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ABSTRACT. The construction of the hyperreal number system is discussed in this paper. We
explore both semantic and syntactic construction which are two independent construction
method that creates the same system. We will analyze each construction and compare and
contrast both and combine the two.

1. INTRODUCTION

The Archimedean Property states that An ordered field F' has the Archimedean Property
if, given any positive x and y in F there is an integer n > 0 so that nx > y. The set of
real numbers follows the Archimedean property due to it’s Least Upper Bound property.
Infinitesimal is a value that is bigger than zero and smaller than any real number, similarly,
infinite number is a value that is bigger than any real number. This doesn’t mean that the
infinite number is equivalent to the conept of infinity(co). Since the Archimedean property
asserts that repetitive addition of x will be greater than y at some point, regardless of the
value of x and y, infinitesimal and ifnite number cannot be defined in the real number system
without violating the Archimedean property, since the Archimedean property is strictly
against the nature of infinitesimals and infinite values. However, historically, the idea of
infinitesimal have been used within the real number system. When calculus was initially
constructed by Leibniz and Newton, it was based on informal definition of infinitesimal. The
use of infinitesimal was intuitively appealing, however it lacked rigor and proper construction.
Later, the use of infinitesimal was replaced with d-¢ method, which formalized the use of
infinitesimals with limits.

In 1960, Abraham Robinson created Nonstandard Analysis. The main objective of the
construction of hyperreal numbers are to Preserve the first order logic of R and include
infinitesimal and infinite number into the universe. There are two construction methods to
satisfy this. One is the most well known Robinson’s Ultrapower construction, and the other
is later found Edward Nelson’s Internal Set Theory. Both are fundamentally different from
the ground, which each of them is a semantic and syntactic construction, respectively. A
syntactic construction is building the language. However, we don’t know what the meaning
of the language is yet. We build symbols, axioms and rules, but the interpretation depends
on the universe that takes the syntax to construct a model. A semantic construction is
essentially building a model using a preexisting language to interpret what truth will mean
inside the structure. We are normally used to syntactic construction to not be constructing
a full system independently. One example of syntactic construction is ZFC set theory. We
usually use ZFC as a base of a model construction, not itself. However, syntactic construction
is not necessarily always weak. Syntactic construction can provide philosophical clarity
and generality better. In this case, we will construct same hyperreal number system using
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each syntactic and semantic construction. The initial difference of having different ways of
reasoning will lead to bigger difference between the two, such as expressiveness and logical
control.

Ultrapower constructions build infinitesimals by constructing a model from sequences and
logic — a semantic approach rooted in model theory. Internal Set Theory, by contrast,
rewrites the rules of reasoning, treating infinitesimals as legitimate objects governed by new
axioms. One constructs, the other permits. One explains what the hyperreals are; the other
defines how we may reason about them. Both systems are powerful — and their comparison
reveals that mathematical truth can emerge from either objects or inference rules.

2. ULTRAPOWER UNIVERSE CONSTRUCTION

The Ultrapower Construction is a semantic construction that lies on top of ZFC. We will
prove the existence of infinitesimal and infinite number in the universe, and transfer of the
elementary rules of Real number system using model theory.

2.1. Introduction to hyperreal numbers. The objective of this construction is to build
an extension of the real numbers that includes hyperreal numbers, such as infinitesimals and
infinite quantities. Cauchy defined infinitesimal as a sequence (r,,) such that

lim r, =0
n—oo

And an infinite number as one satisfying

lim r, = oo.
n—oo

We consider the set of all infinite sequences of R, RN = {(rg,71,79,...) : 7; € R,i € N}. RN
is constructed as a direct power of R, that is
RY=T]R
neN
In the hyperreal number system, elementary objects such as hyperreal numbers and further
to sets and more are all represented using sequences. The reason behind this construction is
dependent on Cauchy’s definition of infinitesimal and infinite number using sequences. We
will formalize hyperreal number, and to do so, we will define relations between two sequences.

Definition 2.1. Given two sequences r = (ry, 79,73, ...) and s = (51, 8o, 83, ...) that s,7 € RY,
we define their agreement set as

Es={n:r,=s,}
The agreement set contains the indices where two sequence have the same term.

Intuitively, if two sequences agree on ’almost everywhere’, they should represent the same
number of hyperreals. If we look at two sequences, such as r = (1,1,1,1,0,1,1,...) and
s=1(1,1,1,1,1,1,1,...), the agreement set is N\{5}. When a set contains all elements of an
infinite set except a finite amount of number(s) we will call it a cofinite set. In this case we
contain all, except one element. If a set is cofinite in N, then it is large, because it includes
almost all elements, leaving out only finitely many. Whenever an agreement set is large, two
sequences are equivalent, that they are treated as a same hyperreal number, since they are
the same ’almost everywhere’.
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The concept of largeness introduced is an informal and for the purpose of intuitive appeal.
We will formalize the concept of largeness with filters and further constructions, which a set
if large if and only if a set belongs to a filter.

2.2. Filters. Filters are essential concepts in building the logic and determining truth value.
Filters are sets, that picks out element in a set that is satisfying conditions from the set we
are taking the filter of.

Definition 2.2. Let I be a non-empty set. Let the power set of I be P(I) of all subsets of I.
A filter F on I is a nonempty collection F C P(I) of subsets of I satisfying following axioms:

e Intersections: if A,B € F,then ANB € F
e Supersets: if AC BC I and A€ F, then Be F

We will use the intersection axiom listed above to build up the finite intersection property.
Definition 2.3. A colleciton ‘H C P(I) has the finite intersection property if,
BiNn---NB,#0
for any n and any By,..., B, € H.
The filter we will focus on is Nonprincipal Ultrafilter.

Definition 2.4. If a filter includes the set itself or the complementary of the set for any
subset of I, the filter satisfies maximility since a filter cannot be bigger if one satisfies the
property. A filter that satisfies maximility is called an ultrafilter.

The earlier definition of hyperreal numbers is based on the direct power of R, which gen-
erates the existence of all infinite sequences without explicitly constructing every individual
one of them. To extend the concept of proving existence without construction, we will prove
theorems based on Zorn’s Lemma, which bases on the idea of axiom of choice.

Lemma 2.5 (Zorn’s Lemma). If (P, <) is a partially ordered set in which every linearly
ordered subset has an upper bound in P, then P contains a <-maximal element.

This asserts that there must exist at least one set with the biggest cardinality in any
collection of set. Using the fact that ultra filters is a the biggest filter (maximility), we can
use Zorn’s lemma to prove the existence of an ultra filter in any collection of set.

Theorem 2.6. Any collection of subsets of I that has the finite intersection property can be
extended to an ultrafilter on I.

Proof. If H has the fip then the filter F* generated by F is proper. Let P be the collection
of all proper filters on I that includes F*, partially ordered by set inclusion C. Then every
linearly ordered subset of P has an upper bound in P, since the union of this chain is in P.
Hence by Zorn’s lemma, P has a maximal element, which is thereby a maximal proper filter
on [ and thus an ultrafilter.

Corollary 2.7. Any infinite set has a non principal ultrafilter on it.

proof. If I is infinite, the cofinite filter F°° is proper and has the finite intersecton prop-
erty, and so is included in an ultrafilter . But for any i € I we have I — {i} € F* C F, so
{i} € F'. Hence F # F'. Thus F is nonprincipal.
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2.3. The Ultrapower Construction. Filters will help us to be able to formally classify
statements as true or false. As how we introduced the agreement set, two sequences are
equal if the agreement set is large. We will take that idea, and the belonging to the filter
will be our anchor to measure truth.

Definition 2.8. Let F be a nonprincipal ultrafilter on the set N. The equivalence relation
~y on RY is defined by

(rn) ~y (sp) it {neN:r,=s,}eF
When this relation holds it may be said that the two sequences agree almost everywhere
modulo F, or agree at almost all n.
Remark 2.9. We will denote the agreement set {n € N : r, = s,} as a logical statement
[r = s]. Which,

re~ys iff [r=s]eF

Similarly, we can apply this to other relations, such as inequalities by,

(1) [r<s]={neN:r, <s,}

2) [r<s]={neN:r, <s,Vr,=s,}

Now we will say if a set belongs to the filter, we will say the statement the set contains is
true almost everywhere. In standard systems, statement usually have a binary truth values.
However, in this case we will measure each statement, that is a subset of N, to be true if it
is including ’almost every’ elements of N, false if not.

Definition 2.10. The equivalence class of a sequence » € RY under ~;; will be denoted by
[r]-
[r] = {s € RN : 1 ~y s}
Each equivalence class represent a hyperreal number. We will represent the number system

by combining all equivalence classes in one set. An ultrapower is a quotient of a direct power
from a defined equivalence relation by an ultrafilter.

Definition 2.11. The ultrapower construction of R by previously defined equivalence rela-
tion ~yy is

RY/U =*R={[r] : r € RN}
RY /U is a quotient ring of RY by the ultrafilter. This circles back to the equivalence class

mentioned before, that all sequence r € RY will be classified to one of the equivalence class.
Which follows:

(1) [l +[s] = [r @ s] = [{ra + 5n)]
(2) [r]-[s] = [r © s] = [{rn - sn)]

3)[r]<[s] iff {neN:r,<s,}eF
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With those definition we defined an £-structure, which contains relation (<) and functions
(-,+) and the universe *R.

L-structure = ("R, <, -, +).
Theorem 2.12. The L-structure *R is an ordered field with the constant 0 and 1.

(1) *R contains a multiplicative and additive inverse.
o Additive inverse: — [r] = [—r], therefore, [—r] + [r] = [0]

o Multiplicative inverse: Suppose that r oy 0, which {n € N :r, # 0}. We define
a sequence s, that:

) Ifr ~y 0,8, does since 0 does not have a multiplicative inverse.
b 0, s = (s,

FEven if the sequence is not equivalent to 0, there is a possibility that there exists a
term r, = 0,n € N. When this occur, taking the inverse will lead us to be having
an undefined value in our sequences. This might look like an issue, however, the
fact that almost every term is a real number resolves this issue. Therefore,

[r]-[s] = [r©s] = [1]

(2) Ordering on *R is a disjoint union of following sets:
[r=s], [r<s], [r>s],

Due to finite intersection property.

(3) If {[r] : [0] < [r]}, that the sequences in the class [r] are positive almost everywhere,
“R is closed under addition and multiplication.
Proof. Let [r],[s] € F. majority of the terms of each sequences r, and s, are r and
s respectively. Similarly, [r] + [s] will have terms that are r + s almost everywhere,
due to the axiom of intersections|2.2. Thus,

If [r], [s] € F, then [r] + [s] € F.
Which means [r] + [s] will form its” own equivalence class {t € RN : r + s ~y t} =
[r @& s|. Therefore,
[r @ s| € R.
We can define similarly with multiplication with the same process which will result
[r] - [s] € F, that is,
[r®s] e R.

Therefore, *R is closed under addition and multiplication.

2.4. Construction of hyperreal numbers. As mentioned earlier, hyperreal numbers are
an extension of Real numbers. The previous methods of the use of sequences to build relations
up to defining a structure, is to build a system that includes all infinitesimal infinite value
and real numbers. We will define real numbers using the a constant sequence.
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Definition 2.13. A real number r € R is defined as a constant sequence r = (r,r,...) in
*R. Which,

r=r]=[(r,r...)], 're R
Converting previous statements to this definition, we have,

(r4+s) = Tr+"s,
(r-s) = Tr-%s,
r<ts iff r<s,

r="s iff r=s.

Definition 2.14. Let € be an infinitesimal, e = (1, 3, %,...) = (£ : n € N). Then,

Wl

)

N |

1
[[0<5]]:{n€N:<r}
n
thus [0] < [¢] € *R. To satisfy the quality of being smaller than any real number,

[[£<r]]:{n€N:711<r}.

There are only finite amount of n € N that is excluded in this set. Therefore, this set is
cofinite. Since non principal filters are a collection of all cofinite sets, [¢] € *R. [eg] is a
positive infinitesimal.

Definition 2.15. Let [w] = (1,2,3,...). Then,
[r<w]l={neN:r<n}
This set is cofinite by Eudoxus-Archimedes principal (Vr € R, 3n s.t. r < n). There are

finite amount of r that r > n. Thus, [w] € *R, [w] is a positive infinite value.

As previously mentioned, all non-zero hyper real numbers will have multiplicative inverse.
Using infinite value and infinitesimal,

wee=1 [w]=[]" []=["

By [2.13 [w = r] € F, since the set {n € N : w,, = r,} can only be either ) or {r} if
r € N. Which *r # [w], [w] € *R —R. Same as [¢],{n € N: ¢, =r,} can only either be () or
{r}, r=% neN
Our construction of infinitesimal and infinite number satisfies Cauchy’s definition of infinite
number and infinitesimal(2.1)),

lim [w] =00, lim [¢] = 0.
n— o0 n—oo

2.5. Enlargements of Sets. Set A C R can be enlarged to a set *A C *R:
For each sequence r € RY, which

rle*Aiff {neN:r, € A} € F.

Which means, the enlarged set *A includes all sequences that are same almost everywhere
from the constant sequence of r, for all » € A. This directly implies that it will include all
the equivalence class of (r).
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Remark 2.16. [r,] = [r], it is used in the purpose to show the indices of the sequence. For
example, when we want to show r ~; s, then if we use [r = s]| € F, would be [r|, and when
we use {n € N:r, =s,} € F, would be [r,].

2.5.1. Nonstandard Elements. When the set A is enlarged to *A, then, A C *A. There exists

nonstandard element *A — A. For example, Q € R and {n € N: [¢] € Q} = N € F, since

the terms of € = (X : n € N) are all rational number. Therefore we can denote [¢] € *Q.

[e] is a nonstandard element of rational numbers.

The enlargements of sets are further expanded in section 4.

2.6. Extension of Functions. A function f : R — R extends to *f : "R — *R. We will
define the function * f, the extension of f.

Definition 2.17. For each sequence r € RY, let f or be (f(r1), f(r2),...). Which we can
denote,

f(lr]) =1for].
Which expands to

(e, ) = (), £(r2), )]

The super set axiom(2.2)) asserts that the function of a hyperreal number must return a
hyperreal number too, since,

[r=r]C[for=for].
Therefore,
fOCr)="siff [for=s] € F.

2.6.1. Partial Functions. If a function f : A — R has a domain restriction which lead to the
function’s domain be A C R. Then f can be extended to a function *f : *A — *R, which
the domain is the enlargement of A({2.5]).

Definition 2.18. The extension of a partial function f to * f, that the seqnence r € RY and
[r] €74,

[re Al]={neN:r,e A} € F.
Let

. {f(rn) if nefreA,

"o if n ¢ [re A
If [s, = f(rn)] € F, then,
“f([ra]) = [ (ra)]-

2.7. Enlargement of Relations.

Definition 2.19. Let P be a k-ary relation on R. Thus, P C RF. For given sequences
rt. rf e RY,
[P, ={neN:P@,....rMH}.

r'n

Which is a set that includes the indices of terms that is true under the relation.
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To expand the relation P to *P € *R with [r!],..., [r¥] € ("R)F,
“P([r1],...,["*) iff [P(rY,..., ")) € F.

This definition is previously informally used, such as,
[r] =1[s] iff [r=s]eF,
[r] < [s] iff [r<s]eF,

Which essentially have the same construction. We can see *P as a generalization expanding
to all relations defined in R.

We have defined the extended version of functions and relation that belongs to *R, which
allows us to define the structure and further analyze the logic of *R.

3. TRANSFER PRINCIPLE AND LOGIC OF MODEL

The previous section, we have constructed the universe of the hyperreal number, *R. We
have formalized the inclusion infinitesimal and infinity into the universe. We will now build
the logic of the system using model theory, and show that the hyperreal will extend the first
order logic, the elementary rules of the real number system.

3.1. Model Theoretical Definition of Hyperreals. We will now rigorously define the
constructions from eariler using model theory.

Let £L = {+,-,0,1,<} be defined as the language of ordered fields. The L structure
R={R;+,-,0,1,<}.

Definition 3.1. A language L is given by specifying the following data:

(1) A set of function symbols .%# and positive integers m for each ks-ary function f € .#;
(2) A set of relation symbols &2 and postivie integers kg for each kp-ary relation P € Z;
(3) A set of constant symbols €.

The previous definition is always given by the syntactic construction we are using, which is
ZFC at this case. Therefore, the langauge in our new model *R maintains the same language
as R. Which £ ={+,-,0,1,<}, and ky =2,k =2, and k. = 2.

Now we can interpret the language into each models. Before interpretation, we have the
language without meanings, those are syntaxes. Interpreted symbol now include truth values,
precise definition of each functions, relation, and constants. We will be giving definition to
each language as an interpretation process, which will be called semantics. The concept of
syntax and semantic will later be expanded into comparison of structures.

Definition 3.2. An L-structure 91 is given by the following:

(1) A nonempty set M is called the universe or domain of 9t;
In *$R, the universe is *R.
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(2) A function interpretation of 9 is f™ : M* — M for each f € .Z;
In "R, functions act componentwise on sequences.
(i.e. for any hyperreal number, [(r1,r9,r3,...)], all function on the hyperreal number

is applied as, [(f(r1), f(r2), f(ra);...)].)

(3) A relation interpretation of 9 is set P™ C M*# for each P € £2;
In *R, relation is defined as, {n e N:r, < s,} € F.

(4) A constant interpretation of 9 is an element ¢™ € M for each ¢ € €.
Constants 0 and 1 in *R interpreted as, [0] = [(0,0,0,...)] and [1] = [(1,1,1,...)].

Now we can declare that,
L-structure *R = {*R;.Z 1, 2N €7 = ['R; +, -, <, [0], [1]}.

Notice the similarity between the language of SR and *fR, this is because they are based on
the same syntax. We will further build the logic of this structure, building formulae with
the language L.

3.2. Terms, Formulae, and Sentences. As previously mentioned, a language contains a
set of function, relation and constant symbols. Using those symbols we generate a formula
with logic symbols and variables. Logic symbols contain the followings:

(1) Equality symbol: =
(2) Boolean connectives: A, V, -
(3) quantifies: V, 3
(4) parenthesis: (,)
Logic symbols are available for any structures. Qunaitifers only range over the universe,
and we call variables without being defined with a quantifier, a free variable. We can only
quantify over elements, which is the reason why we only aim to transfer first order logic.

Definition 3.3. L-terms are a string of symbols of variables and language £ which,

e FEach variable symbol v; such that i € N are L-terms;
e Each constant symbol ¢ € € are L-terms;

o Ifty,... 1, are L-terms, and f € %, then f(t1,...,t,) is a L-term.

One example of a term from the language £ of L-structure *R is +(vy, v2), which can be
simplified to v; + vo. We used variables and function of the language.

3.2.1. Interpretation of Terms. A term can be divided into subterms. Using that we will
interpret each subterm and combine them to make a whole interpreted term. Terms are an
expression, that will potentially return a value. Depending on the model of interpretation,
a term could be undefined, or return a value.

Definition 3.4. Let 2 be an L-structure and let ¢ be a term with variables from the tuple
v = (Vgy,...,v;,). We define the interpretation of ¢ in 9, written t™ : M™ — M, as a
function from m-tuples of elements in M to elements of M, via the following inductive rules:

Let a = (a;y,...,a;,) € M™. Then:
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(1) If s is a constant symbol ¢, then:
(@) = ™
(2) If s is a variable v;,, then:
(@) = a;

(3) If 5 is a compound term f(ty,...,t,,), where f is an nyg-ary function symbol and
t1,...,t,, are terms, then:

s™(a) = [ (@), ..., 1) (a))

Thus, t™ is defined for every term t by recursively interpreting each of its components in the
structure 9 with it’s universe.

J

nf

We will now introduce formulae. The key distinction between term and formulae is that
term will interpret, and return value and formulae will interpret and return truth value.
Formulae take in the first order logic of a model that expresses what is true inside the
model.

Definition 3.5. We say that ¢ is an atomic £ -formula if ¢ is either,
i) t; = to, where t; and t, are terms, or
ii) P(t1,...,tn,), where P € & and ty, ..., t,, are terms.

The set of L-formulae is the smallest set VW containing the atomic formulae such that
i) if ¢ is in W, then —p is in W,

ii) if ¢ and ¢ are in W | then (¢ A ¢) and (¢ V 9) are in W, and

ii1)if ¢ is in W,then Jv;¢ and Vv;¢) are in W.

From that definition, we can generate formulae. However, we do not know if they are true
or not, because they are still a syntax, we haven’t interpreted them yet. Formula without
free variables are sentences.

3.2.2. Interpretation of Formulae.

Definition 3.6. Let ¢ be a formula with free variables from v = (v,...,v;,), and let
a=(ay,...,a;,) € M™. We define when a structure 9 satisfies ¢ at a (written I |= ¢(a))
by induction:

(1) If @ is t; = to, then M = p(a) iff t7(a ) tha ).

(2) If g is R(ty,...,t,), then M = o(a) iff (T(a),...,t7(a)) € R™.

(3) T g s —, then M = (a) iff O I (a).

(4) If ¢ is ¥ A 0, then M |= ¢(a) iff M = (a) and M = O(a).

(5) If ¢ is ¢ V 0, then M |= ¢(a) iff M = ¥(a) or M |= 6(a).

(6) If ¢ is Jv; (v, v;), then M |= p(a) iff there exists b € M such that M = ¢ (a, b).
(7) If ¢ is Vv, (v, v;), then M |= p(a) iff for all b € M, M =1 (a, b).

If M = p(a), we say that ¢(a) is true in .
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3.3. Embedding. The goal of building the model of *R is to show the first order logical
continuity from R to *R. To directly show this, we can use the L-embedding function, that
will later show the logical connection between the two models.

Definition 3.7. R and *R are L-structures with universes R and *R each, which an £-
embedding 7 : R — *MR is an injective map n : R — *R. Let n : R < *R be n(r) =
[(r,7,r,7,...)] which » € R. n is a proper embedding function since,

(1) Injectivity: each r represents an unique constant sequence. If r # s then, n(r) # n(s).
(2) Function preservation: n(f™(ay,...,ax,)) = f 2 ((n(ar), ..., nlax,)) for all f € F

and ay,...,a, € M (2.6);
(3) Relation Preservation: (ay,...,a,) € P?iff (n(ay),...n(ag,)) € R¥ for all P € &

and ay, ..., ap, € M(2.7);

(4) Constant Preservation: n(c®) = ¢ ™ for c € €.

As we defined earlier, clearly R C *R, and the inclusion map is the £ embedding 7, there-
fore *R is an extension of R.

We will look at interpreted formulae being transferred between two models, one and ex-
tension of the one. We will start off with non quantifier formulae, which represent the rules
or condition elements of the set can satisfy.

Proposition 3.8. Let 9 C N be structures for the same language, let a € M, and let o(v)
be a quantifier-free formula. Then:

M = p(a) if and only if N = p(a).
Proof. We proceed by induction on the structure of terms and formulae.
Claim. For any term t(v) and any b € M, we have t™(b) = t*(b). Proof of claim:
o Ift is a constant symbol c, then t™(b) = ™ = ™ = t™(b).
o Ift is a variable v;, then t™(b) = b; = t>(b).
o Ift= f(ti,...,t,) and by the inductive hypothesis t7*(b) = t3*(b) for all i, then since
M C N and f™ = 2 ym, it follows that

£ (b) = D), 1 (B) = FREND), - () = (D).
Main proof: We now prove the proposition by induction on formulae.
o If ¢ ist; =ts, then

M b pla) = Ea) = Ba) <= (a) = Fa) < N pla).
o Ifpis R(ty,...,t,), then since M C N and R™ = RN M™":
M pla) <= (tT(a),...,t7(a)) € R™ < (t](a),...,t2(a)) € R® <= NE ¢(a).
o If o = =), assume by induction that the proposition holds for 1. Then:
M b —h(a) = MY Pa) <= N U(a) <> N (a)
o [f ¢ =11 ANg, assume it holds for 11 and i)y. Then:
ME=pla) <= MEYi(a) and M = Pa(a) <= N EYPi(a) and N = s(a) <= N E= p(a).

Since quantifier-free formulae are built from atomic formulae using negation and conjunc-
tion, the result follows by structural induction.
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Since R C "R, The previous statement works directly as 2t as R and 91 as *R. Up to
here, we built the logic using only model theoretic properties. Later on, we will imply the
construction of ultrapower and use of ultrafilter into building more specific and transfer
focused logic.

3.4. Lo$’s Theorem and Transfer Principle. In the previous section we introduced fil-
ters, and emphasized how truth are defined using ultrafilter. We will bring that idea back
to further expand how we define truthfulness with formulae. This will lead to the proof of
the transfer principle, that the first order logic of R is extended to *R.

Theorem 3.9 (Lo$’s Theorem). Let M be an L-structure, and let U be a nonprincipal
ultrafilter on N. Let [[,; M be the ultrapower of M with respect to U. For any first-order
L-formula @(z1,...,x,) and any sequences ay, ... ,a, € MY, we have:

E[M = ellal,. ) = {ie N|MEpaii),. .. a(i)); € U.

Proof. We proceed by structural induction on the formula ¢.

Base Case: Atomic formulae

Suppose p(x1,...,2,) = R(t1,...,t;) where R is a k-ary relation symbol and each ¢; is a
term.

Then:

E[M ER([t],....[t]) <= {i e N| M| R(t:(3),...,t:(i))} €U.

This follows directly from the definition of the relation R in the ultrapower structure.

Inductive Steps
Assume the theorem holds for formulae ¢ and 1. We verify it for logical connectives and
quantifiers.

e Negation: For ¢ = =), we have:
HM = —¢(al) = HM 7 ¥ ([al)-

By the inductive hypothes1s.
— {ieN|MEY(l)} ¢U < {ie N|ME (a(i))} € U.
e Conjunction: For ¢ = A 6, we have:

HMF@D/\H( <:>HMF1¢ andHMFG[])

Apply the mductlve hypothesis to each part and use closure of U under intersection.
e Universal Quantifier: Let ¢ = Vz i (z,a4,...,a,). Then:

HM ): VIID(ZE, [a1]7 ) [anD
u
holds if and only if for every [b] € IT,; M, we have:

[IM Ew(b] [, .- [an)-

By the inductive hypothesis, this is equivalent to:
{i e N| M (b(i),a1(i),...,an(i))} €U for all b € M.
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Hence:
{i e N| M EVzip(z,a1(i),...,a,(i)} € U.

e Existential Quantifier: Follows similarly by noting that

[IM E 3z 4(z,[a]) <= there exists [b] such that [[ M = ¢ ([b], [a]).

Corollary 3.10 (Transfer Principle). By induction, f.o$’s Theorem holds for all first-order
formulae.

Let U be a nonprincipal ultrafilter on N, and [a1], ..., [a,] € *R. Then for any first order
formula (x4, ..., x,),
RE o(la], ..., [an]) <= {i e N:RE ¢(a1(i),...,a,(0)} €U

where i is the index of each term from the sequence. This states that for n-ary formula ¢
in R, when the sequence is evaluated componentwise, if the formula is satisfied by almost all
terms, then the formula is true in hyperreal numbers too. This states that any first order
logic is true in either real or hyperreal numbers, if and only if it is true in both.

We have officially stated that all first order logic, elementary thoerems in real number
system should be true and provable in the hyperreal number system too. We have satisfied
the condition of extension of first order logic from R to *R. Now we will introduce how we
utilize this in the hyperreal numbers.

3.5. +-Transform. Using the transfer principle, we can move the first order statements from
R to *R. We will discuss the notation of transfered formulae in *R.

The goal is to translate the formula of R into *R. We will break down formula into terms.
If a term 7 is in a formula ¢, then:
(1) If 7= f(my,...,7Tm) then *7 =*f(*m, ... "Tp).
(2) If 7 is a variable or a constant, then *7 = 7.

Using the terms *-transform, we will define the *-transform of relation too. For relation
P e &, the «transform of it is *P. To summarize, to *-transform a formula is:

(1) replace all term 7 by *7

(2) replace P by *P

(3) replace the bound of quantifiers of the formula ¢ (e.g. (Vx € X)¢) of the form,
to * X.

(4) Logical symbols will stay the same since logical symbol is an universal language to
all structures

Example x-transform of the Eudozus-Archimedes Principle:
Vz3dm(z < m and m € N)

To
Vzdm(z < m and m € *N).

Remark 3.11. For generally well known functions and relations we conventionally do not
attach * to them, such as <,<,=,# etc and sin(z), ¢”, +, - etc.
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Now we have built a full model of hyperreal numbers and satisfied all the conditions.
We first built the universe that includes infinitesimal and infinite number using ultrapower
construction, then we applied ultrapower into model theoretical properties that proves the
extension and transform of real first order logic into the hyperreals. Up to here, this is
Robinson’s Nonstandard Analysis. We will look into another method of construction that
results the same system.

4. INTERNAL SET THEORY

After Robinson created Nonstandard Analysis, Edward Nelson contributed to the devel-
opment of the hyperreal numbers system by creating Internal Set Theory, which is built
directly in the purpose to strengthen Non Standard Analysis. Internal Set Theory is an
Extension of ZFC Set Theory, likewise how we extended R to *R. This is an independent
construction of the hyperreal numbers from ultrapower and model theoretic construction.
We use fundamentally different approach, as we extend the language of the system, the use
of internal set theory will be a syntactic construction. The construction of IST will be very
brief since it doesn’t require much construction from the scratch. Internal set theory is an
addition to ZFC, not a change. Therefore, true statements in ZFC must remain true in IST,
and the properties transfer too.

We are going to split the language into two categories. Because IST is an extension of
ZFC, we are allowed to be talking inside the given universe that obeys ZFC, and outside of
that universe. When we talk inside the universe we will use Internal Language. We must
obey ZFC rule strictly when using Internal Language. When we are talking about the uni-
verse from outside, we will use FExternal Language. We do not have to speak the language of
ZFC in External, however we cannot contradict rules and theorems from internal language.
Both language inherently have different purpose. External language is used to describe the
universe, and Internal is for building and using the universe. Internal Language is not aware
of any existence of external language, however, external language is aware of internal lan-
guage since they must not contradict it. Intuitively, we do not have to know all the neural
pathway for our brain to function, describing and functioning is separate for models too.

Any formulae, properties, theorems from ZFC are transferred to IST. Mainly, we know
the existence of *R, R, N, Q, Z, since they are all constructed upon ZFC. Another, the Real
Number system is fundamentally a syntactic construction, although philosophical debate
still exists regarding the real number system as a mathematical object. Which means the
whole real number system, theorems, functions, relations are accessible in IST.

4.1. Standard. In IST, standardness is an important concept that distinguishes internal
and external language. As we extend ZFC, we will add another predicate to the language,
standard(z). The predicate standard belongs to IST but does not belong to ZFC, since it is
an undefined predicate under ZFC. Standard is included in the external language, that we
will use to describe the model, specifically ZFC. From this, we can naturally come up with
definition of internal sets and external sets.



SEMANTIC AND SYNTACTIC CONSTRUCTIONS OF THE HYPERREAL NUMBERS 15

Definition 4.1. An internal formula only includes the language of ZFC, specifically do not
use or mention the predicate standard. An internal formula should still remain defineness in
ZFC alone.

Definition 4.2. An external formula that uses a language including standard.

4.1.1. Sets of IST. An external formula can never define a set. There are two reasons for
this.

First, ZFC has a set theoretic ontology, which the entire mathematical universe is made of
sets. The universe is only made out of objects, that we can only generate each elements of
the universe using sets. Which means in ZFC, further out to IST, every construction is made
out of sets. As mentioned, external language only have the purpose of describing the ZFC
model itself, and cannot manipulate the model. Generating sets will intervene with ZFC,
which is outside of the role of external language.

Second, which is a more technical reason, that creating a set with external language will
violate the rules of ZFC. Only internal comprehension is permitted inside a set. Therefore,
external formula cannot form a set.

Which means,
{z|standard(z)}.

Is illegal. However, external formulae outside of that can include standard(z). Such as,
Jz(standard(z) A x > 57)
Which is a statement, not a set. We can also define,

V'r = Va(standard(z))

Fx = Jz(standard(z))

as a quantifier, because that does not violate the comprehension rules of ZFC, and simply
extends the language with statements.

Formally, before we interpret the syntax, we don’t know what it means, as mentioned in
section 3 . Which means we do not know what it means to be standard yet, and what
determines one to be true to standard. However, we can construct the rules and behavior of
standardness solely using syntax, which are axioms. Nelson’s intention to this construction
is that standard intuitively means that it is a classical mathematical object that already
exists, such as real numbers.

4.2. Axioms of Internal Set Theory. The Axioms of Internal Set Theory adds 3 ad-
ditional axioms to the traditional ZFC Axioms to maintain conservatism of ZFC. These
axioms are external statements, meaning that they are describing ZFC, not impacting the
construction at all. These axioms control how we can understand ZFC. The followings are
axiom schema, which is a framework for infinite amount of axiom are generatable from it.

(1) Axiom of Transfer Principle:

Virer) = Vre(r),
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where ¢ is an internal formula. Axiom of transfer principle allows internal truths
that hold for all standard objects to be extended to all objects.

(2) Axiom of Idealization
VYA Chy X JaVa € Ap(z,a) <  FaV'a € X p(x,a),

where ¢ is an internal formula, X is a standard set, and the quantification V**A Cg,
X ranges over all standard finite subsets A of X. Axiom of idealization allows inter-
nal truths that hold for all standard objects to be extended to all objects.

(3) Axiom of Standardization
VX Y v (:1: €Y < (z€XA gp(x))),

where ¢ is an internal formula. This allows us extract internal sets matching external
predicates over standard elements.

Remark 4.3. In ZFC, everything is made of sets. Elements are sets, therefore, sets of the
universe are first order objects. Therefore, we are allowed to quantify over sets. Second order
logic goes further to properties of sets, which will not occur in ZFC nor IST.

4.3. Internal and External Sets. As we mentioned before, the use of predicate standard
determines internal/external formulae. And while internal formula can be used in any form
of formulae, external formulae cannot be inside a set. This sets the rule in the construction
and the system.

Definition 4.4. An internal set is a legal set under ZFC. It is one category of an internal
formula.

Definition 4.5. An external set cannot be defined using internal formula, the definition
involves the predicate standard.

To obey the rules of ZFC, we cannot express external set explicitly, however, we can use
the axiom of standardization to define it. Technically, external sets are not sets, they are
often classes or collection that we can talk about, however does not exists as an object in
the system.
We will list some external sets that are illegal to write out in the internal language:

o Vr x € {reN:uxiseven}

o Ny := {z € N: standard(x)}
The predicate standard can never be used in the internal language. Therefore, defining
external sets in the internal language ZFC is illegal. However, there exists the use of external
sets. It is often used in proofs or description that we will describe, not construct. Since
external sets are not allowed for the concern of contradiction of ZFC and out of purpose, use
of proof is completely valid. When we describe, we will often prove the existence without
construct it, which the axiom of standardization is based of the purpose of this. We use
internal sets to construct, we use external sets to classify.

4.4. Standard and Nonstandard Elements. Now we will prove the inclusion of infini-
tesimal and infinite number using this construction. This entirely relies on external language
which means we will be describing the universe from the outside. We are not directly con-
structing them, rather describing the existence of them by classifying elements of the universe
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by standard and nonstandard elements.

We mentioned that all the properties of real number system transfers to the internal lan-
guage. Naturally, we might recall that the Archimedean property is restricting the real
number system to include infinitesimal and infinite number into their universe, which should
apply to the internal language too. While IST externally proves the existence of infinitesi-
mal and infinite number elements of R, this does not contradict the internal Archimedean
property. The internal version holds universally for all real numbers definable within ZFC’s
logic, but external language permits classification of objects that lie outside the scope of
internal quantifiers. This way, IST extends expressivity without violating consistency.

4.4.1. Infinitesimal. Let © € R,
x is infinitesimal <= 'y > 0,|z| <y

However, that is a statement, and we don’t know yet that such element exists. To prove the
existence we will use the axiom of idealization.

VVACH, RT3z e Ry e Alz| <y <= 3Jx e RV'Y >0,z <y,
Let A={y1,...,yn} C R then,

1

v max(y;) + 1

Then we know that x is a multiplicative inverse of 1 added to the biggest element of R*.
Therefore, there must not exist any real number that is smaller than x. Then, the right hand
side is true, infinitesimal exists in IST. Such x is defined as infinitesimal, ¢.

4.4.2. Infinite Number. We will use the existence of infinitesimal to construct infinite num-
ber. Let H := %, since 0 < € < %,for every n € N, then,

1
n<-=H
€

Therefore,
v'n e N 3IH,n < H.

We already know the existence of infinitesimal, therefore, we do not have to prove the
existence of infinite number. Thus, such H is an infinite number. Infinitesimal and Infinities
are nonstandard elements, since they do not exist in classical mathematics. Formally I will
show why:

To be a nonstandard element, the element should satisfy the predicate —standard(z). If we
assume that infinitesimal is a standard element, then the internal property

Yy >0,z <y

should hold. However, this is impossible since the internal language must obey the rules of
ZFC, including Archimedean property. Therefore, infinitesimal must not be standard. Same
reason holds for infinite number as well.
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5. CONNECTION OF SEMANTIC AND SYNTACTIC CONSTRUCTIONS

We have completed the basic construction of ultrapower and IST. From IST, as we have
seen, syntactic model is capable of constructing its own model alone. We have proven the
existence of infinitesimal and infinite number externally, and proven the transfer of first order
logic from internal to external using the Axiom schema of transfer principle. We have two
separate construction to the hyperreal number system, each syntactically and semantically.
Two systems are fundamentally the same, are able to prove the same theorems and hold
same properties. What we see in both construction is that they use an extension to include
infinitesimal and infinite number. Ultrapower construction defined number as infinite se-
quences, which allows them to follow a new rule, and ignore Archimedean property. IST did
not construct infinitesimal and infinite number, we proved the existence of it. Because we
are describing the universe from outside point of view, we do not have to speak the language
of ZFC. Using the predicate standard, we classified standard and nonstandard elements. The
second part of the condition of hyperreal number system, which we must preserve the first
order logic of real number system is satisfied in both construction as well. In ultrapower
construction we proved the transfer principle using model theoretical properties and filter
dependent truth values. In IST, we start with the langauge of real number system since
the internal language is ZFC, which includes it. Using the Axiom schema of transfer, which
asserts that for all internal formula, if it is true for standard elements it must be true for
nonstandard elements too. Since all first order logic of real numbers are standard, it must
be universally true, for nonstandard elements too.

We can deduce that the base of both constructions were extension and how we extend it
depends on each construction. Ultrapower construction seems more natural since it takes
the steps of semantic construction, which we are all used to. One advantage of the Ultra-
power construction is that it is more natural and easier to understand and accept, which
will greatly benefit for pedagogical purpose. On the other hand, IST construction allows
us for deeper view of the logical construction, however it is unintuitive and inefficient for
understanding and acceptance. Despite the difficulty, IST provides a more general view of
the construction to the reader, by not constructing as a special case as the ultrapower con-
struction, but defining a language that can produce such system. IST fundamentally did not
add anything, however we developed a way to reason to the existence of infinitesimal and
infinite number. IST is better for analysis and logical construction.

The transfer principle asserts that a first order theorem in R is true and provable if and
only if it is true and provable in *R. Now because this is true for both constructions, any
statement that is provable is provable on the other one too.

6. CONSTRUCTION OF SEMANTIC MODEL OF IST

Now we can consider, how can we semantically interpret the syntax of IST, and what are
the conditions to be a model to that? Which can lead to how we can construct the ultra-
power universe *R with the syntax of IST to show the connection between Robinson and
Nelson’s construction which can function well independently from each other. These idea
is explored by mathematicians Vladimir Kanovei and Michael Reeken, with using ZFGC
(ZF + Global Choice) to construct the ZFC expansion, IST. Global Choice is a stronger
version of axiom of choice that allows choice for proper classes, this simplifies the process
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of forming ultrapower because we can easily form equivalence classes, without violating IST
axioms. This is allowed because ZFGC is stronger than ZFC without contradicting it, it is
a similar construction as building a model of Peano Arithmetics with ZFC, which we can
build a weaker model using a stronger one.

6.1. Model Construction. Let S be a transitive model of ZFC, the standard part of I that
models IST. S and T are sets which S C I, internally are the universe and meta-theoretically
a set-sized model. We define the language of those models to be, {S; €, <} and {I; €, <} for
each SS and I. Which, {S; e, <} I ZFGC and {[; €, <} = ZFGC.

One language we will add is a transitive set T" which T" C M, for the transitive model M.
Such set as T is called innocuous, which is does not interfere into the construction or create
sets outside the universe. T can be seen as a new truth predicate, that we can describe
an element about the membership to 7. Additionally, let Truthg < is a set of all closed
L-formulae true in {M; €, <}, that is a set of syntactic objects. We can define it as,

Truth]g< = {¢p € L¢ -sentences : {M; €, <} = ¢}

Although Truthé{ < is not transitive, it is still innocuous because it does not construct sets
outside of the universe. Now from S we will create the ultrafilter and further form an
equivalence class using the ultrafilter. The process of construction is slightly modified from
the ultrafilter from Ultrapower construction. Truthé/{ < is used to define an important set for

the construction of ultrafilter, the set Defc -(S).

6.2. Ultrafilter Construction. Let Defc -(S) denote the collection of all subsets of S that
are definable in the structure {S;€, <} using formulas in the language £ = {€, <} with
parameters from S. Define the index set I = Pg,(S) to be the collection of all finite subsets
of S. This forms a proper class within S.

We now define an algebra A of subsets of I, where each A € A is a definable subset of I
in the structure {S; €, <}. That is, A € Defc (S) and A C I.

We construct an ultrafilter U C A satisfying the following three properties:

(A) For every a € S, the set {i € I : a € i} belongs to U.

(B) If P CS x [ is definable in {S; €, <}, then the set {r € S: {i € I : (z,i) € P} e U}
is also definable in {S; €, <}.

(C) There exists a definable set U C S in {S; €, <, T} such that U = {U, : © € S}, where
U,={iel:(x,i)e U}

Similarly to the use of ultrafilter in ultrapower construction, we will define the truth value
of each formulae from the membership to the ultrafilter. This might seem circular, which

if something is defined as true using ultrafilter which is constructed using the set Truth]g <
However, because both the construction of the set Truthje‘/{ < and ultrafilter is external, we
already know what statement is true in S, and what is not. This allows us to produce
Truthje\{ - without ultrafilter. Which the ultrapower is essentially a formal way to show if
one statement is true or not, because membership to ultrafilter means it belongs to Truthg <

too.



20 JIWON KIM

6.3. Ultrapower Construction of IST. To construct a semantic model of IST, we begin
with a transitive model S of ZFC. Our goal is to build a larger universe I containing S as the
class of standard sets, and to define an IST structure {I; €, standard} where all axioms of
IST hold. This process uses a modified version of the ultrapower method. The construction
is done externally, within ZFGC, which allows us to define the necessary sets and truth
predicates.

Consider the set F' of all definable functions f : I" — S for » € N. These are the building
blocks of the ultrapower. We can see that in ultrapower construction previously, this function
is defined as an infinite sequence using direct power.

Define the equivalence relation:

frg = {iel: f(i)=gH) el

That is, two functions are identified if they agree on a large (membership to ultrafilter) set
of indices. The ultrapower universe is the set of equivalence classes [f] under this relation:

S=A{lfl:feF}

We interpret [f] €* [g] as {i € I : f(i) € g(i)} € U. Other relations are defined similarly
as well.

In the previous section where IST was purely syntactic, the predicate standard had no
meanings since it was not interpreted. We will not interpret standard. Let,
standard([f]) <= [f] = [a] for some constant function a(7) = a.

We can see this definition of standard resembles the ultrapower construction that the con-
stant sequence that represents real numbers. To satisfy the transfer of first order principle
from R, we will interpret the universe S as R later.

With this setup, the structure {*S; €*, standard} satisfies all three axioms of IST:

Transfer: Truth in S extends to truth in *S.
Since S represent R in this case, first order logic is transferred.

Idealization: Universal statements over standard finite sets can be replaced by existential
statements over all sets.

Standardization: For any definable property, there exists a standard set collecting exactly
the standard elements that satisfy it.

S is identified with the standard part of *S, and *S forms the full IST universe I.

6.4. Nonstandard Elements. Now we have fully constructed semantic model of IST,
which that we brought the full *R into IST. The construction of infinitesimal and Infinite
number follows the same as ultrapower construction.. Standard elements are x € R,
nonstandard elements are x € *R — R.
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We have fully constructed the system again as well, with satisfying transfer of first order
logic of R, and inclusion of infinitesimal and infinite number to the universe. This shows
that the semantic model of IST indeed satisfies to be a hyperreal number system as well.
We created the same system 3 different ways, and they will all result in the same theorems
that are provable. All 3 have unique way of reasoning and expression, and different purpose
of use.
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