ELLIPTIC CURVES OVER FINITE FIELDS
JONATHAN YU

ABSTRACT. Determining the set of all K-rational point on an arbitary curve is a very
difficult problem in number theory. While there is no known way to do this in general, it
can be done for simple curves like lines and conics. For elliptic curves over finite fields,
Hasse’s theorem can be used to put a bound on the number of possible K-rational points.
For more general curves over finite fields, the Hasse-Weil bound can be used.

1. INTRODUCTION

The theory of Diophantine equations, named after the Greek mathematician Diophantus
of Alexandria, is a branch of mathematics that deals with integer and sometimes rational
solutions to polynomial equations. A famous example of a Diophantine equation is the one
that appears in Fermat’s last theorem. The theorem states that for any integer n > 2, there
are no positive integer solutions to the equation

a+ bt =",

Pierre de Fermat first proposed this theorem in the margin of his copy of the book Arithmetica
around 1637, stating, “It is impossible to separate a cube into two cubes, or a fourth power
into two fourth powers, or in general, any power higher than the second, into two like powers.
I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.”
Although it is quite unlikely that he had a valid proof of this fact, he did manage to prove it
for n = 4. The problem remained unsolved for more than 350 years. Then in 1995, Andrew
Wiles, with some help from Richard Taylor, published in a pair of groundbreaking papers
a proof of the theorem. This proof relied on a connection between a special type of cubic
curve known as an elliptic curve and modular forms.

Elliptic curves, contrary what their name suggests, are not really that closely related to
ellipses. Ellipses are a type of conic section, which is a degree 2 curve. The term arose when
people were studying how to compute the arc length of an ellipse. If one makes a certain
elementary substitution into the integral for the arc length of an ellipse, the integrand will
involve the form y = \/f(z), where f(z) is either a cubic or quartic polynomial. The
solutions to such an integral can be written in terms of functions related to the curve y? =
f(z).

Fermat’s last theorem holds for all nonzero integers a, b and c¢. To see this, note if n is
even, we get a” +0" = ", regardless of whether or not we negative any of the values, and if n
is odd, we can rearrange the equation to get an equation resembling the one in the theorem.
If we divide through by ¢”, we get that the only rational solutions to the equation

are the ones with either x =0 or y = 0.
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FIGURE 1. 2° +¢y3 =1

Consider the curve 23 + y* = 1 (see figure 1). One natural question we might ask is what
rational points lie on this curve. While it may seem like there could be infinitely many,
Fermat’s last theorem tells us that the only ones are (0,1) and (1,0).

In general, classifying the rational points on curves is not this easy. In this paper, we will
begin by studying the degree 1 and 2 versions of this problem. Next, we will introduce a
special class of degree 3 polynomials known as elliptic curves. After building up a bit of
theory, we will present a theorem that puts bounds on the number of rational points that
can exist on a curve.

2. PRELIMINARIES

Definition 2.1 (Group). Let G be a set equipped with a binary operation -: G* — G such
that
1. there exists an identity element 1 such that forallge G, 1-g=¢g-1=g
2. for every g € G, there exists an inverse element g~! € G such that g-(—g) = (—g)-g =
1
3. forall g,h,i € G, (g-h)-i=g-(h-i).

We call G a group. The pair (G, -) denotes the group G under -.

Definition 2.2 (Abelian group). Let (G, -) be a group. If G also has the property that for
all g,h in g, g-h = h - g, then G is called an Abelian group.

Definition 2.3 (Field). Let K be a set equiped with two binary operations +: K? — K
and -: K2 — K such that
1. (K, +) forms an Abelian group
2. (K'\ {0},-) forms an Abelian group, where 0 is the identity element of the group
(K +)
3. forall a,b,ce K,a-(b+c¢)=a-b+a-c.
We call F' a field. We denote the field equipped with 4+ and - by (F, +,-).
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Definition 2.4 (Finite field). Let F' be a field. If F has a finite number of elements, we call
F a finite field.

Definition 2.5 (Subfield). Let L be a field. A subfield of L is a field K C L whose operations
are inherited from L.

Definition 2.6 (Extension field). Let L be a field and K a subfield of L. We call L the
extension field of K.

Definition 2.7. Let K be a field. An algebraic object is said to be defined over K if its
coefficients lie in K.

Definition 2.8 (Splitting field). Let K be a field and f(z) a nonzero polynomial over K.
If L is the smallest field extension of K such that f(x) can be completely decomposed into
a product of linear factors, then L is called the splitting field.

Definition 2.9 (Seperable). Let K be a field and f(x) a nonzero polynomial over K. If
every root of f(x) is distinct in its splitting field, we say that f(z) is separable.

Proposition 2.10. Let f(z) a polynomial over a field K and « be an arbitary root. The
polynomial f(x) is seperable if and only if f'(«) # 0.

Proof. We start by proving that if f(x) is seperable, f'(«) # 0. Assume that f(z) is a degree

n polynomial. We have

fla)=c] [ —a),
i=1
where ¢ € K \ {0} and each «; is a distinct root of f(x) in its splitting field. Taking the

formal derivative, we get
fll@)=cd T - a)

j=1 i=1
i#]j
Let oo = o, for some 1 < k <n. We claim that

(o) = CZ H(a — ;) #0.
=

For every j # k, [[ (v — ;) = 0, since it contains the factor & — . When j =k, [] (o — o)
i=1 1=1
i#] i#]
will not contain o — . Since every «; is distinct, [[(a — ;) # 0, so f'(a)) # 0. Therefore,
=1
i#]
if v is a root of f(z) and f(x) is separable, f'(a) # 0.
Now we show that if f'(«) # 0, f(z) is seperable. We proceed by contraposition. We need
to show that if f(z) is not seperable, f'(ar) = 0. If f(x) is not seperable, it must contain a
repeated root «, so we can write

Taking the formal derivative gives us
f'(@) =2(x — a)g(x) + (z — a)’g'(2).
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We have
f'a) = 2(a — a)g(x) + (a — a)’g'(x) = 0.
Therefore, f(x) is seperable if and only if for an arbitary root «, f’(a) # 0. O
Definition 2.11 (Homomorphism). Let (G,+) and (H,-) be groups. If ¢p: G — H is a
function such that for all g, h € G,
plg +h) =e(g) - ¢(h),
we call ¢ a homomorphism.

Definition 2.12 (Endomorphism). Let ¢: F (F) — F (F) be a group homomorphism
given by rational functions. We call ¢ an endomorphism of E.

p()

Definition 2.13 (Degree). Let ¢ = ﬂ be an endomorphism. The degree of ¢, denoted
q(x

deg(p) = max{deg(p(z)), deg(q(x))}.

Definition 2.14 (Characteristic). The characteristic of a field K, denoted char(K), is the
smallest positive integer n such that 1 + 1 4 --- 4+ 1 = 0. If no such n exists, the characteristic

deg(¢p), is

n times

is defined to be 0.

Definition 2.15 (Kernel). Let G and H be groups. The kernel of a homomorphism ¢: G —
H, denoted ker(y), is

ker(p) = {g € G| v(9) = en},
where ey is the identity element of H.

Definition 2.16. The set of common solutions to a finite set of polynomial equations over
a field K is called an algebraic variety.

Definition 2.17. Let L O K be a field. The set of L-rational points on an algebraic variety
X defined over K is the set of points on X with coordinates in L. This is denoted by X (L).

Definition 2.18. Let X and Y be algebraic varieties over an arbitrary field. Let f : X --» YV
be a rational map (a map given by a ratio of polynomials). If there exists a rational map
g :Y --» X such that both fog and go f are the identity map wherever they are defined,
we say that f and g are birational maps and that X and Y are birationally equivalent.

Definition 2.19 (Algebraic extension). Let K and L be fields such that K C L. If there
exists a nonconstant polynomial f(z) over K such that f(a) = 0 for every a € L, we call L
an algebraic extension of K.

Definition 2.20 (Algebraic closure). Let K be a field containing K. If F_is an algebraic
extension of K and every nonconstant polynomial over K has a root in K, then K is an
algebraic closure of K.

Proposition 2.21. Let IF, be the field with g = p™ for some prime p and positive integer n.

Then
F, = JFy
i=1
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FIGURE 2. General Weierstrass Curves

Proposition 2.22. Let K be a field. Then K has an infinite number of elements.

Proof. If K has a finite number of elements, we can write it as F,, where ¢ = p" for some

prime p and positive integer n. By proposition 2.21, Fq = U F,. We have Fgn C Fyn if and
i=1

only if m | n. Since there are an infinite number of primes, we have an infinite number of
unions that are not subsets of each other. Therefore, Fq has an infinite number of elements.

If K is has an infinite number of elements, its algebraic closure trivially has an infinite
number of elements, since by definition, its algebraic closure must contain K. Therefore, for
any field K, K contains an infinite number of elements. U

Definition 2.23 (General Weierstrass Equation). A general Weierstrass equation over a
field K is

y2 + a1y + asy = 3+ a2x2 + a4 + ag,
where ay, as, as, as, a6 € K (see figure 2).

Definition 2.24 (Ellpitic Curve). Let E be the set of solutions to the general Weierstrass
equation and A the discriminant of the equation. If A # 0, we call E an elliptic curve (see
figure 3).

Definition 2.25 (Singular Weistrass Curve). Let E be the set of solutions to

y2 + a2y + asy = x>+ a2x2 + asx + ag

such that the discriminant A = 0. We E' a singular Weierstrass curve (see figure 4). Points
where the curve has multiple roots are called singular points.

The general Weierstrass equation tends to lead to overly complicated equations. We can
often rewrite it in a simpler form.

Proposition 2.26. Let K be a field such that char(K) # 2,3. The general Weierstrass
equation can be rewritten in the form

V=234 ar+b

for a,b € K. This is known as a short Weierstrass equation.
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FIGURE 4. Singular Weistrass Curves

ar+a
Proof. Let y =19y — % This is valid if char(K') # 2. We have
2
ax +a a1z +a axr+a
Vrazytay=(y-———) tar(y-———")+a(y - —F—
2 2 2
2
=y —awy —agy + 22+ DBy 4 By gy~
4 2 4
2 2
9,2 0193 I P
2x 5 T+ azy 2 5
_e_ 01 o WAz a3
4 2 4
SO
2 2
p 3 6] t4ay 5 ajaz+2a as + 4ag
y-=a"+ 1 T 5 T 1 .
2 2
+4 + 2 +4
Let al, = %, ay = w, and ag = u, so that we get

12 3 /2 / /
YO =a" + ayr” + ayr + ag.



ELLIPTIC CURVES OVER FINITE FIELDS 7

/

If we define 2’ = = — %, which is valid for char(K') # 3, we get

) ay ’ ay ’ / ay /
Yy = x—g + aq x—g + ay x—g + ag

12 3 12 13 >
3 1.2 2 a3 1.2 2 g / (ay /
=2 — Q%"+ T — o5 AT — T+ — Fay + ag
3 27 3 9 3
_ 3 2a% — 3aly + a’22x 2a} — 9ahal, + 27ay
3 27
202 — 3a/, + af? 2a5 — 9ahal, + 27a;
Letting a = —=2 5 1t 0 and b = =2 2274 + 2 gives us the equation y? =
23 + ax +b. O

Theorem 2.27 (Bézout’s theorem). Let K be an algebraically closed field and Cy and Cy
curves in P*(K) such that Cy and Cy do not have any irreducible factors in common. Define
C1 and Cy by homogeneous polynomials of degrees m and n respectively. Then C7 and Coy
intersect at exactly mn points, counting multiplicity.

3. RATIONAL POINTS ON CURVES

We begin our study of elliptic curves with degree 1 and 2 polynomials.

Consider a polynomial of degree 1 over Q. This is simply a line with rational coefficients.
We know that the general form of such a curve is ax + by + ¢ = 0 for a,b,c € Q such that
at least one of @ and b is nonzero.

Proposition 3.1. Two nonparallel rational lines intersect at a rational point (a point with
rational coordinates).

Proof. Let a1x + biy + ¢; = 0 and asx + boy + co = 0 be the two nonparallel rational lines.

Since they are not parallel, their slopes ——L and —= are not equal. This tells us that
aq a9

bicos — b —
a1by — asby # 0. Solving the system gives us (z,y) = < 12 7 24 24 alcg) Since

a1b2 — a2b17 a162 — CLle

ai, by, c1,a,be,co € Q, (z,y) must be a rational point.

Proposition 3.2. There exist an infinite number of rational points on the rational line
ar +by+c=0.

axr + ¢

b
. Since a,b,c € Q, we must have yo € Q. Therefore, (z¢,yo) is a rational

Proof. Let b # 0 in ax + by + ¢ = 0. Solving for y gives us y = —

. Let g € Q and
axrg+ ¢

Yo = —
point. Because it also satisfies the equation az + byy + ¢ = 0, the point must lie on the line.
Since there are an infinite number of choices for the rational number x4, there must be an
infintie number of rational points on the rational line.

If b =0, we have the line z = _< Since a,c € Q, x € Q. Let 2y = —£ and Yo € Q. Then
a a

c
(x0,Y0) is a rational point that satisfies the equation o = ——, so it lies on the line. Since

a
there are an infinite number of rational choices for y,, the rational line also has an infinite
number of rational points in this case. Therefore, any rational line has an infinite number
of rational points. l
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FIGURE 5. Line-Conic Correspondence

Things get quite a bit more interesting for polynomials of degree 2. These are our usual
conic sections, which can be written in the form ax? + bxy + cy? + dx + ey + f = 0 for
constants a, b, c,d, e, f € Q such that at least one of a, b, and ¢ is nonzero. We will assume
that such a conic is nondegenerate.

Proposition 3.3. There is a one-to-one correspondence between the points on a rational
line and a rational conic for all but one point (see figure 5).

Lemma 3.4. Any line can be transformed into the rational line y = 0.

Proof Let ax —i— by + ¢ = 0 be our line. Assume that b # 0. Dividing through by b gives

usEmij—l—g—O If welet 2’ = 2 and ¢/ = %1‘+y—|—b,

transformation (2/,y') = (x, 7% +y+ 5) transforms our line into the line y = 0 if b # 0.

If b = 0, we have the vertical line ax + ¢ = 0. Let ' = z and v = ax + ¢. Then we get
y' = 0, so the transformation (z',y') = (z,ax + ¢) transforms our line into the line y = 0 if
b = 0. Therefore, any line can be transformed into the line y = 0. U

we get 4 = 0. Therefore, the

Lemma 3.5. The transformation given in lemma 3.4 takes a rational conic to a rational
conic.

Proof. Let az®+bxy+cy?+dr+ey+ f = 0 be a conic. First, we consider the transformation

(', y) = (x,%x+y+g>. We have 2/ = x and ¢/ = %$+y—l—g, sor =2 and y =

c
_ZI/ +y — & Substituting these into the conic gives us

2
az’ + ba' (%x’—i—y’—l—g)—l—c(%x’—i—y’—i—g) +d:c’+e(g

/ / E -
bx+y+b)+f—0
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Expanding and simplifying yields

2 2 2 2
(2@4—%) z”? + <b+%) 2y +ey® + <c+£+d+%> '+

b? b2 b
2c? , S ce
— -+ — =0.
<b+e>y—l—b2+b+f
Since a,b, c,d, e, f € Q, this transformed conic is also a rational conic. O

Proof of proposition 3.3. By applying the transformation given in lemma 3.4 to both the line
and the conic, we can assume without loss of generality that the line is ¥y = 0 and that the
conic is ax? + bxy + cy? +dx + ey + f = 0. We can write the conic in this form because of
lemma 3.5.

Let O = (z1,y1) be a fixed point and P = (23,y2) be another point on the transformed
Y2 —

conic (see ??). The line through these two points is given by y —y; = (x—xz1). Given

1
a point P, we can find a corresponding point () on the line y = 0 by taking the intersection
T1Y2 — T2l1
L ER LN

Y2 — W

Given the point @), we can also find a corresponding point P on the conic. The line
through O and @) has equation

of the two lines. Some basic algebra yields @ =

0—wu

Y=Y = T — (x — x1)
Y2 —
Y2 — Y1
y—y = (z — 1)
To — T

The point P = (z2,y2) is easily seen to satisfy that equation. The only point that this
method will not work for is when P = (. Therefore, there is a one-to-one correspondence
between the points on a rational line and a rational conic for all but one point. U

We know that there are an infinite number of rational points on a rational line by propo-
sition 3.2. Therefore, we know that there are an infinite number of rational points on a
rational conic. We have a nice way to generate all of these rational points too, simply by
fixing a point on the conic and choosing a rational point on the line.

One might wonder why we needed to distinguish between singular and nonsinguar curves.
It turns out that the two types of curves behave very differently. For example, determining
all the rational points on the singular curve is relatively easy.

Proposition 3.6. Let E be a singular Weistrass curve. If E has a double root, then there
is a one-to-one correspondence between every point in E and a rational line except for the
singular point (see figure 6).

Proof. Let O be at the double root. Then any line will only intersect the singular Weistrass
curve at one other point by Bézout’s theorem. By reasoning similar to that of proposition 3.3,
we see that every points on the curve has a corresponding point on the line. O
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FIGURE 6. Line-Singular Weierstrass Curve Correspondence
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FI1GURE 7. Group Law

4. THE GROUP LAw

Let O, P, and () be points on an elliptic curve E such that O is fixed. We add points
in the following way. Assuming that none of O, P, and () are the same point. First, we
construct the line through points P and (). By Bézout’s theorem, this line will intersect £
at exactly one other point, which we will call P % ). Next, we construct the line through
O and P * (), which will also intersect E in exactly one other point. We will call this point
P + @. If any of the points are the same, we use the tangent line instead (see figure 7).

While we could technically let O be any point on the ellpitic curve, it is often simplest to
let O be the point at infinity. This turns the last step of our addition into simply reflecting
P % Q) over the z-axis (see figure 8 and lemma 4.3).
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FIGURE 8. Group Law With Identity at Infinity

Let P = (z1,11) and Q = (x2,y2) be points on an elliptic curve E written in short
Weierstrass form, and let P+ Q = (x3, —y3) and P+ Q) = (x3,y3). We wish to find a formula
for (z3,y3). The line through P and @ can be written as

y—ylzm(if—xl)

or
y —y2 =m(z — 12),
where m = 2291 Solving for y gives us
Tz — 2
Y =mr — mxi+ Y
and
Y = Mmx — mTs + Ys.
Let ¢ = —max; + y; = —may + Yo, so that both of our equations become y = mx 4+ ¢. We

want to find the intersection of y = mx + ¢ and y? = 2® + ax +b. Squaring y = mx + ¢ gives
us

y? = m*2? + 2emx + ¢,
so we can write
m?z? + 2emx + ¢ = 23 + ax + b,
or
2* —m*a* + (a — 2cm)z +b—c* = 0.
The roots of this cubic are precisely x1, x9, and x3. This means that we can write it as
2> —mPr? + (a —2em)x +b— = (v — 1) (x — 29)(x — 13).
The right side of the equation becomes x — (21 + o +x3) 7% + (71709 + 1173 + ToT3)T — T1T2T3.
Equating the 22 terms gives us
m? =z + x5 + 3,
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SO
x3:m2—x1—x2.
We know that (x3, —ys3) lies on the line y = max + ¢. Substituting x3 into y = mx + ¢ gives
us
—Y3 = MT3 + C,
SO
Ys = —mIxsz — C.

Proposition 4.1 (Group law). The set of points on an elliptic curve under the defined
addition form an Abelian group.

Lemma 4.2. Let y?> = 22 + ax + b be an elliptic curve. Then the point at infinity O has
homogeneous coordinates (0: 1 :0).

Proof. Homogenizing y? = 2 + ax + b gives us
Y27 = X3+ aXZ*+ 0273

Let (X : Y : Z) be a point on the homogeneous polynomial. We get the point at infinity
when Z = 0. At Z = 0, the equation becomes

X% =0,
S0
X =0.
Therefore, our point at infinity is (0:Y : 0) = (0:1:0). O

Lemma 4.3. Let E be an elliptic curve in short Weierstrass form. Let O be the fixed point
at infinity and P and Q two points on an elliptic curve. The line through O and P = (x,y)
intersects E a third time at Q = (x,—y). If P = O, the line through O and P intersect E a
third time at O.

Proof. Let P = (z : y : 1), and let the line going through O and P be aX + bY + ¢Z = 0.
By lemma 4.2, we know that the point at infinity is (0 : 1 : 0). Substituting this into our
equation gives us

b=0.
We know that the line also goes through (z : —y : 1), so
ar —by+c=0.
Since b = 0,
axr +c =0,
SO
c= —ax.
Substituting this into a X + bY + ¢Z = 0 tells us that
aX —axZ =0
or
X =uxZ

We want to find the intersection of this line with Y27 = X3 + aXZ? + bZ3. Substituting
X = xZ yields

Y27 = (22) + a(x2) 2% + b2Z% = 2* 73 + axZ® + bZ% = (2® + ax + b) Z°,
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FIGURE 9. Group Law Identity

SO
Y? = (2 + azx + b) Z*
it Z # 0. Solving for Y gives us

Y =+Vad +axr + b7

so the two points of intersection are (zZ : £Va3 +ax +bZ : Z) = (z 1y : 1). If Z =0, we
get the point at infinity.

If P # O, the line going through P and @ intersects E at (z : y : 1), since we already let
P = (xz: —y :1). This corresponds to the affine point (z,y). If P = 0O = (0:1:0), the
intersection happens at (0: —1:0)=(0:1:0)=0O. O

First, we verify that O acts as the identity element (see figure 9).

Lemma 4.4 (Identity). Let P be a point on an elliptic curve and O the fized point at infinity.
Then O+ P =P+ 0O =P.

Proof. Assume that P # O. Let P = (z,y). By lemma 4.3, we have O x P = (z, —y).
Applying the lemma again gives us O + P = (x,y) = P. By the same reasoning, P x+ O =
(x,—y) and P+ O = (x,y) = P. Therefore, O+ P =P+ O = P.

Now assume that P = O. Lemma 4.3 tells us that O+ O =0, O+ P = P+ O = P still
holds. U

We construct the inverse geometrically by first constructing the tangent line at O. This
will intersect the elliptic curve at a third point we will call R. Next, we construct the line
going through P and R. This second line will intersect the curve at another point which we
will denote —P (see figure 10).

Lemma 4.5 (Inverse). Let P be a point on an elliptic curve and O the fized point at infinity.
Then there ezists a —P such that P+ (—P) = (—P)+ P = O.

Proof. Since O is the point at infinity and the short Weierstrass equation is symmetric about
the z-axis, if P = (x :y: 1), =P = (z : —y : 1). From lemma 4.3, we get the equation



14 JONATHAN YU

by

F1GURE 10. Group Law Inverse
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FI1GURE 11. Group Law Associativity

Y = +yZ. We see that the point at infinity, (0 : 1 : 0), satisfies this equation. Bézout’s
theorem tells us that there are exactly three intersection points. Since we already have the
points (x : y : 1) and (z : —y : 1), the only other intersection points is (0 : 1 : 0). This tells us
that P+(—P) = O. By similar reasoning, (—P)+P = O,so P+(—P) = (-P)+P=0. O

Now we prove associativity (see figure 11).

Lemma 4.6 (Associativity). Let P, Q, and R be points on an elliptic curve and O the fized
point at infinity. Then (P+ Q)+ R =P+ (Q + R).

A proof can be found in [2].
Now we show commutativity, making the group Abelian (see figure 12).
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P+Q=Q+P

3 4

FiGURE 12. Group Law Commutativity

Lemma 4.7 (Commutativity). Let P and Q be points on an elliptic curve and O the fized
point at infinity. Then P+ Q = Q + P.

Proof. The line through P and @ is the same as the line through ) and P. Both lines
give us the same P % ) and P + @, so the order of the points does not matter. Therefore,
P+Q=Q+P. O

Proof of proposition 4.1. First, we show that adding points is a binary operation. Obviously,
the operation takes two points and gives us back one point, so all we need to show is that we
always get another point on the curve. Let O be a fixed point and P and () be two points
on the elliptic curve. By Bézout’s theorem, the line going through P and () intersects the
curve at exactly one other point. By the same reasoning, the line going through O and this
new point must intersect the curve at exactly one other point. By definition, our addition
gives us this point, so it is a binary operation.

Let P be a point on the ellpitic curve and O the fixed point at infinity. By lemma 4.4,
O+ P =P+ 0O = P. By lemma 4.5, there exists an inverse — P for every point P such that
P+ (=P)=(-P)+ P =0. By lemma 4.6, (P+ Q)+ R =P+ (Q + R). By lemma 4.7,
P+ @Q =Q + P, so adding points on an elliptic curve forms an Abelian group. O

5. HASSE’S THEOREM AND (GENERALIZATIONS
The following proof has been adapted from [2].

Theorem 5.1 (Hasse’s theorem). Let E be an elliptic curve and F, a finite field of order
q = p" for some prime p and positive integer n. Then

[#EF,) — (¢ +1)] <24

Hasse’s theorem bounds the number of possible F -rational points. It tells us that the
expected number of such points is close to ¢ + 1. The plus is because we are including the
point at infinity.

Lemma 5.2. InF,, (v +y)? = 27+ y9.
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Proof. We prove this by induction. Consider the field [F,. By the binomial theorem,

(z+y)P = XP: (f) Ty

1=0

!
We know that (p = p—' Since p is prime, it follows that p { il(p—i)! for 1 <7 < p—1.

i il(p—1)!
() n_ o 0 _
Therefore, ~~ € Z,so (. | =p- -~ =0 (mod p). Then
p t p

p
> (P) Y= <p> a?y” + (p) 2%y =aP +y"  (mod p),
im0 ! 0 p
so (x+y)P =aP +y” in F,.

Now we generalize to F,. We have (z + y)? = 2P + y? in F,, as our base case. We need to
show that if (x4 y)?" = 2" + 7", (x 4+ y)?""" = 27" + """, We have

(o - (0
(@ +y " = () + ()

phtl Pt

(x+y " =2

since $pk, y”k € IF,, so our inductive step is complete. Therefore, (z+y)? = 294+y?in F,. 0O
Lemma 5.3. We have a € F, if and only if a? = a.

Proof. First we show that if a? = a, a € F,. Consider the polynomial f(¢) =t —t. Since we
are assuming that a? = a, a? —a = 0, so f(a) = 0 for every a € F,. Because deg f(t) = g,
we know that f(¢) has at most ¢ roots in F,. Since each of the ¢ elements of I, is a root of
f(t) and f(t) has at most ¢ roots, the roots of f(t) must be the elements of F,. This tells
us a? = a implies that a € F,. Therefore, a € F, if a? = a.

Now we prove that if a € F,, a? = a. We know that 09 = 0, so assume that a # 0.
Consider the multiplicative group F* =T, \ {0}. By Lagrange’s theorem, orda | #(F)), so

orda

ord(a) - k = ¢ — 1 for some positive k € Z. By definition, a =1, s0

(aorda)k — 1k
a7l =1.
Multiplying through by a gives us a? = a, so a? = a for all a € F,. Therefore, a € F, if and
only if a? = a. U
Lemma 5.4. Let ¢,: E (Fq) — F (Fq) be the Frobenius endomorphism defined by ¢,(z,y) =
(x9,y?) and ¢4,(O) = O. Then E(F,) = ker(¢, — 1).
Proof. Let P € E(F,). By lemma 5.3, ¢,(P) = P. Then (¢,—1)(P) =0, so P € ker(¢,—1).
Since this holds for all P, we have
E(F,) € ker(¢, — 1).

Now suppose that P € ker(¢, —1). By definition, we have (¢, —1)(P) =0, or ¢,(P) = P.
lemma 5.3 tells us that P € F,. The endomorphism ¢, is only defined for points that satisty
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the elliptic curve equation. We know that the endomorphism —1 is also on the curve. Since
¢q — 1 uses the group law, it maps points onto the elliptic curve. Then by definition,

ker(¢g — 1) € E(Fy).
Since E(F,) C ker(¢,—1) and ker(¢,—1) C E(F,), we conclude that E(F,) = ker(¢,—1). O

Lemma 5.5. Let f(x,y) be a rational function on E. Then there exist rational functions

fi(z) and fo(x) such that f(x,y) = fi(x) + fa(2)y.

Proof. Consider a polynomial p(z,y) on E. Since it must satisfy the equation y? = x*+az+Db,

we can replace any even power of y by a polynomial in x and any odd power by y times a

polynomial in z. Therefore, we can write p(z,y) = p1(z) + ypa(z) for polynomials p; and ps.
Let f(z,y) = 9@.y) _ 9(@) +e@y oo

hz,y)  hi(x) + ha(2)y

gitg2y hi—hoy gl — gihoy + gohuy — gohoy®
hi+hoy hy—hoy h? — h3y?
_ gihy — gaho(2® + ax 4+ b) + y(giha + g2ha)
B h? — hi(23 + ax + b)
_g1hy — gaho(2® + ax + ) (g1ha + g2hy)
2 —h3(23 +ar +b) h%—(xg’—l—a:z:—irb)h%y

glhl — g2h2(373 + ax + b) (gth —+ gghl)
h and
h? — h3(z® + ax +b) h? — h3(z® + ax +b)
glhl — ggh2($3 + ax + b) - (g1h2 -+ ggh1>
2 _ 12 and f, = -5—=5
hi — h3(2x3 4+ ax +b) hi — h3(x3 + ax + b)
functions f; and fy. This gives us f(z,y) = fi(x) + fo(z)y for any rational function on
E. [

We see that bot are rational functions

for rational

in z, so we can let f; =

Lemma 5.6. Let p # 0 be an endomorphism. If ¢ is separable,

# ker(p) = deg(e),
and if ¢ is not separable,

#ker(p) < deg(y).

Proof. Assume that ¢ is seperable. By lemma 5.5, we can let p(z,y) = (¢1(x), ¢2(x)y), where

p(x)

o1(z) = @ for polynomials p(z) and ¢(x). Since ¢ is seperable, ¢} # 0 by proposition 2.10.
q(x

/ (SN
This tells us that (2) - M #0, so p'lq —pq #0.
q q

Let S = (p'q — p¢')(x)q(x) = 0 for z € K be the set of critical points of ¢;. Let

(a,b) € E (F) satisfy the following properties:
1. a#0,b#0,(a,b) # O, where O is the point at infinity
2. deg(p(z) — agq(r)) = max(deg(p), deg(q)) = deg(e)
3. a ¢ ¢i(S) _
4. (a,b) € ¢ (E (K))
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We first need to show that such an (a, b) can exist. By proposition 2.22, K has an infinite
number of elements. Therefore, we can always choose a point (a, b) such that a # 0, b # 0,
and (a,b) # O.

Let p(z) = ppd™ + pr12™ L+ -+ pp and ¢(7) = ¢ux™ + ¢u12" ' + -+ - + qo. The only
way we could have deg(p(x) —ag(x)) # max(deg(p), deg(q)) is if m = n and p,,, = ag,. There

is only one value of a such that this is the case, namely a = —T: Since K is infinite, we can
q

always choose an a # ]ﬁ, so we can have deg(p(z) —ag(x)) = max(deg(p), deg(q)) = deg(p).
q'fL

We know that p'q — pq’ is not the zero polynomial, so S must be finite. There are an
infinite number of ¢ (z), since there are an infinite number of x € K. Therefore, we can
always choose an a ¢ ¢;(.5).

The last property holds because ¢ is an endomorphism, so it must map F (F) to K (F)

We claim that there are exactly deg(c) points (z1,1:) € E (K) such that a(z1, y1) = (a,b).
For such an (z1,y;), we have

oz 1) = (pr(an), pal@)yn) = (%w()y) ey (B (F)).

Since (a,b) € ¢ (E (K)), we get

a0 — p(%)
Q(l’l)
b= y1pa(11).

Because (a,b) # O, q(x1) # 0. Since b # 0, y; = @) This tells us that y; depends
P2(T1

entirely on xq, so counting the number of z1s that satisfy the constraints is sufficient.
We assumed that deg(p(x) — ag(z)) = deg(y), counting multiplicities. We will show that
the roots of p — aq must all be distinct. Suppose that x( is a multiple root. Then

p(zo) — aq(xo) =0
and
P (%) — aq'(zo) = 0.
Multiplying the equations aq(zo) = p(zo) and p'(z¢) = aq'(zo) gives us

ap' (z0)q(wo) = ap(wo)q (xo),
which implies that
P'(0)q(w0) — p(w0)q'(20) = 0,
since a # 0. However, this tells us that 2o € S, so a = ¢1(x9) € ¢1(S5), contrary to our
assumption that a ¢ ¢;(S). Therefore, p — ag has no multiple roots and thus has deg(y)
roots.

We have shown that there are exactly deg(a) points (z1,y1) such that ¢(x1,y1) = (a,b)
for some point (a,b). This tellus us that ker(y) also has deg(y) distinct points. Therefore,
#ker(p) = deg(yp) if ¢ is seperable.

If ¢ is not seperable, p’ — aq’ is the zero polynomial, so p(x) — ag(x) has multiple roots
and therefore has less than deg(«) solutions. Therefore, #ker(p) < deg(yp) if ¢ is not
seperable. O
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Lemma 5.7. We have #E(F,) = #ker(¢, — 1) = deg(p, — 1).
Proof. By lemma 5.4, E(F,) = ker(p, — 1), so
#E(F,) = # ker(pg — 1).

Since ¢ = 0 in F,, we have (p, — 1)'(z) = (29 — z)) = qz9' — 1 = —1. Since this can
never be 0, ¢, — 1 is separable. By lemma 5.6, # ker(¢, — 1) = deg(y¢, — 1). Therefore,
#E(Fy) = # ker(pg — 1) = deg(pq — 1). O

Lemma 5.8. We have deg(aa +bB) = a® deg v + b? deg 8 + ab(deg(a + ) — deg a — deg 3).

Lemma 5.9. Let a = #E(F,) — (¢ + 1), and let r,s € Z such that ged(s,q) = 1. Then
deg(ro, — s) = r’q+ s* — rsa.

Proof. By lemma 5.8,
deg(rp, — ) = 1 deg(ipy) + s” deg(—1) + rs(deg(p, — 1) — deg(p,) — deg(—1)).
Since deg(p,) = q and deg(—1) = 1, we have
deg(ro, — s) = r’q + s* + rs(deg(p, — 1) — (¢ + 1)).

By lemma 5.7, #E(F,) = deg(¢, — 1), so and a = #E(F,) — (¢+1) = deg(p, — 1) — (¢ +1).
This gives us
deg(rp, — s) = r’q + s* + rsa. O

Proof of theorem 5.1. By lemma 5.8, we know that deg(ryp, — s) = r?q + s> + rsa, where
a=#E(F,) — (¢+1). Since deg(rp, —s) > 0,

r2q+52+rsa > 0.

2
q(f) +a(f>+1zo.
S S

. . . ro. ..
Since the rationals are dense in R, we can replace — with x. This gives us
s

Dividing through by s? gives us

gz’ +ax+1>0.

This quadratic must either have 1 real solution or 2 imaginary solutions, so the discriminant

a® —4q <0.
This gives us
lal <2V,
SO
[#(E(F,)) — (g + D] <24 m

The following generalization of theorem 5.1 was can be found in [1].

Theorem 5.10 (Hasse-Weil bound). Let C' be an algebraic curve of genus g and Fy a finite
field of order q = p™ for some prime p and positive integer n. Then

[#C(Fy) — (¢ + 1)| <29/
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