T )
.

Here E(s) is the energy of the state, T is the temperature, kB is the Boltzmann constant and

Z(T ) =
∑

s e
−E(s)

kBT is the partition function. The connection between Boltzmann sampling
and the Boltzmann distribution follow from the following correspondence

(4.1) x←→ e
− 1

kBT

(4.2) |α| ←→ E(s)

(4.3) A(x)←→ Z(T ).

The above relations give us an interesting way to think about a combinatorial class. It turns
out that a lot of information about the expected value of various quantities can be calculated
in terms of the partitions function Z(T ). Similar results can be worked out in the case of
the Boltzmann samples, as is shown in the following theorem.

Theorem 4.1. We have the following results involving expected value

•
E(|α|) = x

A′(x)

A(x)
,

•
E(|α|2) = x2A′′(x) + xA′(x)

A(x)
,
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• for some fixed u ∈ R

E(u|α|) =
A(ux)

A(x)
.

Proof. For the first part, we see that

x
A′(x)

A(x)
= x

d
dx

(∑
α∈A x|α|)

A(x)
=
∑
x∈α

x|α|

A(x)
|α| =

∑
x∈α

P(α)|α| = E(|α|).

The other parts follow in similar fashion after expanding the right hand side of the expres-
sions.

■

Now, we turn to the question of constructing Boltzmann samples. Suppose we know how
to construct a combinatorial class A from two classes B and C. The question (again) is how
ΓA(x) related to ΓB(x) and ΓC(x). We shall work this out in three cases, and the answer
shall be provided in the form of an algorithm.

4.1. Disjoint Unions. Suppose we have A = B + C. Then A(x) = B(x) + C(x). Observe
that

PA(α) =

{
x|α|

B(x)
B(x)
A(x)

= PB(α)
B(x)
A(x)

if α ∈ B,
x|α|

C(x)
C(x)
A(x)

= PC(α)
C(x)
A(x)

if α ∈ C.
How do we use this to express ΓA(x) in terms of ΓB(x) and ΓC(x)? The first step is to

define the Bernoulli switch Bern(p).

Definition 4.2. For a given real number p ∈ [0, 1] (the probability), Bern(p) returns 1 with
probability p and returns 0 with probability 1− p.

Now it is quite straightforward to write the algorithm for ΓA(x), as shown in Algorithm
1.

Algorithm 1 Sampler for A = B + C
1: function ΓA(x)
2: Let pA = B(x)

A(x)

3: if Bern(pA) = 1 then
4: return ΓB(x)
5: else
6: return ΓC(x)
7: end if
8: end function

4.2. Cartesian Products. Suppose we have A = B×C. Then A(x) = B(x)·C(x). Observe
that for an element α = (β, γ) where α ∈ A, β ∈ B, γ ∈ C, we have that

PA(α) =
x|β|

B(x)
· x|γ|

C(x)
= PB(β)PC(γ).

In this case the algorithm can be constructed as in Algorithm 2.
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Algorithm 2 Sampler for A = B × C
1: function ΓA(x)
2: return Ordered pair (ΓB(x),ΓC(x)) ▷ independent calls
3: end function

4.3. Sequences. Suppose we have A = SEQ(B). In this case we provide two different
algorithms to construct ΓA(x). The first one is recurrence based and uses the fact that
A(x)(1 − B(x)) = 1 ⇐⇒ A(x) = 1 + B(x)A(x), or equivalently, A ∼= E + B × A. Using
the probabilities calculated in the previous two subsections on disjoint unions and cartesian
products, we arrive at

PA(α) =

{
PB×A(α)

B(x)A(x)
A(x)

= PB×A(α)B(x) = PB(β)PA(α
′)B(x) if α = (β, α) ∈ B ×A,

PE(α)
1

A(x)
= 1

A(x)
if α ∈ E .

Observe the recursion built into the above expression. Thus combining Algorithms 1 and 2
to arrive at Algorithm 3.

Algorithm 3 Recursive Sampler for A = SEQ(B)
1: function ΓA(x)
2: if Bern(B(x)) = 1 then
3: return (ΓB(x),ΓA(x)) ▷ recursive call
4: else
5: return 1
6: end if
7: end function

The other approach is not recursive. Picking an element α ∈ A can be described as follows:
we first pick the Bk in A =

∑
n≥0 Bn and then picking the α from this Bk. For this we need

the following definition.

Definition 4.3. For a real number λ < 1, Geom(λ) returns an integer n ≥ 0 with probability
(1− λ)λn.

The desired result is shown in 4.

Algorithm 4 Geometric Sampler for A = SEQ(B)
1: function ΓA(x)
2: Draw n according to Geom(B(x))
3: return the n-tuple (ΓB(x), . . . ,ΓB(x)) ▷ n independent calls
4: end function

Algorithms for various other Boltzmann sampler have been worked out in [FFP07]. There
are also some interesting variants of this problem where one analyzes exponential Boltzmann
generators [BF02].
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5. Using Analysis on Generating Functions

Till now we have been treating Generating Functions as purely algebraic/ combinatorial
objects. However, deriving asymptotics falls into the field of analysis. Hence it is only
natural that we try to do analysis on generating functions to understand their coefficients!

We work in the complex plane as that provides a clearer picture of the generating function
A(z). It is helpful at times to look at the analytic continuation of A(z). The poles of A(z)
turn out to be critical. For instance, the distance from the origin to the nearest pole of the
gives us the radius of convergence ρ. This in turn tells us that:

an ∝ ρ−n

Additionally, working in the complex plane enables us to use Cauchy’s formula

An =
1

2πi

∮
|z|=r

A(z)
dz

zn+1

where r < ρ.
Another topical idea is to use the following classical bound:∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ ||γ|| sup |f(z)|.
This can be useful in the following sense: suppose ρ ≤ 1. Then we can find An by

integrating over a radius R > 1 and subtracting the residues

An = −
∑

Res +
1

2πi

∫
|z|=R

A(z)
dz

zn+1
= −

∑
Res +O(R−n)

where the residues are due to the singularities in the region r ≤ |z| ≤ R. If the singularities
are poles and are finite, it can be proven that (see Chapter 2 in [Mel21])

An =
∑
k

Pk(n)σ
n
k +O(R−n)

where Pk(n) are polynomials and σk are the poles. If one of the σk has modulus greater than
1, then we can ignore the contribution of O(R−n) while analyzing the asymptotic behavior
of an. This highlights the power of considering residues.

An instance of this method is to classify solutions of linear recurrence relations with
constant coefficients as shown in the following theorem. The idea of the proof is to realize
that the generating function must be a rational function and then analyzing residues due to
the poles of the generating function.

Theorem 5.1. Consider a recurrence relation of the form

k∑
i=0

kian+i = 0.

All solutions of this equation are of the form
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an =
k′∑
i=0

Pi(n)σ
n
i

for some constants σ and polynomials Pi(n).

This idea of doing analysis can be used to arrive at much more rich and interesting results.
One can refer to [FO90], [Fla03], [FS09] for more interesting results on uni-variate generating
functions. Till now we have focused on analyzing the singularities of a generating function to
arrive at asymptotics. In the next section we turn our attention to a different, yet extremely
powerful, approach to extract asymptotics when singularity analysis fails us. It is called
the saddle point method and can be used to find a good approximation for a large class of
integrals.

6. The Saddle Point Method

The saddle point method has its roots in some classical ideas such as Laplace’s method
(see Chapter 8 in [FS09]). The idea of this method can be described as follows: suppose we
are interested in approximating an integral of the form∫

γ

eNf(z)dz

where N is varied over large numbers and f(z) is analytic. Furthermore assume we have a
point z0 on γ where f ′(z0) = 0 (this is the saddle point!) and f ′′(z0) = −|f ′′(z0)|. (Often,
we “chose” γ so that a saddle point lies on it.) Hence, points near z0 can be approximated
as follows

f(z) = f(z0) + f ′′(z0)
(z − z0)

2

2
+O((z − z0)

3).

We write ∫
γ

eNf(z)dz =

∫
γ1

eNf(z)dz +

∫
γ2

eNf(z)dz

where γ1 is a small region around z0 where it makes sense to discard the O((z−z0)
3) term in

the power series of f(z). If set up correctly, we can ensure that
∫
γ2
eNf(z)dz <<

∫
γ1
eNf(z)dz.

Then, under the right circumstances and using the Gaussian integral, we can arrive at the
following asymptotic∫

γ1

eNf(z)dz ∼ eNf(z0)

∫
γ1

eNf ′′(z0)
(z−z0)

2

2 dz ∼ eNf(z0)

√
2π

N |f ′′(z0)|
.

This method has a variety of applications. For instance, we find the asymptotic for set
partitions (Bell numbers) as [FS09]

Sn = n! · ee
r−1

rn
√
2πr(r + 1)er

(
1 +O

(
e−

r
5

))
where r satisfies rer = n+1 (i.e. r = W0(n+1)). Recently, stronger bounds have been placed
on the Bell numbers [GS25]. Furthermore, this method can be used to find the asymptotics
of permutation involutions and fragmented permutation. Due to the importance of this topic
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in one variable generating functions, we work out the following example where we derive the
asymptotic for n! using this method.

Example (Stirling’s approximation). Observe that [zn]ez = 1
n!
. Hence, we are interested in

the asymptotic of the following expression

In =
1

2πi

∮
ez

dz

zn+1

where the contour is taken over a circle of arbitrary radius (as ez is entire). The idea is to
chose the specific radius R which shall give us a saddle point to exploit. First we express
the integral in polar coordinates

In =
1

2π

∫ +π

−π

eReiθ

Rneinθ
dθ.

Observe that if we set R = n, then the function ene
iθ−nθ has a saddle point at θ = 0. We

now try to use this fact. We write

In =
en

nn
· 1

2π

∫ +π

−π

en(e
iθ−1−iθ) dθ.

The spirit of the saddle point method is to use the approximation en(e
iθ−1−iθ) = e

n
(
− θ2

2
+O(θ3)

)
over

a suitable range of θ to extract the main asymptotic behavior. Clearly in this range, we want
nθ3 → 0 while nθ2 →∞. Observe that θ0 = n− 2

5 fits this criteria. Hence, we write

Jn =

∫ θ0

−θ0

en(e
iθ−1−iθ)dθ

Kn =

∫ 2π−θ0

θ0

en(e
iθ−1−iθ)dθ

In =
en

2πnn
(Jn +Kn).

We see that Kn decays exponentially

Kn ≤
∣∣∣∣∫ 2π−θ0

θ0

dθ

∣∣∣∣ sup
θ∈[θ0,2π−θ0]

|en(eiθ−1−iθ)| = (2π − 2θ0)e
n cos(θ0)−n = O

(
exp

(
−1

2
n

1
5

))

On the other hand, to evaluate Jn, we use the substitution θ = ϕ
√
n to arrive at
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Jn =

∫ θ0

−θ0

en(e
iθ−1−iθ)dθ

=

∫ θ0

−θ0

e−n θ2

2 exp(O(nθ3)) dθ =

∫ θ0

−θ0

e−n θ2

2 dθ
(
1 +O(n− 1

5 )
)

∼ 1√
n

∫ n
1
10

−n
1
10

e−
ϕ2

2 dϕ =
1√
n

∫ ∞

−∞
e−

ϕ2

2 +O

(
exp

(
−n

1
5

2

))

∼
√

2π

n
.

Putting everything together, we see that

1

n!
∼ 1√

2πn

en

nn
.

To recapitulate, in the the saddle point method (when applied to generating functions),
we convert An =

∮
A(z) dz

zn+1 into the form
∮
ef(z)dz, choose a radius so that a saddle point

lies on the contour and then use a Gaussian integral to arrive at the required asymptotic.
In general, the radius over which we wish to evaluate

∮
A(z) dz

zn+1 is given by

d

dR
log

(
A(R)

Rn

)
= 0.

Conditions in which the saddle point method can be applied have been worked out in [Hay56],
[FS09]. In fact we shall use the saddle point radius to prove 7.8 while deriving the asymptotic
for partitions in the next section.

7. Asymptotics for the Partition Function

In this section we aim to find the asymptotics for partitions. The original 1918 work
of Ramanujan and Hardy used Farey sequences, Ford Circles and Modular forms [HR18].
Here, we do not use such methods and present a slight variation of Newman’s proof of this
result [New62]. However, this approach shall give rise to a bigger error term, although we
arrive at the correct asymptotic (see Theorem 7.9).

A lot of the arguments will be lengthy and technical; hence we advise the reader to hold
on tight! There will be three important theorems in the buildup to the main result. In this
section, when we say

∫ z2
z1

f(z) dz, it is assumed that the integral is taken along the straight
line from z1 to z2. We start things with two lemmas that shall lead to our first big theorem.

Lemma 7.1. For an analytic function g we have∣∣∣∣∣∑
n≥1

g(n)−
∫ ∞

0

g(s) ds

∣∣∣∣∣ ≤
∫ ∞

0

|g′(s)|ds.
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Proof. We can write∣∣∣∣∣∑
n≥1

g(n)−
∫ ∞

0

g(s) ds

∣∣∣∣∣ =
∣∣∣∣∫ ∞

0

g(s)− g([s]) ds

∣∣∣∣
≤
∫ ∞

0

(|ℜ(g(s))−ℜ(g([s])) + |ℑ(g(s))−ℑ(g([s]))|) ds

≤
∫ ∞

0

(|ℜ(g′(s))|+ |ℑ(g′(s))|) ds (Riemann Sums)

≤
∫ ∞

0

|g′(s)| ds (Cauchy).

.
■

Lemma 7.2. When |z| < 1, we have:

log(P (z)) =
∑
n≥1

zn

1− zn
.

Proof. Follows trivially upon expanding power series. ■

We arrive at our first big theorem which gives us the asymptote of P (z) as z → 1.

Theorem 7.3. When |z| < 1 and |1− z| ≤ 2(1− |z|), we have that

log(P (z)) =
π2

6(1− z)
+

1

2
log(1− z)− 1

2
log(2π)− π2

12
+O(1− z).

Proof. Let z = e−w where | arg(w)| ≤ π. As |1− z| ≤ 2(1− |z|), we have that | arg(w)| < π
2
.

Observe that from Lemma 7.2

logP (z) =
∑
n≥1

1

n(enw − 1)

=
π2

6w
+

1

2
log(1− e−w) + w

(∑
n≥1

1

nw(enw − 1)
− 1

n2w2
+

1

2nw
e−nw

)
.

Our aim is to approximate the last term in the above equation. We shall employ Lemma
7.1 to do so. Let us define

g(s) = w

(
1

sw(esw − 1)
− 1

s2w2
+

1

2sw
e−sw

)
.

Let u = sw. Observe that∫ ∞

0

g(s) ds =

∫ w·∞

0

g( u
w
)

w
du

=

∫ ∞

0

(
1

u(eu − 1)
− 1

u2
+

1

2u
e−u

)
du (Cauchy)

= − log(2π)

2
(Standard Integral).
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Next, we look at∫ ∞

0

|g′(s)| ds = w

∫ w·∞

0

∣∣∣∣ ddu
(

1

u(eu − 1)
− 1

u2
+

1

2u
e−u

)∣∣∣∣ du = wO(1).

(The above integral converges when | arg(u)| = | arg(w)| < π
2
, a criteria which has already

been imposed as result of the condition |1− z| ≤ 2(1− |z|) in the theorem statement.)
Hence, we conclude using Lemma 7.1 that

w

(∑
n≥1

1

nw(enw − 1)
− 1

n2w2
+

1

2nw
e−nw

)
= O(w).

Finally we observe (1− z) ∼ w as z → 1 and

π2

6(1− z)
=

π2

6w
+

π2

12
+O(w).

Putting everything together, we arrive at

log(P (z)) =
π2

6(1− z)
+

1

2
log(1− z)− 1

2
log(2π)− π2

12
+O(1− z),

which was desired. ■

In the above proof, the substitution of z = e−w might seem unmotivated. The reason
behind looking at this substitution is that

logP (e−w)
M→
∫ ∞

0

wv−1P (e−w) dw = ζ(v)ζ(v + 1)Γ(v)

whereM is the Mellin Transform. There is a proof of the above theorem using this result
but it involves using Modular Forms, which we do not include here.

Before we proceed with the rest of the proof of Theorem7.9, we first make use of the
following definition.

Definition 7.4. Let Q(z) denote the asymptotic of P (z) as z → 1

Q(z) :=

(
1− z

2π

) 1
2

e−
π2

12 e
π2

6(1−z) .

Also let Qn := [zn]Q(z).

The rest of the proof to Theorem 7.9 can be divided into two parts: finding the asymptotic
for Qn and relating Pn to Qn. (Intuitively, it should make sense that this approach is easier
than directly trying to extract Pn from P (z).) Both of these parts can be done using the
saddle point method. However using the saddle point method to approximate Qn is lengthy
(and the exact saddle point radius of Q(z) is not fun to work with.) Hence, we take a
different route where we use Lemma 7.5 to arrive at the asymptotic in Theorem 7.6. As for
bound Pn −Qn we use an approximated version of the saddle point radius R = 1− π√

6n
.

Now that our strategy is clear, we turn to approximating Qn. We have the following
wonderful lemma which helps us greatly.
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Lemma 7.5. When |z| < 1, we have∫ ∞

−∞
eπt
√

2
3
−(1−z)t2 dt =

π
√
2

(1− z)
e

π2

12 Q(z).

Proof. We have∫ ∞

−∞
eπt
√

2
3
−(1−z)t2 dt = e

2π2

4·3(1−z)

√
π

(1− z)
(Gaussian Integral)

=
π
√
2

(1− z)
e

π2

12 Q(z).

■

Hence, we do not need a loop integral to compute Qn: we can just power series expand the
integral! We do so and arrive at the asymptotic of Qn in the following important theorem.

Theorem 7.6. We have that

Qn ∼
eπ
√

2n
3

4n
√
3
.

Proof. Let k = t+
√
n. We have

Qn = [zn]
e−

π2

12

π
√
2
(1− z)

∫ ∞

−∞
eπt
√

2
3
−(1−z)t2 dt (Lemma 7.5)

=
e−

π2

12

π
√
2

∫ ∞

−∞
eπt
√

2
3
−t2
(
t2n

n!
− t2n−2

(n− 1)!

)
dt

=
e−

π2

12

π
√
2

∫ ∞

−∞
eπk
√

2
3
−k2−2

√
nkeπ
√

2n
3
−n (k +

√
n)2n−2

n!
((k +

√
n)2 − n) dk

∼ e−
π2

12

π
√
2

eπ
√

2n
3

√
2πn

∫ ∞

−∞
keπk
√

2
3
−k2−2

√
nk

(
1 +

k√
n

)2n−2(
2 +

k√
n

)
dk (Stirling).

We simplify our calculations by making the observation

lim
n→∞

e−2
√
nk

(
1 +

k√
n

)2n−2(
2 +

k√
n

)
= 2e−k2 .

However, care must be taken as we simply cannot take a limit inside an integral without any
justification. Fortunately, Lebesgue’s dominated convergence theorem comes to help! We
notice that the integrand is dominated by

F (k) =

{
keπ
√

2
3
k−k2(2 + k) if k ≥ 0,

|k|eπ
√

2
3
k−k2(2− k)ek

2+1 if k ≤ 0

and that
∫∞
−∞ F (k)dk converges. Hence, we take the limit within the integral and arrive at
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Qn ∼
e−

π2

12

π
√
2

eπ
√

2n
3

√
2π n

∫ ∞

−∞
2keπ
√

2
3
k−2k2 dk

=
eπ
√

2n
3

4n
√
3
.

Now the theorem follows immediately upon simplifying the algebraic expressions. ■

All that is left for us is to approximate Pn−Qn. We shall do so by bounding
∮ P (z)−Q(z)

zn+1 dz.
The radius of contour in the integral will be the (approximate) saddle point radius of Q(z)

R = 1− π√
6n

.

However, we cannot use Theorem 7.3 on the entire loop of integration as the condition
|1−z| ≤ 2|1−|z|| may not hold. Hence, we break the loop integral into two integrals. In one
of those two integrals, we use Theorem 7.3, while in the other integral we use the following
very crude approximation.

Lemma 7.7. When |z| < 1, we have

| logP (z)| ≤
(

1

1− |z|
+

1

|1− z|

)
.

Proof. We have that

| logP (z)| =

∣∣∣∣∣∑
n≥1

1

n

zn

1− zn

∣∣∣∣∣ (Lemma 7.2)

≤
∣∣∣∣ z

1− z

∣∣∣∣+∑
n≥2

1

n2

n|zn|
1− |z|n

<

∣∣∣∣ 1

1− z

∣∣∣∣+ 1

1− |z|
∑
n≥2

1

n2

n|zn|
1 + |z|+ |z|2 + |z|n−1

≤
∣∣∣∣ 1

1− z

∣∣∣∣+ 1

1− |z|
∑
n≥2

1

n2

≤
∣∣∣∣ 1

1− z

∣∣∣∣+ 1

1− |z|
.

■

Now we finally bound Pn −Qn.

Theorem 7.8. We have

Pn −Qn = o

(
eπ
√

2n
3

n

)
.

Proof. We shall be approximating
∮
(P (z) − Q(z)) dz

zn+1 . Our integral will be around the
contour Γ consisting of points |z| = 1 − π√

6n
. Furthermore the contour will be broken into
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the following regions

Θ =

{
z ∈ C : |1− z| < π

√
2

3n

}
,

Ω = Γ\Θ.

Observe that we can successfully use Theorem 7.3 while bounding the integral over Θ.
However, we use Lemma 7.7 over Ω. The benefit of working with |z| = 1 − π√

6n
is that

1 − |z| = O(n− 1
2 ) and that |z|n = e−π

√
n
6 . Also notice that |1 − z| = O(n− 1

2 ) over Θ and
1

|1−z| = O(n
1
2 ) over Ω. Using these observations, we now prove the theorem

∮
Θ

(P (z)−Q(z))
dz

zn+1
= O

(∫
Θ

|z|−n−1|1− z|3/2 exp
(
π

6

1

1− |z|

)
|dz|
)

= O

(
eπ
√

n
6

e−π
√

n
6

· n− 3
4

)
· O
(∫

Θ

|dz|
)

= O
(
n− 3

4 eπ
√

2
3n

)
· O
(
n− 1

2

)
= o

(
eπ
√

2n
3

n

)

and

∮
Ω

(P (z)−Q(z))
dz

zn+1
= O

(∫
Ω

|z|−n−1

[
exp

(
πz

6(1− z)

)
+ exp

(
|1− z|−1 + (1− |z|)−1) ] |dz|)

= O

(∫
Ω

eπ
√

n
6

[
exp

(
π

6

√
3n

2

)
+ exp

(
1

π

(√
3n

2
+
√
6n

))]
|dz|

)

= o

(
eπ
√

2n
3

n

)
.

■

Hence, from Theorems 7.6 and 7.8 we find that Pn ∼ Qn as well as the asymptotic of Pn.

Theorem 7.9. We have that

Pn ∼
eπ
√

2n
3

4n
√
3
.

Deriving the asymptotics for Pn has truly highlighted the power of doing analysis on
single variable generating functions. In recent years there has been a growing interest in
multivariable generating functions, which is the topic of the next section.



18 KANAD BHATTACHARYA

8. Working with Multivariable Generating Functions

We turn our attention to multivariable generating functions. They are incredibly helpful
when there are more than one parameter that can be varied. At times they can encapsulate
information of a large class of problems. For example in Section9 we shall see how we can
systematically enumerate lattice paths. However, in this section, we shall cover the some
standard properties of multivariable generating functions. Let us first get the preliminary
definitions out of the way.

Definition 8.1. For a dimension n, we define

z = (z1, z2, . . . , zN)

dz = dz1dz2 · · · dzN .
For i = (i1, i2, . . . , iN) ∈ ZN , we define

zi = zi11 z
i2
2 . . . ziNn .

Definition 8.2. We define a multivariable power series (centered at a) as

f(z) =
∑
i

fi(z− a)i

where i ∈ ZN
≥0.

Definition 8.3. We define an open polydisk Dr(a) of radius r ∈ Rn around a point a ∈ Cn

as a set of the form

Dr(a) = {z ∈ CN : ri > |zi − ai|}.
We also define a polytorus as a set of the form

Tr(a) = {z ∈ CN : ri = |zi − ai|}.

Observe that Tr(a) ⊂ ∂Dr(a). In the case of multivariable functions, we define a function
f(z)to be analytic at a point a if there exists an open polydisk around a in which f(z) can be
expressed as a power series centered at a. As it turns out, a lot of properties of multivariable
analytic functions are similar to those of single variable analytic functions (refer to Chapter
3 in [Mel21]).

Theorem 8.4. We have the following generalization of Cauchy’s Theorem

fi =
1

(2πi)n

∮
Tr(0)

f(z)
dz

zi+1

where 1 = (1, 1, . . . ) and the integral is taken to be a suitable polytorus around 0.

Theorem 8.5. Suppose a power series of the form

f(z) =
∑
i

fiz
i

converges at some z = w. Then the power series converges absolutely in the open ball Ow(0).
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It is common notation to write z̄ =
(

1
z1
, 1
z2
, ..., 1

zN

)
. Elements of C[z, z̄] are called Laurent

polynomials and elements of

C((z)) =
{∑

n≥N

anz
n, N ∈ Z, an ∈ C

}
are called Laurent series. All these definitions lead us to the Puiseux series.

Definition 8.6. We define a Puiseux series centered at a as an expression of the form∑
n≥N

an(z − a)n/R

where R ∈ Z>0, N ∈ Z and an ∈ C. Together they form a field denoted by Cfra((z)).

The reason why Puiseux series is so helpful is due to the following theorem [Mel21].

Theorem 8.7. Cfra((z)) is the algebraic closure of C((z)).

Multivariable generating functions are incredibly useful. One of their most powerful ap-
plications is enumerating paths on lattices. However, they do not seem to be as well studied
as single variable generating functions. [Mel21], [PWM24] provide an overview of various
methods employed in analytic combinatorics.

9. Enumerating paths on Lattices

Multivariable generating functions give us a single, robust way to deal with many problems
on enumerating lattice path. Let us make things concrete with the following definition.

Definition 9.1. A lattice path model consists of

• a finite set of steps S ⊂ ZN

• a region R ⊂ RN

• a starting point p ∈ R
• a terminal set T ⊂ R
• the combinatorial class of all finite tuples called paths (s1, . . . , sr) ∈ Sr such that
p+ s1 + · · ·+ sr ∈ T and p+ s1 + · · ·+ sk ∈ R for all 1 ≤ k ≤ r.

Sometimes it is helpful to assign weights to the steps. For instance, we might wish to
understand a random walk where every step is assigned a probability.

Definition 9.2. A weighted path model assigns a weight wi for each i ∈ S. The weight of
a path (s1, . . . , sr) ∈ Sr is the product of the weights ws1 · · ·wsr . Counting the number of
paths of length n refers to adding weights of all valid paths of length n.

Observe that the following generating functions provide us a comprehensive understanding
of lattice path models.

Definition 9.3. We define the characteristic polynomial as

S(z) =
∑
i∈S

wiz
i.

We similarly define
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Wn(z) =
∑
i∈Zd

fi,nz
i

where fi,n is the number of paths of length n beginning at p and ending at i. Finally, we
define

W (z, t) =
∑
n≥0

Wn(z)t
n.

We first look at the case when R = RN as this will help highlight the kernel method. The
idea is to inductively construct Wn+1 from Wn.

Lemma 9.4. When R = RN , we have

Wn+1(z) = S(z)Wn(z).

Proof. Follows upon expanding the right hand side of the equation. ■

This lemma, in a sense, allows us to build W (z) recursively using Wn. This is captured
in the following result

Theorem 9.5. When R = RN , we find the explicit relation

W (z, t) =
zp

1− tS(z)
.

Proof. From Lemma 9.4, it is easy to see Wn = W0S
n = zpSn. Upon using the formula for

geometric progression, we arrive at the theorem. ■

Hence, we come upon the following definition which is the reason why it is called the
kernel method.

Definition 9.6. The kernel is the following polynomial

K(z, t) = 1− tS(z).

Analyzing the roots of the kernel is one of the key ideas. Suppose we are interested in one
dimensional paths that begin and end at origin i.e. R = R, S ⊂ Z, p = 0 and T = {0}.
Such paths are called bridges. Hence, we are interested in the following generating function
which enumerates bridges

(9.1) B(t) = [z0]W (z, t) = [z0]
1

1− tS(z)
=

1

2πi

∮
1

1− tS(z)

dz

z
.

Here the loop integral is taken over a sufficiently small radius around the origin. Hence, we
can find the expression for B(t) by computing residues in the loop integral. We do so by
analyzing the roots of the kernel. Suppose the smallest element and largest elements in S
are −m and l where m, l > 0. We are interested in the solutions of

zmK(z, t) = 0

which are of the form
z = r(t).

We are only interested in those solutions which are bounded as t→ 0. The following lemma
tells us that there are m such roots.
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Lemma 9.7. The equation zmK(z, t) = 0 has m+M roots which can be represented using
a Puiseux series in t. Of these m+M roots, there are m “small” roots

z = rn(t), 1 ≤ n ≤ m

that go to 0 as t goes to 0. The rest of the M solutions blow up as t goes to 0.

We ask the reader to refer to page 147 in [Mel21] for the proof of this result. Hence, we
find the expression for B(t) by computing residues due to the above mentioned small roots.

Theorem 9.8. The generating function for the bridges of a given length is given by

B(t) = t

m∑
n=1

r′n(t)

rn(t)
.

Proof. From equation (9.1) we have

B(t) =
1

2πi

∮
1

1− tS(z)

dz

z
.

Observe that z = 0 is not a source of residue as m > 0. Also observe that the singularities
are simple poles as

S ′(rn(t)) =
d
dt
(−1 + tS(rn(t)))− S(rn(t))

tr′n(t)
= − 1

t2r′n(t)
̸= 0.

Hence, we have

B(t) =
∑
n

Resz=rn(t)

(
1

z(1− tS(z))

)
=
∑
n

lim
z→rn(t)

(
z − rn(t)

z(1− tS(z))

)

=
∑
n

(
1

rn(t)tS ′(rn(t))

)
= t

m∑
n=1

r′n(t)

rn(t)
.

■

Now we turn our attention to the half plane i.e. R = R≥0 and S ⊂ Z. Paths in this case
are called meanders. If they begin and end at the origin, they are called excursions. In this
case we need to subtract out all the paths that cross into Z<0. In order to do so, we arrive
at the following definition.

Definition 9.9. We define
S<−j :=

∑
n<−j,n∈S

wnz
n.

The corresponding theorems from the case when R = R are as follows.

Theorem 9.10. When R = R≥0 and S ⊂ Z, we have

Wn+1(z) = S(z)Wn(z)−
m−1∑
j=0

S<−j(z) z
j[zj]Wn(z).

Furthermore, if p = 0,

(9.2) K(z, t)W (z, t) = 1− t
m−1∑
n=0

S<−n(z) z
n[zn]W (z, t).
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Proof. Follows upon expanding the expressions as in Theorem 9.5 and Lemma 9.4. ■

We can once again determine a closed form expression for W (z, t) by analyzing the roots
of the kernel! We highlight this in the following theorem.

Theorem 9.11. When R = R≥0, S ⊂ Z and p = 0 we have

W (z, t) =

∏m
n=1 (1− z̄rn(t))

1− tS(z)
.

Additionally we have the following expressions for the generating functions for the number
of meanders and excursions

M(t) = W (1, t) =

∏m
n=1 (1− rn(t))

1− tS(1)
,

E(t) = [z0]W (z, t) = W (0, t) =
(−1)m−1

w−mt

m∏
n=1

rn(t).

Proof. Observe that the right hand side of 9.2 1− t
∑m−1

j=0 S<−j(z) z
j[zj]W (z, t) is of degree

m in z̄ with constant term 1. Also observe that
∏

j(z−rj(t)) divides this expression. Hence,
the first part of the theorem trivially follows. The rest of the results are immediate from the
first part of the theorem. ■

The previous proof highlights the power of analyzing roots of the kernel. This idea is
taken to the extreme in the algebraic kernel method. Typically, this method is applied to
when R = R2

≥0 and S ⊂ Z2. We highlight this method in the following example taken
from [BM05].

We take the case when S = {(−1, 0), (0,−1), (1, 1)} to demonstrate the method. Also let
z = (x, y). It is not too hard to arrive at the functional equation for W (x, y, t).

Theorem 9.12. When R = R2
≥0 and S = {(−1, 0), (0,−1), (1, 1)}, we have

xy(1− t(x̄+ ȳ + xy))W (x, y, t) = xy − xtW (x, 0, t)− ytW (0, y, t).

Proof. As in Theorems 9.5, 9.10 this follows from expanding the expressions and doing mild
casework. ■

In this case we take the kernel to be K(x, y, t) = 1 − t(x̄ + ȳ + xy). Also, we denote
R(x, t) = xtW (x, 0, t) = xtW (0, x, t). Now our task is to squeeze out as much is possible
from the right hand side of Theorem 9.12. The key is to analyze the symmetries of the
kernel. We observe

K(x, y, t) = K(x̄ȳ, y, t) = K(x, x̄ȳ, t).

This leads us to define the following two involutions which preserve the kernel

Φ: (x, y) 7→ (x̄ȳ, y),

Ψ: (x, y) 7→ (x, x̄ȳ).

We look at the group G generated by Φ and Ψ. We see that

G = {(x, y), (x̄ȳ, y), (x, x̄ȳ), (x̄ȳ, x), (y, x̄ȳ), (y, x)}.
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Unfortunately we are able to arrive only at the following relations

xy K(x, y, t)W (x, y, t) = xy −R(x, t)−R(y, t),

x̄ K(x, y, t)W (x̄ȳ, y, t) = x̄−R(x̄ȳ, t)−R(y, t),

ȳ K(x, y, t)W (x, x̄ȳ, t) = ȳ −R(x, t)−R(x̄ȳ, t)

(ideally G would give us more relations). Algebraically manipulating, we arrive at

(9.3) xyW (x, y, t)− x̄W (x̄ȳ, y, t) + ȳW (x, x̄ȳ, t) +
1

t
=

1

K(x, y, t)

(
1

t
− 2x̄− 2R(x)

)
.

Now the idea is to expand 1
K(x,y,t)

by analyzing the roots of the kernel. For a given x, let

y = Y0, Y1 be the solutions of the equation xyK(x, y, t) = 0. From the quadratic formula,
we have

Y0(x, t) =
1− tx̄−

√
∆(x, t)

2tx
= t+ x̄t2 +O(t3),

Y1(x, t) =
1− tx̄+

√
∆(x, t)

2tx
=

x̄

t
− x̄2 − t− x̄t2 +O(t3).

where ∆(x, t) = (1− tx̄)2 − 4t2x is the discriminant. Hence, we can write

1

K(x, y, t)
=

1√
∆(x, t)

(
1

1− ȳY0

+
1

1− y/Y1

− 1

)
(9.4)

=
1√

∆(x, t)

(∑
n≥0

ȳnY n
0 +

∑
n≥1

ynY −n
1

)
.(9.5)

We look at terms constant in y in the right hand side of (9.3) while using (9.4)

[y0]
1

K(x, y, t)

(
1

t
− 2x̄− 2R(x, t)

)
=

1√
∆(x, t)

(
1

t
− 2x̄− 2R(x, t)

)
.

Comparing with the right hand side of (9.3), we arrive at

[y0]

(
xyW (x, y, t)− x̄W (x̄ȳ, y, t) + ȳW (x, x̄ȳ, t) +

1

t

)
= −x̄Wd(x̄, t) +

1

t

(9.6)

=
1√

∆(x, t)

(
1

t
− 2x̄− 2R(x, t)

)
(9.7)

where Wd(z, t) =
∑

n≥0 z
n[(xnyn)]W (x, y, t). Now we factorize ∆(x, t) in terms of its roots

X0, X1 and X2

∆(x, t) = ∆0(t)∆+(x, t)∆−(x̄, t)

∆0(t) = 4t2X2, ∆+(x, t) = 1− x/X2, ∆−(x̄, t) = (1− x̄X0)(1− x̄X1).

The roots are explicitly given by

X0 = t+ 2t2
√
t+ 6t4 + · · · ,

X1 = t− 2t2
√
t+ 6t4 + · · · ,



24 KANAD BHATTACHARYA

X2 =
1

4t2
− 2t− 12t4 + · · · .

We re-write (9.6) as √
∆−(x̄, t)

(x
t
−Wd(x̄, t)

)
=

x
t
− 2− 2xR(x, t)√
∆0(t)∆+(x, t)

.

Looking only at non-negative powers of x, we arrive at

−x =
t√
∆0(t)

(
2xR(x, t) + 2− x/t√

∆+(x, t)
− 2

)
.

Hence, we can derive the generating function for W (x, 0, t) as R(x, t) = xtW (x, 0, t). This
is in turn enables us to find W (x, y, t) from 9.12. (We skip deriving the explicit expressions).

To recapitulate, the idea of the algebraic kernel method is to consider the symmetries of
the kernel to derive multiple functional equations involving W (x, y, t). Then, upon carefully
analyzing the roots of the kernel (and various other expressions), analyzing the coefficients
of the resulting expressions we find the expression for W (x, y, t).
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[FFP07] Philippe Flajolet, Éric Fusy, and Carine Pivoteau. Boltzmann sampling of unlabelled struc-
tures. In 2007 Proceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 201–211. SIAM, 2007.

[Fla03] Philippe Flajolet. Singular combinatorics. arXiv preprint math/0304465, 2003.
[FO82] Philippe Flajolet and Andrew Odlyzko. The average height of binary trees and other simple trees.

Journal of Computer and System Sciences, 25(2):171–213, 1982.
[FO90] Philippe Flajolet and Andrew Odlyzko. Singularity analysis of generating functions. SIAM Jour-

nal on discrete mathematics, 3(2):216–240, 1990.
[FR12] Guy Fayolle and Kilian Raschel. Some exact asymptotics in the counting of walks in the quarter

plane. Discrete Mathematics & Theoretical Computer Science, (Proceedings), 2012.
[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge University press,

2009.
[GS25] Jerzy Grunwald and Grzegorz Serafin. Explicit bounds for bell numbers and their ratios. Journal

of Mathematical Analysis and Applications, 549(2):129527, 2025.
[Har08] John M Harris. Combinatorics and graph theory. Springer, 2008.
[Hay56] Walter K Hayman. A generalisation of stirling’s formula. 1956.



AN OVERVIEW OF ANALYTIC COMBINATORICS 25

[HR18] Godfrey H Hardy and Srinivasa Ramanujan. Asymptotic formulaæ in combinatory analysis. Pro-
ceedings of the London Mathematical Society, 2(1):75–115, 1918.

[Knu73] Donald E Knuth. The Art of Computer Programming: Sorting and Searching, Fundamental Al
gorithms, volume 1. Addison-Wesley Professional, 1973.

[Knu98] Donald E Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley Professional, 1998.

[Mel21] Stephen Melczer. An Invitation to Analytic Combinatorics. Springer, 2021.
[New62] DJ Newman. A simplified proof of the partition formula. Michigan Math. J., 9(1):283–287, 1962.
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