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Introduction



Motivating Question

Problem

Consider the curve x3 + y3 = 1. What points with rational

coordinates lie on this curve?

x3 + y3 = 1
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Fermat’s Last Theorem

“It is impossible to separate a cube into two cubes, or a

fourth power into two fourth powers, or in general, any

power higher than the second, into two like powers. I

have discovered a truly marvelous proof of this, which

this margin is too narrow to contain.”

Theorem (Fermat’s last theorem)

For any integer n > 2, there are no positive integer solutions to

the equation

an + bn = cn.
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Fermat’s Last Theorem

Corollary

For any integer n > 2, there are no nonzero integer solutions to

the equation

an + bn = cn.

Corollary

For any integer n > 2, there are no rational solutions to the

equation

xn + yn = 1

if both x and y are nonzero.

• Only rational points on x3 + y3 = 1: (0, 1), (1, 0)
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Preliminaries



Characteristic

Definition (Characteristic)

The characteristic of a field K is the smallest positive integer n

such that 1+ 1+ · · ·+ 1︸ ︷︷ ︸
n times

= 0. If no such n exists, the

characteristic is defined to be 0.

Example

• Set of integers modulo prime p: Fp = {0, 1, . . . ,p− 1}
• Finite field with characteristic p

• Finite number of elements

• Smallest positive integer such that 1+ 1+ · · ·+ 1︸ ︷︷ ︸
p times

≡ 0

(mod p) is p
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Endomorphism

Definition (Endomorphism)

An endomorphism is a homomorphism between an algebraic

object and itself.

Example

• Let Fp be field of characteristic p for some prime p

• ϕ : Fp → Fp defined by ϕ(x) = xp is endomorphism

• Fermat’s little theorem: ap−1 ≡ 1 (mod p) =⇒ ap ≡ a

(mod p)

• ϕ(x) = x

• Frobenius endomorphism
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Curves Over Fields

Definition

An algebraic object is said to be defined over a field K if its

coefficients lie in K .

Definition (K-rational points)

The set of points on a curve C with coordinates in a field K ,

denoted C(K), is known as the K-rational points.

Example

• Let L be the line y − x = 0

• Defined over Q, since coefficients 1,−1 ∈ Q

• Set of Q-rational points: L(Q) = {(x, y) ∈ Q2 : y − x = 0}
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General Weierstrass Equations

Definition (General Weierstrass Equation)

A general Weierstrass equation over a field K is

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1,a2,a3,a4,a6 ∈ K .
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General Weierstrass Equations

Example

• y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

y2 = x3 + 1 y2 − xy = x3 +
1

2
x2 +

3

16
x +

65

64

9
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Elliptic Curves

Definition (Elliptic Curve)

If E is the set of solutions to a general Weierstrass equation

and the discriminant ∆ 6= 0, we call E an elliptic curve.

y2 = x3 + 1 y2 = x3 − x

10
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Singular Weierstrass Curves

Definition (Singular Weistrass Curve)

If E is the set of solutions to a general Weierstrass equation

and the discriminant ∆ = 0, we call E a singular Weierstrass
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Short Weierstrass Equation

Proposition

If E is a general Weierstrass equation defined over a field K of

characteristic not 2 or 3, then it can be written in the form

y2 = x3 + ax + b.

This is known as a short Weierstrass equation.

Proof.

• y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

• Let y = y′ − a1x + a3

2
(valid for characteristic not 2)

• y′2 = x3 + a′2x
2 + a′4x + a′6

• Let x = x′ − a′2
3

(valid for characteristic not 3)

• y′2 = x′3 + ax′ + b
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Short Weierstrass Equation

Example

y2 = x3 + 1
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Rational Points on Curves



Rational Points on Lines

Proposition

The rational points on the rational line ax + by + c = 0 are

given by
(
t,−a

b
t − c

b

)
if b 6= 0 and

(
− c

a
, t
)
if b = 0.
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Rational Points on Conics

Proposition

There is a one-to-one correspondence between the points on a

rational line and a rational conic.
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Rational Points on Singular Weierstrass Curves

Proposition

There is a one-to-one correspondence between the points on a

rational line and a singular Weierstrass curve except at the

singular point.
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Rational Points on Singular Weierstrass Curves

Proposition

There is a one-to-one correspondence between the points on a

rational line and a singular Weierstrass curve except at the
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Geometry of Elliptic Curves



Adding Two Points

• Let O,P,Q be on elliptic curve for fixed O

• Construct
←→
PQ

• This will intersect elliptic curve at a third point: P ∗ Q
• Construct

←−−−−→
O(P ∗ Q)

• This will intersect elliptic curve at a third point: P+ Q
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Group Law

Proposition

Adding points forms an Abelian group with identity O.
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Group Law
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Group Law

Proposition

Adding points forms an Abelian group with identity O.
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Group Law

Proposition

Adding points forms an Abelian group with identity O.

Commutative Property
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Hasse’s Theorem



Hasse’s Theorem

Theorem (Hasse’s theorem)

Let E be an elliptic curve and Fq a finite field of order q = pn for

some prime p and positive integer n. Then

|#E(Fq)− (q+ 1)| ≤ 2
√
q.

• Bounds number of points on elliptic curve

• Expected number of Fq-rational points is close to q+ 1

• The +1 is because of point at infinity

19
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Hasse’s Theorem

• |#E(Fq)− (q+ 1)| ≤ 2
√
q

Example

• y2 = x3 + x + 1 over F5

x x3 + x + 1 (mod 5) y # of y

0 03 + 0+ 1 = 1 1, 4 2

1 13 + 1+ 1 = 3 none 0

2 23 + 2+ 1 = 11 ≡ 1 1, 4 2

3 33 + 3+ 1 = 31 ≡ 1 1, 4 2

4 43 + 4+ 1 = 69 ≡ 4 2, 3 2

• #E(F5) = 2+ 0+ 2+ 2+ 2+ 1 = 9 distinct points,

including point at infinity

• |9− (5+ 1)| = 3 ≤ 2
√
5
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Hasse’s Theorem

Proof.

• Consider Frobenius endomorphism: ϕq : E → E, where

ϕq(x, y) = (xq, yq) and ϕ(O) = O, where O is point at

infinity

• E(Fq) = ker(ϕq − 1)

• #E(Fq) = #ker(ϕq − 1) = deg(ϕq − 1)

• Let a = #E(Fq)− (q+ 1)

• deg(rϕq − s) = r2q+ s2 + rsa ≥ 0

• deg(xϕq − 1) = qx2 + ax + 1 ≥ 0

• a2 − 4q ≤ 0

• |a| ≤ 2
√
q

21
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Riemann Hypothesis for Elliptic Curves

Theorem

Let a = #E(Fq)− (q+ 1). Let α and β be the roots of the

characteristic polynomial T2 − aT + q = 0. Then |α| = |β| = √q.

Proof.

• |a| ≤ 2
√
q

• Vieta’s formulas: α+ β = a and αβ = q

• α and β complex conjugates

• Let α = reiθ and β = re−iθ

• αβ = r2 = q =⇒ r =
√
q =⇒ α =

√
qeiθ, β =

√
qe−iθ

• |α| = |√qe−iθ| = |√q|, |β| = |√qe−iθ| = |√q|
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Hasse’s Theorem

Proposition

The Riemann hypothesis for elliptic curves implies Hasse’s

theorem.

Proof.

• a = α+ β

• |a| = |α+ β| ≤ |α|+ |β| = 2
√
q

• |a| = |#E(Fq)− (q+ 1)| ≤ 2
√
q
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