Elliptic Curves Over Finite Fields

Jonathan Yu July 14, 2025

Introduction

Motivating Question

Problem

Consider the curve $x^3 + y^3 = 1$. What points with rational coordinates lie on this curve?

Motivating Question

Problem

Consider the curve $x^3 + y^3 = 1$. What points with rational coordinates lie on this curve?

"It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvelous proof of this, which this margin is too narrow to contain."

"It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvelous proof of this, which this margin is too narrow to contain."

Theorem (Fermat's last theorem)

For any integer n > 2, there are no positive integer solutions to the equation

$$a^n + b^n = c^n.$$

3

Corollary

For any integer n > 2, there are no nonzero integer solutions to the equation

$$a^n + b^n = c^n.$$

Corollary

For any integer n > 2, there are no nonzero integer solutions to the equation

$$a^n + b^n = c^n.$$

Corollary

For any integer n > 2, there are no rational solutions to the equation

$$x^n + y^n = 1$$

if both x and y are nonzero.

Corollary

For any integer n > 2, there are no nonzero integer solutions to the equation

$$a^n + b^n = c^n$$
.

Corollary

For any integer n > 2, there are no rational solutions to the equation

$$x^n + y^n = 1$$

if both x and y are nonzero.

• Only rational points on $x^3 + y^3 = 1$: (0,1),(1,0)

4

Preliminaries

Definition (Characteristic)

The **characteristic** of a field K is the smallest positive integer n such that $\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$. If no such n exists, the characteristic is defined to be 0.

5

Definition (Characteristic)

The **characteristic** of a field K is the smallest positive integer n such that $\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$. If no such n exists, the characteristic is defined to be 0.

Example

• Set of integers modulo prime p: $\mathbb{F}_p = \{0, 1, \dots, p-1\}$

5

Definition (Characteristic)

The **characteristic** of a field K is the smallest positive integer n such that $\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$. If no such n exists, the characteristic is defined to be 0.

- Set of integers modulo prime p: $\mathbb{F}_p = \{0, 1, \dots, p-1\}$
- Finite field with characteristic p

Definition (Characteristic)

The **characteristic** of a field K is the smallest positive integer n such that $\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$. If no such n exists, the characteristic is defined to be 0.

- Set of integers modulo prime p: $\mathbb{F}_p = \{0, 1, \dots, p-1\}$
- Finite field with characteristic p
 - · Finite number of elements

Definition (Characteristic)

The **characteristic** of a field K is the smallest positive integer n such that $\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$. If no such n exists, the characteristic is defined to be 0.

Example

- Set of integers modulo prime p: $\mathbb{F}_p = \{0, 1, \dots, p-1\}$
- Finite field with characteristic p
 - · Finite number of elements
 - Smallest positive integer such that $\underbrace{1+1+\cdots+1}_{p \text{ times}} \equiv 0$ (mod p) is p

5

Definition (Endomorphism)

An **endomorphism** is a homomorphism between an algebraic object and itself.

Definition (Endomorphism)

An **endomorphism** is a homomorphism between an algebraic object and itself.

Example

• Let \mathbb{F}_p be field of characteristic p for some prime p

Definition (Endomorphism)

An **endomorphism** is a homomorphism between an algebraic object and itself.

- Let \mathbb{F}_p be field of characteristic p for some prime p
- $\varphi \colon \mathbb{F}_p \to \mathbb{F}_p$ defined by $\varphi(x) = x^p$ is endomorphism

Definition (Endomorphism)

An **endomorphism** is a homomorphism between an algebraic object and itself.

- Let \mathbb{F}_p be field of characteristic p for some prime p
- $\varphi \colon \mathbb{F}_p \to \mathbb{F}_p$ defined by $\varphi(x) = x^p$ is endomorphism
 - Fermat's little theorem: $a^{p-1} \equiv 1 \pmod{p} \implies a^p \equiv a \pmod{p}$

Definition (Endomorphism)

An **endomorphism** is a homomorphism between an algebraic object and itself.

Example

- Let \mathbb{F}_p be field of characteristic p for some prime p
- $\varphi \colon \mathbb{F}_p \to \mathbb{F}_p$ defined by $\varphi(x) = x^p$ is endomorphism
 - Fermat's little theorem: $a^{p-1} \equiv 1 \pmod{p} \implies a^p \equiv a \pmod{p}$
 - $\varphi(x) = x$

6

Definition (Endomorphism)

An **endomorphism** is a homomorphism between an algebraic object and itself.

Example

- Let \mathbb{F}_p be field of characteristic p for some prime p
- $\varphi \colon \mathbb{F}_p \to \mathbb{F}_p$ defined by $\varphi(x) = x^p$ is endomorphism
 - Fermat's little theorem: $a^{p-1} \equiv 1 \pmod{p} \implies a^p \equiv a \pmod{p}$
 - $\varphi(x) = x$
- · Frobenius endomorphism

6

Definition

An algebraic object is said to be **defined over** a field *K* if its coefficients lie in *K*.

Definition

An algebraic object is said to be **defined over** a field *K* if its coefficients lie in *K*.

Definition (K-rational points)

The set of points on a curve C with coordinates in a field K, denoted C(K), is known as the K-rational points.

Definition

An algebraic object is said to be **defined over** a field *K* if its coefficients lie in *K*.

Definition (K-rational points)

The set of points on a curve C with coordinates in a field K, denoted C(K), is known as the K-rational points.

Example

• Let *L* be the line y - x = 0

Definition

An algebraic object is said to be **defined over** a field *K* if its coefficients lie in *K*.

Definition (K-rational points)

The set of points on a curve C with coordinates in a field K, denoted C(K), is known as the K-rational points.

- Let L be the line y x = 0
- Defined over \mathbb{Q} , since coefficients $1, -1 \in \mathbb{Q}$

Definition

An algebraic object is said to be **defined over** a field *K* if its coefficients lie in *K*.

Definition (K-rational points)

The set of points on a curve C with coordinates in a field K, denoted C(K), is known as the K-rational points.

- Let L be the line y x = 0
- Defined over \mathbb{Q} , since coefficients $1, -1 \in \mathbb{Q}$
- Set of \mathbb{Q} -rational points: $L(\mathbb{Q}) = \{(x,y) \in \mathbb{Q}^2 : y x = 0\}$

Definition (General Weierstrass Equation)

A general Weierstrass equation over a field K is

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

where $a_1, a_2, a_3, a_4, a_6 \in K$.

$$\cdot y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

$$\cdot y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

•
$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

Elliptic Curves

Definition (Elliptic Curve)

If *E* is the set of solutions to a general Weierstrass equation and the discriminant $\Delta \neq 0$, we call *E* an **elliptic curve**.

Elliptic Curves

Definition (Elliptic Curve)

If *E* is the set of solutions to a general Weierstrass equation and the discriminant $\Delta \neq 0$, we call *E* an **elliptic curve**.

Elliptic Curves

Definition (Elliptic Curve)

If *E* is the set of solutions to a general Weierstrass equation and the discriminant $\Delta \neq 0$, we call *E* an **elliptic curve**.

Singular Weierstrass Curves

Definition (Singular Weistrass Curve)

If E is the set of solutions to a general Weierstrass equation and the discriminant $\Delta=0$, we call E a singular Weierstrass curve.

Singular Weierstrass Curves

Definition (Singular Weistrass Curve)

If E is the set of solutions to a general Weierstrass equation and the discriminant $\Delta=0$, we call E a singular Weierstrass curve.

Singular Weierstrass Curves

Definition (Singular Weistrass Curve)

If E is the set of solutions to a general Weierstrass equation and the discriminant $\Delta=0$, we call E a singular Weierstrass curve.

Singular Weierstrass Curves

Definition (Singular Weistrass Curve)

If E is the set of solutions to a general Weierstrass equation and the discriminant $\Delta=0$, we call E a singular Weierstrass curve.

Proposition

If E is a general Weierstrass equation defined over a field K of characteristic not 2 or 3, then it can be written in the form

$$y^2 = x^3 + ax + b.$$

This is known as a **short Weierstrass equation**.

Proposition

If E is a general Weierstrass equation defined over a field K of characteristic not 2 or 3, then it can be written in the form

$$y^2 = x^3 + ax + b.$$

This is known as a **short Weierstrass equation**.

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

Proposition

If E is a general Weierstrass equation defined over a field K of characteristic not 2 or 3, then it can be written in the form

$$y^2 = x^3 + ax + b.$$

This is known as a **short Weierstrass equation**.

- $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$
- Let $y = y' \frac{a_1x + a_3}{2}$ (valid for characteristic not 2)

Proposition

If E is a general Weierstrass equation defined over a field K of characteristic not 2 or 3, then it can be written in the form

$$y^2 = x^3 + ax + b.$$

This is known as a **short Weierstrass equation**.

- $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$
- Let $y = y' \frac{a_1x + a_3}{2}$ (valid for characteristic not 2)
- $y'^2 = x^3 + a_2'x^2 + a_4'x + a_6'$

Proposition

If E is a general Weierstrass equation defined over a field K of characteristic not 2 or 3, then it can be written in the form

$$y^2 = x^3 + ax + b.$$

This is known as a **short Weierstrass equation**.

- $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$
- Let $y = y' \frac{a_1x + a_3}{2}$ (valid for characteristic not 2)
- $y'^2 = x^3 + a_2'x^2 + a_4'x + a_6'$
- Let $x = x' \frac{a_2'}{3}$ (valid for characteristic not 3)

Proposition

If E is a general Weierstrass equation defined over a field K of characteristic not 2 or 3, then it can be written in the form

$$y^2 = x^3 + ax + b.$$

This is known as a **short Weierstrass equation**.

- $v^2 + a_1xv + a_3v = x^3 + a_2x^2 + a_4x + a_6$
- Let $y = y' \frac{a_1x + a_3}{2}$ (valid for characteristic not 2)
- $y'^2 = x^3 + a_2'x^2 + a_4'x + a_6'$
- Let $x = x' \frac{a_2'}{3}$ (valid for characteristic not 3)
- $v'^2 = x'^3 + ax' + b$

$$\cdot \ x = x' - \frac{1}{4}$$

Rational Points on Curves

Rational Points on Lines

Proposition

The rational points on the rational line ax + by + c = 0 are given by $\left(t, -\frac{a}{b}t - \frac{c}{b}\right)$ if $b \neq 0$ and $\left(-\frac{c}{a}, t\right)$ if b = 0.

Rational Points on Lines

Proposition

The rational points on the rational line ax + by + c = 0 are given by $\left(t, -\frac{a}{b}t - \frac{c}{b}\right)$ if $b \neq 0$ and $\left(-\frac{c}{a}, t\right)$ if b = 0.

Rational Points on Conics

Proposition

There is a one-to-one correspondence between the points on a rational line and a rational conic.

Rational Points on Conics

Proposition

There is a one-to-one correspondence between the points on a rational line and a rational conic.

Rational Points on Singular Weierstrass Curves

Proposition

There is a one-to-one correspondence between the points on a rational line and a singular Weierstrass curve except at the singular point.

Rational Points on Singular Weierstrass Curves

Proposition

There is a one-to-one correspondence between the points on a rational line and a singular Weierstrass curve except at the singular point.

Geometry of Elliptic Curves

• Let \mathcal{O}, P, Q be on elliptic curve for fixed \mathcal{O}

- Let \mathcal{O}, P, Q be on elliptic curve for fixed \mathcal{O} Construct \overrightarrow{PQ}

- Let \mathcal{O}, P, Q be on elliptic curve for fixed \mathcal{O}
- Construct PQ
- This will intersect elliptic curve at a third point: P * Q

- Let \mathcal{O}, P, Q be on elliptic curve for fixed \mathcal{O}
- Construct PQ
- This will intersect elliptic curve at a third point: P * Q
- Construct $\overleftarrow{\mathcal{O}(P*Q)}$

- Let \mathcal{O}, P, Q be on elliptic curve for fixed \mathcal{O}
- Construct PQ
- This will intersect elliptic curve at a third point: P * Q
- Construct O(P * Q)
- This will intersect elliptic curve at a third point: P + Q

- Let \mathcal{O}, P, Q be on elliptic curve for fixed \mathcal{O}
- Construct PQ
- This will intersect elliptic curve at a third point: P * Q
- Construct O(P * Q)
- This will intersect elliptic curve at a third point: P + Q

- Let \mathcal{O} , P, Q be on elliptic curve for fixed \mathcal{O}
- Construct PQ
- This will intersect elliptic curve at a third point: P * Q
- Construct O(P * Q)
- This will intersect elliptic curve at a third point: P + Q

Proposition

Proposition

Proposition

Proposition

Proposition

Hasse's Theorem

Hasse's Theorem

Theorem (Hasse's theorem)

Let E be an elliptic curve and \mathbb{F}_q a finite field of order $q=p^n$ for some prime p and positive integer n. Then

$$|\#E(\mathbb{F}_q)-(q+1)|\leq 2\sqrt{q}.$$

Bounds number of points on elliptic curve

Hasse's Theorem

Theorem (Hasse's theorem)

Let E be an elliptic curve and \mathbb{F}_q a finite field of order $q=p^n$ for some prime p and positive integer n. Then

$$|\#E(\mathbb{F}_q)-(q+1)|\leq 2\sqrt{q}.$$

- Bounds number of points on elliptic curve
- Expected number of \mathbb{F}_q -rational points is close to q+1

Theorem (Hasse's theorem)

Let E be an elliptic curve and \mathbb{F}_q a finite field of order $q=p^n$ for some prime p and positive integer n. Then

$$|\#E(\mathbb{F}_q)-(q+1)|\leq 2\sqrt{q}.$$

- Bounds number of points on elliptic curve
- Expected number of \mathbb{F}_q -rational points is close to q+1
- The +1 is because of point at infinity

•
$$|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

$$\cdot |\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

Example

•
$$y^2 = x^3 + x + 1$$
 over \mathbb{F}_5

$$\cdot |\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

Example

•
$$y^2 = x^3 + x + 1$$
 over \mathbb{F}_5

X	$x^3 + x + 1 \pmod{5}$	У	# of y
0	$0^3 + 0 + 1 = 1$	1, 4	2
1	$1^3 + 1 + 1 = 3$	none	0
2	$2^3 + 2 + 1 = 11 \equiv 1$	1, 4	2
3	$3^3 + 3 + 1 = 31 \equiv 1$	1, 4	2
4	$4^3 + 4 + 1 = 69 \equiv 4$	2,3	2

$$\cdot |\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

Example

•
$$y^2 = x^3 + x + 1$$
 over \mathbb{F}_5

X	$x^3 + x + 1 \pmod{5}$	У	# of y
0	$0^3 + 0 + 1 = 1$	1, 4	2
1	$1^3 + 1 + 1 = 3$	none	0
2	$2^3 + 2 + 1 = 11 \equiv 1$	1, 4	2
3	$3^3 + 3 + 1 = 31 \equiv 1$	1, 4	2
4	$4^3 + 4 + 1 = 69 \equiv 4$	2,3	2

• $\#E(\mathbb{F}_5) = 2 + 0 + 2 + 2 + 2 + 1 = 9$ distinct points, including point at infinity

$$\cdot |\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$$

Example

•
$$y^2 = x^3 + x + 1$$
 over \mathbb{F}_5

X	$x^3 + x + 1 \pmod{5}$	У	# of y
0	$0^3 + 0 + 1 = 1$	1, 4	2
1	$1^3 + 1 + 1 = 3$	none	0
2	$2^3 + 2 + 1 = 11 \equiv 1$	1, 4	2
3	$3^3 + 3 + 1 = 31 \equiv 1$	1, 4	2
4	$4^3 + 4 + 1 = 69 \equiv 4$	2,3	2

- $\#E(\mathbb{F}_5) = 2 + 0 + 2 + 2 + 2 + 1 = 9$ distinct points, including point at infinity
- $|9 (5 + 1)| = 3 \le 2\sqrt{5}$

Proof.

• Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$
- $\#E(\mathbb{F}_q) = \#\ker(\varphi_q 1) = \deg(\varphi_q 1)$

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$
- $\#E(\mathbb{F}_q) = \#\ker(\varphi_q 1) = \deg(\varphi_q 1)$
- Let $a = \#E(\mathbb{F}_q) (q+1)$

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$
- $\#E(\mathbb{F}_q) = \#\ker(\varphi_q 1) = \deg(\varphi_q 1)$
- Let $a = \#E(\mathbb{F}_q) (q+1)$
- $deg(r\varphi_q s) = r^2q + s^2 + rsa \ge 0$

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$
- $\#E(\mathbb{F}_q) = \#\ker(\varphi_q 1) = \deg(\varphi_q 1)$
- Let $a = \#E(\mathbb{F}_q) (q+1)$
- $deg(r\varphi_q s) = r^2q + s^2 + rsa \ge 0$
- $\cdot \deg(x\varphi_q-1)=qx^2+ax+1\geq 0$

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$
- $\#E(\mathbb{F}_q) = \#\ker(\varphi_q 1) = \deg(\varphi_q 1)$
- Let $a = \#E(\mathbb{F}_q) (q+1)$
- $deg(r\varphi_q s) = r^2q + s^2 + rsa \ge 0$
- $\cdot \deg(x\varphi_q-1)=qx^2+ax+1\geq 0$
- $a^2 4q \le 0$

- Consider Frobenius endomorphism: $\varphi_q \colon E \to E$, where $\varphi_q(x,y) = (x^q,y^q)$ and $\varphi(\mathcal{O}) = \mathcal{O}$, where \mathcal{O} is point at infinity
- $E(\mathbb{F}_q) = \ker(\varphi_q 1)$
- $\#E(\mathbb{F}_q) = \#\ker(\varphi_q 1) = \deg(\varphi_q 1)$
- Let $a = \#E(\mathbb{F}_q) (q+1)$
- $deg(r\varphi_q s) = r^2q + s^2 + rsa \ge 0$
- $\cdot \deg(x\varphi_q-1)=qx^2+ax+1\geq 0$
- $a^2 4q \le 0$
- $|a| \le 2\sqrt{q}$

Theorem

Let
$$a=\# E(\mathbb{F}_q)-(q+1)$$
. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

Theorem

Let $a=\# E(\mathbb{F}_q)-(q+1)$. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

Proof.

• $|a| \le 2\sqrt{q}$

Theorem

Let $a=\# E(\mathbb{F}_q)-(q+1)$. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

- $|a| \le 2\sqrt{q}$
- Vieta's formulas: $\alpha + \beta = a$ and $\alpha\beta = q$

Theorem

Let $a=\# E(\mathbb{F}_q)-(q+1)$. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

- $|a| \le 2\sqrt{q}$
- Vieta's formulas: $\alpha + \beta = a$ and $\alpha\beta = q$
- α and β complex conjugates

Theorem

Let $a=\# E(\mathbb{F}_q)-(q+1)$. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

- $|a| \le 2\sqrt{q}$
- Vieta's formulas: $\alpha + \beta = a$ and $\alpha\beta = q$
- α and β complex conjugates
- Let $\alpha = re^{i\theta}$ and $\beta = re^{-i\theta}$

Theorem

Let $a=\# E(\mathbb{F}_q)-(q+1)$. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

- $|a| \leq 2\sqrt{q}$
- Vieta's formulas: $\alpha + \beta = a$ and $\alpha\beta = q$
- α and β complex conjugates
- Let $\alpha = re^{i\theta}$ and $\beta = re^{-i\theta}$
- $\cdot \alpha \beta = r^2 = q \implies r = \sqrt{q} \implies \alpha = \sqrt{q} e^{i\theta}, \beta = \sqrt{q} e^{-i\theta}$

Theorem

Let $a=\# E(\mathbb{F}_q)-(q+1)$. Let α and β be the roots of the characteristic polynomial $T^2-aT+q=0$. Then $|\alpha|=|\beta|=\sqrt{q}$.

- $|a| \le 2\sqrt{q}$
- Vieta's formulas: $\alpha + \beta = a$ and $\alpha\beta = q$
- α and β complex conjugates
- Let $\alpha = re^{i\theta}$ and $\beta = re^{-i\theta}$
- $\cdot \alpha \beta = r^2 = q \implies r = \sqrt{q} \implies \alpha = \sqrt{q} e^{i\theta}, \beta = \sqrt{q} e^{-i\theta}$
- $|\alpha| = |\sqrt{q}e^{-i\theta}| = |\sqrt{q}|, |\beta| = |\sqrt{q}e^{-i\theta}| = |\sqrt{q}|$

Proposition

The Riemann hypothesis for elliptic curves implies Hasse's theorem.

Proposition

The Riemann hypothesis for elliptic curves implies Hasse's theorem.

•
$$a = \alpha + \beta$$

Proposition

The Riemann hypothesis for elliptic curves implies Hasse's theorem.

- $a = \alpha + \beta$
- $|a| = |\alpha + \beta| \le |\alpha| + |\beta| = 2\sqrt{q}$

Proposition

The Riemann hypothesis for elliptic curves implies Hasse's theorem.

- $a = \alpha + \beta$
- $|a| = |\alpha + \beta| \le |\alpha| + |\beta| = 2\sqrt{q}$
- $|a| = |\#E(\mathbb{F}_{\parallel}) (q+1)| \le 2\sqrt{q}$