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Definition of a matroid

Definition

A matroid is an ordered pair M = (E , I), where E is a finite set
called the ground set and I is the set of independent sets, which is
composed of some subsets of E such that:

I-1. The empty set is independent.

I-2. If A ∈ I, then a set B ⊆ A is also independent.

I-3. (independence augmentation property) If A,B ∈ I such that
|B| > |A|, then there is an element x ∈ B \ A where A ∪ {x}
is also independent.

A subset of E that is not independent is called a dependent set.

We also denote the ground set of a matroid M with E (M).
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Vector and affine matroids

In matroids built using linear algebra, the ground sets are column
vectors of a matrix A.

Vector matroids use linear independence to determine
independent sets. The vector matroid of matrix A is denoted
as M[A].

Affine matroids use affine independence to determine
independent sets.
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Graphic matroids

A cycle matroid is a matroid
built on a graph G where
the ground set consists of
the edges, and the
independent sets are the sets
of edges which do not have
any cycles in G .

A graphic matroid is a
matroid that is isomorphic
to a cycle matroid of a
graph.
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Figure: An example graph H, with
an independent set from M(H).
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Fano matroid

Proposition

Let E = {1, 2, 3, 4, 5, 6, 7} be the
set of points in the Fano plane.
Then, let I be the set of sets of
points that are not collinear in
the Fano plane, which is the
projective plane over GF (2).
Then, (E , I) is a matroid and is
called the Fano matroid F7.
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Figure: The Fano matroid F7.
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Other matroids

Proposition

If E is a set with n elements and I is the set of all subsets A of E
such that |A| ≤ r for some integer r where 0 ≤ r ≤ n, then
Ur ,n = (E , I) is a matroid and is called a uniform matroid.

Proposition

Let A1,A2,A3, . . . ,An be disjoint sets, and let
E = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An. Then, let I be the set of all subsets
of E that contain zero or one element from each of
A1,A2,A3, . . . ,An. Then, (E , I) is a matroid and is called a
transversal matroid.
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Bases

Definition

A base of a matroid M is an independent set of M with maximal
cardinality.

Proposition

All bases of a matroid have the same cardinality, called the rank of
the matroid, denoted by r(M).
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Bases

Lemma

The set of bases B of a matroid with ground set E satisfies the
following properties:

B-1. The set B is not empty.

B-2. (exchange property) If B1,B2 ∈ B and x1 ∈ B1 \ B2, there
exists an element x2 ∈ B2 \ B1 such that B1 \ {x1} ∪ {x2} is
also a base.
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Examples of bases

In a vector matroid on a
matrix A, the bases are the
maximal linearly
independent sets of columns
of A, which are the basis
sets of A.

In a graphic matroid M(G )
where G has n vertices, the
bases are the spanning trees
with n vertices that are
subgraphs of G .
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Figure: An example graph H, with a
base from M(H).
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Circuits

Definition

A circuit is a dependent set of a matroid with minimal cardinality.

Lemma

The set of circuits C of a matroid with ground set E satisfies the
following properties:

C-1. The empty set is not a circuit.

C-2. If A ∈ C, then all proper subsets of A are not circuits.

C-3. (circuit elimination property) If C1,C2 ∈ C, where C1 ̸= C2,
and x ∈ C1 ∩ C2, then (C1 ∪ C2) \ {x} contains a circuit.
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Examples of circuits

In a vector matroid of a
matrix A, the circuits are the
minimal linearly dependent
sets of column vectors of A.

In a graphic matroid M(G ),
the circuits are the cycles in
G with at least one edge.
We know that these are of
minimal cardinality because
if we remove an edge from
the cycle, then the resulting
subgraph has no cycles.
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Figure: An example graph H with a
circuit from M(H).
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The rank function

Definition

The rank function rM : 2E → N ∪ {0} of a matroid M with
ground set E is defined such that, if A ⊆ E , then r(A) is the
cardinality of the largest independent set contained in A. If the
matroid being referred to is clear, we usually shorten rM to r .

Lemma

The rank function r of a matroid with ground set E satisfies the
following properties:

R-1. For a subset A of E , we have 0 ≤ r(A) ≤ |A|.
R-2. If A ⊆ B ⊆ E, then r(A) ≤ r(B).

R-3. (submodularity property) If A,B ⊆ E, we have
r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B).
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Examples of rank functions

Let A be a matrix over a field F, and let E be the set of
column vectors of A. Then, the rank function of M[A] is given
by the rank of the matrix formed by each subset of E .

Let G be a graph. Then, the rank function of M(G ) is given
by the largest number of edges in each subgraph of G that
has no cycles.
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Duals of graphs

Definition

Let G be a planar graph. The dual of G , denoted by G ∗, is
constructed by placing a vertex representing every face or region of
G , then drawing an edge between pairs of vertices that represent
adjacent faces.

Here, we notice that the spanning trees of G ∗ are complements of
the spanning trees of G .
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Figure: An example graph H with its dual H∗ in blue.
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Duals of matroids

Theorem

Let M = (E , I) be a matroid with B as the set of its bases. Then,
let B∗ = {E \ x | x ∈ B} be the set of complements of the
elements of B. Then, B∗ is a set of bases of another matroid with
ground set E .

The matroid described above is called the dual of M and is
denoted by M∗.

Proposition

Let M be a matroid. Then, (M∗)∗ = M.
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Example of dual matroids

Example

In the uniform matroid Ur ,n, the bases are the subsets of the
ground set with r elements, so those of U∗

r ,n are the subsets of the
ground set with n− r elements, therefore U∗

r ,n = Un−r ,n. Thus, the
dual of a uniform matroid is also a uniform matroid.
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Minors of matroids

Deleting a subset of the ground set is removing its elements
from the ground set and all independent sets that have any of
those elements.

Contracting a subset of the ground set is deleting that subset
in the dual matroid.

A minor of a matroid M is a matroid that can be obtained
from M by a sequence of deletions and contractions.
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Minors of matroids

Lemma

Let M be a matroid with ground set E , and let A and B be
disjoint subsets of E . We then have

(M\ A) \ B = M\ (A ∪ B) = (M\ B) \ A,
(M/A)/B = M/(A ∪ B) = (M/B)/A,

(M/A) \ B = (M\ B)/A.

So, any sequence of deletions and contractions can be written as
just one deletion and one contraction.
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Direct sum of matroids

Proposition

Let M1 = (E1, I1) and M2 = (E2, I2) be matroids, where E1 and
E2 are disjoint. Then, define I to be the set of subsets A of
E1 ∪ E2 where A ∩ E1 and A ∩ E2 are independent in M1 and M2,
respectively. Then, (E1 ∪ E2, I) is a matroid and is called the
union or direct sum of M1 and M2, denoted by M1 ⊕M2.
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Representability of matroids

Definition

A matroid with n elements is F-representable if each element of
the matroid can be mapped to a column vector in a matrix A with
n columns over the field F so that the column vectors
corresponding to the elements in each independent set are linearly
independent. The matrix A is called the F-representation of the
matroid. Additionally, a matroid is representable if there exists a
field F such that the matroid is F-representable.

Definition

A matroid is binary if it can be represented over the field
GF (2) = Z/2Z and ternary if it can be represented over the field
GF (3) = Z/3Z.
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Representability of graphic matroids

Definition

Let G be a graph. The vertex-edge incidence matrix of G is the
matrix that has rows labeled with the vertices of G and the
columns labeled with the edges of G . If an edge e in G is a loop
(that is, it connects a vertex to itself), then the column
corresponding to e is the zero vector. Otherwise, the entry
corresponding to vertex v and edge e of G is 1 if v is an
end-vertex of e and 0 if it is not.
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Representability of graphic matroids

Example

Consider graph H shown to the
right. The vertex-edge incidence
matrix would then be as follows:

a b c d e f g


1 1 0 1 0 0 1 1
2 1 1 0 0 0 0 0
3 0 1 1 1 1 0 0
4 0 0 0 1 0 1 0
5 0 0 0 0 1 0 1
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Figure: An example graph H.
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Representability of graphic matroids

Theorem

Let G = (V ,E ) be a graph with vertex-edge incidence matrix AG .
Then, the vector matroid M[AG ] viewed over GF (2) has all subsets
of E that do not contain the edges of a cycle in G as its
independent sets. Then, M[AG ] = M(G ), and M(G ) is binary.
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The Vámos matroid

Definition

Let E = {1, 2, 3, 4, 5, 6, 7, 8} and

A = {{1, 2, 3, 4}, {1, 4, 5, 6}, {1, 4, 7, 8}, {2, 3, 5, 6}, {2, 3, 7, 8}}.

Then, there exists a matroid M where all subsets of E with at
most three elements are independent, and the five elements of A
are the only circuits. This is called the Vámos matroid and is
denoted by V8.
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The Vámos matroid
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Figure: The Vámos matroid V8.

Proposition

The Vámos matroid is not representable over any field.
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Thank you!
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