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Abstract

In this paper, we will give a brief treatment of the fundamental concepts of Schubert Cal-
culus, which is the study of cells in the Grassmannian, while focusing on its non-combinatorial
aspects. We will begin by introducing the required knowledge of projective space. We will then
tackle the Grassmannian, Schubert cells, and Schubert varieties, which are the most important
constructions in the paper, and how they relate to Young Diagrams as well as a brief aside
to introduce flags. Next we will introduce cohomology groups and the cohomology ring of the
Grassmannian with a focus towards its relationship with symmetric functions. Finally, in in-
troducing the Littlewood Richardson tableau, we can connect these two concepts in such a way
that we can finally solve linear intersection problems, which is how we will conclude the paper.

1 Introduction

First developed in the late 19-th century by the mathematician Herman Schubert, Schubert Calculus
provides useful methods for solving linear intersection problems. However, at the time of their
creation these methods lacked a solid foundation in mathematics. See [6] to see how Schubert
approached the problem initially. Because these methods were still very important, there was a lot
of effort put into building a theoretical basis for Schubert Calculus. It was so important that it was
even listed as one of the famous 23 problems Hilbert proposed as the turn of the century. A classic
example of a problem that can be solved with Schubert Calculus, and what we hope to show in this
paper, is the following:

How many lines intersect 4 given lines in 3-dimensional space?

Using something Schubert called the ”Principle of Conservation of Number”, which essentially states
that number of solutions of an intersection problem in any number of parameters (in this case lines)
under variation of the parameters is invariant in the case that no solutions become infinite. For this
specific problem, that manifested in Schubert finding a specific arrangement of the four lines that
did not have infinite solutions, but was easier to work with, and then stated that the solution for
that situation was in fact the same in general. This lacks a rigorous foundation, so our goal is to
see what rigorous mathematics solves the same problems this idea could. Specifically, our approach
to solve this problem is encapsulated by the following idea. Let us say that Xi is the space of all
lines L intersecting line li for each i “ 1, 2, 3, 4. Then the intersection X1 X X2 X X3 X X4 is the
set of solutions to our problem. In this case, each Xi is and example of a Schubert variety, which
is an algebraic and geometric object that is crucial to solving these types of problems and one that
we will cover in far more detail later in the paper.

2 Motivation and Prerequisites

Before tackling the Grassmannian, we first briefly introduce some definitions and concepts regarding
projective space and projective varieties. It is worth noting that we will only consider projective n-
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Figure 1: We see that even though the rails are parallel, they appear to meet at some point on the
horizon. This is our point ”at infinity”.

spaces over C in this paper, however other texts, such as [1], treat it more generally when discussing
Schubert calculus.

Definition 1. We define the projective n-space over C, denoted Pn, as the set of equivalence classes
of n ` 1 tuples pa0, a1, . . . , anq of elements in C under the equivalence relation pa0, a1, . . . , anq „

pλa0, λa1, . . . , λanq for all λ P Czt0u. These equivalence classes are called the points of Pn and any
pn ` 1q-tuple pa0, . . . , anq in the equivalence class P is called a set of homogeneous coordinates for
point P .

It also helps to conceptualize n-dimensional projective space as the set of lines through the origin
in Cn`1. This characterization becomes more important when dealing with the Grassmannian as it
allows us to relate some projective space Pn to some Grassmannian.

Example. In the projective plane, P2, the 3-tuples p1, 0, 2q and p2, 0, 4q are both in the same equiv-
alence class, and thus refer to the same point in P2.

Another helpful way to conceptualize projective space is to have some notion of a point ”at
infinity”. In essence, we can think of Pn as Cn completed by points ”at infinity” which is a point
where parallel lines meet.

Example. In P1, any point px, yq where y ‰ 0 can be rescaled to the form pt, 1q, and all such points
can be identified with an element of C. The only point remaining in P1, p1, 0q, is the point ”at
infinity”.

Now, recall that affine varieties are the zero set of some collection of polynomials. From this
notion, we can also define the projective variety with one important additional requirement about
the collection of polynomials.

Definition 2. A polynomial f P Crx0, . . . , xns is a homogeneous polynomial of degree d if all of
its terms have total degree d. i.e A polynomial f P Crx0, . . . , xns is a homogeneous polynomial of
degree d if fpλa0, λa1, . . . , λanq “ λdfpa0, a1, . . . , anq.

While we will not be using these definition directly for much of the paper, it is still useful to
keep in mind. Moreover, having strong notions about projective space and projective varieties can
help with understanding the Grassmannian, which is in essence a more general version of projective
space. Now, we define projective varieties as follows:

Definition 3. Let T be a set of homogeneous polynomials in Crx0, . . . , xns. Then we define the
projective variety V pT q to be
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V pT q “ tpa0, . . . , anq P Pn | fpa0, . . . , anq “ 0 for all f P T u.

Note that it is important for the polynomials to be homogeneous in order for the variety to
remain well defined. To see this let us consider the following example.

Example. Consider fpx, yq “ x3 ´ yx, which is not a homogeneous polynomial. Then we have that
fp2, 4q “ 0 and fp1, 2q ‰ 0. However, p2, 4q “ p1, 2q in projective space P1. Our main takeaway is
that the value of a non-homogeneous polynomial on a point in projective space is not necessarily
well defined. Thus we cannot define a projective variety using non-homogenous polynomials.

We have now gone over our preliminary material, and are now ready to begin tackling the
Grassmannian and all of its related constructions.

3 The Grassmannian and Young Diagrams

If we think of projective n-space as the set of all lines through the origin, or 1-dimensional subspaces,
in some affine space of dimension n`1, then it helps to look at the Grassmannian as a generalization
of this concept.

Definition 4. The Grassmannian, Grpn, kq, is the set of all k-dimensional subspaces of Cn. Ele-
ments in Grpn, kq are referred to as the ”points” of Grpn, kq.

From this we see that Pn “ Grpn ` 1, 1q. Now notice that every point in the Grassmannian can
be described as the span of a full rank k ˆ n matrix.

Example. The matrix:
»

–

0 3 ´4 8 ´2 5
0 1 5 ´3 ´4 2
0 0 0 7 2 ´1

fi

fl

is a point in Grp6, 3q.

Also notice that we can also apply elementary row operations on the matrix without changing
the point of the Grassmannian it corresponds to. Thus every point in the Grassmannian can be
reduced to some row echelon form. In this paper, we will use the conventions from [2], which have
pivot points be in order from left to right and bottom to top. We illustrate the concept and notation
with an example.

Example. Our matrix above has the reduced row echelon form
»

–

0 0 0 1 ˚ ˚

0 0 1 0 ˚ ˚

0 1 0 0 ˚ ˚

fi

fl

where the ˚ entries are certain complex numbers.

Let us summarize our observations regarding points in the Grassmannian.

Remark 5. It follows that each point of Grpn, kq can be represented by a unique full rank k ˆ n
matrix in reduced row echelon form.

We will now introduce the Schubert cell, which will allow us to begin to state many of our
intersection problems in terms of intersections of varieties. Along side it we will develop the concept
of a Young diagram as it connects to elements in the Grassmannian. We begin with introducing
some useful constructions for grouping together and identifying elements in the Grassmannian.

Definition 6. A partition λ “ pλ1, . . . , λkq is a sequence of weakly decreasing non-negative integers.

We denote the size of the partition by |λ| “
řk

i“1 λi.
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By setting each λi to be the distance from the pivot points in row i of the reduced echelon matrix
representing a point V P Grpn, kq to the edge of a k ˆ k staircase cut from the upper left corner of
the matrix we are able to associate a partition to point V in the Grassmannian.

Example. The partition λ “ p4, 3, 1q is associated with the following element in Grp7, 3q:
»

–

0 0 0 0 0 0 1
0 0 0 0 1 ˚ 0
0 1 ˚ ˚ 0 ˚ 0

fi

fl

.

Now we introduce Young diagrams, which are important to the development of Schubert cells,
as they provide an environment that we can pick partitions from that will be compatible with the
constructions we will introduce.

Definition 7. The Young Diagram of partition λ is the left aligned partial grid of boxes contained
within an kˆpn´kq rectangle such that the i-th row from the top has λi boxes. The larger kˆpn´kq

rectangles is called the ambient rectangle, and is denoted as B.

Example. For λ “ p4, 3, 1q we obtain the following Young diagram:

˚

˚ ˚ ˚

We are now ready to introduce the Schubert cell, which provides a lot of insight into the structure
of the Grassmannian that we can use to solve intersection problems.

Definition 8. For a partition λ contained in an ambient rectangle B, the Schubert cell, denoted
as Ω˝

λ, is the set of points in Grpn, kq whose row echelon matrix has a corresponding partition of λ.
Formally,

Ω˝
λ “ tV P Grpn, kq | dimpV X xe1, . . . , eryq “ i for n ´ k ` i ´ λi ď r ď n ´ k ` i ´ λi`1 for all iu

Note that Ω˝
λ – Ckpn´kq´|λ|.

It is important to see that n ´ k ` i ´ λi corresponds to the location of the i-th pivot column in
row i counted from the right. Similarly n ´ k ` i ´ λi`1 corresponds to the location of the i ` 1-th
pivot column in row i.

Before introducing Schubert varieties, we briefly discuss some properties of the Grassmannian.
An important property of the Grassmannian is that it is a projective variety, which we can show

by use of the Plücker embedding, which allows us to associate points in Ppn
kq´1 to elements of the

Grassmannian Grpn, kq. For the following our treatment follows that of [5] with some small changes

to notation. To get a point in Ppn
kq´1 from a point in Grpn, kq, consider an ordering on the k-element

subsets S of t1, 2, . . . , nu. We will use this to label the homogeneous coordinates xS of a point in

Ppn
kq´1. Let V P Grpn, kq which we recall can be represented as a k ˆ n matrix. We define xS to be

the determinant of the k ˆ k submatrix (or minor) whose columns were determined by the elements

of S. These determine a valid point in Ppn
kq´1 since row operations only change determinants by a

constant factor, and the coordinates cannot all be zero since the matrix V has rank k. To understand
this process lets work through an example.

Example. Consider the matrix in Grp4, 2q:
„

0 1 3 ´2
1 0 ´1 4

ȷ
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. In this case, the determinants of all 2ˆ 2 minors in the matrix give a point in Pp4
2q´1

“ P5. Let us
say the columns are labeled from left to right as 1, 2, 3, and 4. We will pick an arbitrary ordering of
these 2 ˆ 2 minors, say px12, x13, x14, x23, x24, x34q. These are the determinants of the minors with
columns i and j. The Plücker embedding then gives us the points p´1,´3, 2,´1, 4, 10q

The image of Grpn, kq in Ppn
kq´1 is a projective variety and is cut out by the set of polynomials

řk`1
l“1 p´1qlxi1,...,ik´1,jlxj1,...,jl´1,jl`1,...jk`1

We will not provide a rigorous proof, but we will work through an example.

Example. Revisiting our example from above, we see that it is in fact that case that

x12x34 ´ x13x24 ` x14x23 “ ´10 ´ p´12q ` p´2q “ 0

as desired.

In other texts, the Plücker embedding is often described using more advanced concepts. See [1]
or [4] for a more complete treatment of the Plücker embedding. With these details we can now
define Schubert varieties as closed subvarieties of the Grassmannian.

Definition 9. The standard Schubert variety corresponding to partition λ, denoted Ωλ, is the set

Ωλ “ tV P Grpn, kq | dimpV X xe1, . . . , en´k`i´λi
yq ě i for all iu

Again, n ´ k ` i ´ λi is the location of the pivot column in the i-th row.

To gain a better understanding of what this definition means, let us work through an example.

Example. Let λ “ p2q. Consider the Schubert variety Ωλ in P5 “ Grp6, 1q. The ambient rectangle
is in this case a 1 ˆ 5 row of boxes and our condition for and element V P Ωλ is that dimpV X

xe1, e2, e3, e4yq ě 1. Since V is a 1-dimensional subspace of C6, this means that V must be contained
in xe1, e2, e3, e4y. Expressed in homogeneous coordinates, the first two entries must be 0. Thus we
find that each point of Ωλ can be written in one of the following ways:

p0, 0, 1, ˚, ˚, ˚q

p0, 0, 0, 1, ˚, ˚q

p0, 0, 0, 0, 1, ˚q

p0, 0, 0, 0, 0, 1q

From this we can see that it is in fact possible to rewrite Ωλ as a disjoint union of Schubert cells.

In the previous two concepts we have introduced, we limit ourself to intersection with the span of
the standard basis. To work with Schubert cells and varieties in more general settings, it is important
to introduce the notion of a flag, which will be the last topic we will discuss in this section.

Definition 10. A complete flag, F , in Cn is a chain of subspaces

t0u “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fn “ Cn

Where dimpFiq “ i.

We now define some special properties that a pair of flags can possess, and show that some nice
results follow in the case where that property holds.

Definition 11. Two subspaces V and W of Cn are transverse if

dimpV X W q “ maxp0,dimpV q ` dimpW q ´ nq

Moreover, two flags F 1 and F 2 are transverse if every pair of subspaces F 1
i and F 2

j are transverse.
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It is in fact possible to show that two flags are transverse using a weaker condition.

Lemma 12. Two complete flags F,E Ă Cn are transverse if and only if Fn´i X Ei “ t0u.

Proof. If two complete flags F,E Ă Cn are transverse, then dimpFn´iq “ n ´ i and dimpEiq “ i
by definition of complete flags. Thus we have that dimpFn´iq ` dimpEiq ´ n “ n ´ i ` i ´ n “ 0
and since dimpFn´i X Eiq “ dimpt0uq “ 0 we find that it is the case that dimpFn´i X Eiq “

maxp0,dimpFn´iq ` dimpEiq ´ nq “ 0. Now suppose that for two complete flags F,E Ă Cn we have
that Fn´i X Ei “ t0u for all i. We proceed by induction on n. When n “ 1, first note that then
each flag is a chain of two subspaces, those being t0u and C. Thus Fi X Ej “ t0u for i and j not
both 1. In this case, the value i ` j ´ n is less than or equal to 0. Thus the dimension condition in
Definition 11 is satisfied. In the case i “ j “ 1, we have F1 X E1 “ C X C “ C and i ` j ´ n “ 1.
Thus the dimension condition is satisfied for all cases. Now, for induction we assume the following:

1. If Fn´i´1 X Ei “ t0u for all i, then F and E are transverse flags.

2. Fn´i X Ei “ t0u for all i.

In particular, we notice that Fn´1 X E1 “ t0u and Cn “ Fn, so it follows that Fn “ Fn´1 ‘ E1.
Now we will quotient both flags by E1, which will reduce Fn to Fn´1 and reduce the dimension of
each Ei by 1. This will get us a new pair of flags

E1 : t0u “ E1{E1 Ă E2{E! Ă ¨ ¨ ¨ Ă En{E1

F 1 : t0u “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fn´1

Since F 1
n´i´1 X E1

i “ Fn´pi`1q X Ei`1{E1. Since Fn´i´1 X Ei`1 “ t0u by our second part of our
inductive hypothesis, it follows that F 1

n´i´1XE1
i “ t0u. By the first part of our inductive hypothesis,

it follows that F 1 and E1 are transverse flags. More precisely,

dimpFi X Ej{E1q “ maxp0, i ` j ´ 1 ´ pn ´ 1qq “ maxp0, i ` j ´ nq

Now, for any i ‰ n we know that E1 Ć Fi, so

dimpFi X Ejq “ dimpFi X Ej{E1q “ maxp0, i ` j ´ nq.

If i “ n and j ‰ 0 then E1 Ă Fn so we have

dimpFn X Ejq “ 1 ` dimpFn´1 X Ej{E1q “ 1 ` maxp0, n ´ 1 ` j ´ nq “ 1 ` j ´ 1 “ j.

Finally we have the case where i “ n and j “ 0. This is trivial since Fn X E0 “ t0u. Therefore, for
all i and j it is the case that

dimpFi X Ejq “ maxp0, i ` j ´ nq.

Thus we conclude that F and E are transverse.

Let us explore flags a little farther. While flags do allow us to generalize a lot of notions, there
are still specific flags that we will focus on for many of the results in this paper.

Definition 13. The standard F is defined to be the flag in which Fi “ xe1, . . . , eiy and the opposite
flag E by Ei “ xen, . . . , en´i`1y.

Let us briefly show that these two flags are transverse. Fn´i “ xe1, . . . , en´iy and Ei “

xen, . . . , en´i`1y. We see that Fn´i X Ei “ t0u, thus the standard and opposite flags are trans-
verse.

Lemma 14. For any pair of transverse flags F 1 and E1, there is an element in the general linear
group g P GLn such that gF 1 “ F and gE1 “ E where F and E are the standard and opposite flags
respectively.
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We won’t go into a rigorous proof, but will provide some intuition. Let F denote the standard
basis and V denote some other complete flag. Pick a basis for V so that Vk “ xv1, . . . , vky. Consider
the matrix g P GLk whose columns are the vectors vi. This matrix will take Fk to Vk. Therefore,
when considering intersections of Schubert varieties it suffices to do all of our computations using
the standard and opposite flags, and then multiple the results by the appropriate g P GLn.

For future sections, the definition of standard and opposite flags will be useful to have available,
since much of the logic hinges on noticing and manipulating the indices in the basis elements that
span these flags.

With all of that, we are now ready to begin introducing our first major tool for computing
intersections of Schubert varieties and use it to solve a simple problem. First we start by introducing
some relationships between partitions.

Definition 15. Two partitions λ “ pλ1, . . . , λkq and µ “ pµ1, . . . , µk are said to be complementary
in the k ˆ pn ´ kq ambient rectangle if and only if λi ` µk`1´i “ n ´ k for all i. If λ and µ are
complementary, we write µc “ λ.

Example. We see that the complement of µ “ p4, 3, 1q is λ “ p3, 1q

˚

˚ ˚ ˚

We can develop some geometric intuition for this concept by noticing that if we rotate the Young
diagram of λ and place it in the lower right corner of the ambient rectangle, its complement is the
partition µ formed by the space remaining in the ambient rectangle.

Theorem 16. (Duality Theorem). Let F and E be transverse flags in Cn, and let λ and µ be
partitions with |λ| ` |µ| “ kpn ´ kq. In Grpn, kq, the intersection ΩλpF q X ΩµpEq has 1 element
if λ and µ are complementary partitions, and is empty otherwise. Moreover, if λ and µ are any
partitions with µk`1´i ` λi ą n ´ k for some i then the intersection is empty.

Proof. Let us start by proving the second statement. Suppose that for some i it is the case that
µk`1´i `λi ą n´k. Assume, for sake of contradiction, that there is a subspace V P ΩλpF qXΩµpEq.
We know that dimpV q “ k and that

dimpV X xe1, e2, . . . , en´k`i´λiyq ě i (1)

dimpV X xen, en´1, . . . , en`1´pn´k`pk`1`iq´µk`1´i
yq ě k ` 1 ´ i (2)

By simplifying 2 and reversing the order of the generators we get

dimpV X xei`µk`1´i
, . . . , en´1, enyq ě k ` 1 ´ i (3)

Because µk`1´i`λi ą n´k it follows that i`µk`1´i`λi ą i`n´k and that i`µk`1´i ą i`n´k´λi.
Therefore, the two subspaces we are intersecting with V in (1) and (3) are disjoint. Thus it follows
that the dimension of V is at least k ` 1 ´ i ` i “ k ` 1 which is a contradiction. Now we can
continue to the first statement. If |λ| ` |µ| “ kpn ´ kq but λ and µ are not complementary, then
µk`1´i `λi ą n´ k for some i. Finally, suppose that λ and µ are complementary. Then (1) and (2)
still hold, but now we have the added constraint that n´ k ` i´λi “ i`µn`1´i for all i. Therefore
dimpV X xeei`µn`1´i

yq “ 1 for all i “ 1, . . . , k. Since dimpV q “ k it then must equal the span of
these basis elements

V “ xe1`µn
, e2`µn´1

, . . . , ek`µn`1´k
y
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which is our unique solution.

We end this section by applying our new techniques to prove that there is a unique line passing
through two distinct points in Pn. Working in Grpn ` 1, 2q, these two distinct points become two
distinct 1-dimensional subspaces F1 and E1 in Cn`1. The Schubert conditions (the properties of the
Schubert variety) tells us that the 2-dimensional subspace that contains them must satisfy

dimpV X F1q ě 1 and dimpV X E1q ě 1.

These are the conditions for a partition λ “ pλ1q where pn` 1q ´ 2` 1´ λ1 “ 1. We see this means
that λ1 “ n ´ 1. Thus, we see that we are intersecting the following Schubert varieties

Ωpn´1qpF q X Ωpn´1qpEq

where F and E are any two transverse flags extending F1 and E1 respectively. Notice that λ “ pn´1q

complements itself in the 2 ˆ pn ´ 1q ambient rectangle. Thus by the Duality Theorem there exists
a unique point in the intersection. i.e There is a unique line connecting two distinct points in Pn.
The next step in developing this problem solving framework is to revisit the Schubert cell and the
structure it provides to the Grassmannian.

4 Cohomology and Symmetric Functions

Let us first review some preliminary definitions regarding homology and cohomology, mostly re-
volving around CW-complexes and their relation to the Grassmannian. Our treatment will mostly
draw from [3] with additional remarks regarding projective space and the Grassmannian. Com-
putations with the Grassmannian involving its cohomology groups are best done using its cellular
homology and cohomology. Therefore we will begin by developing a CW-complex structure on the
Grassmannian.

Definition 17. An n-cell is a topological space homeomorphic to the unit open ball in Rn. Some-
times called an open n-disk. An n-disk is the closure of the unit open ball in Rn

Definition 18. We construct a CW-complex using the following procedure:

1. Begin with a discrete set X0, called the 0-skeleton, whose points are regarded as 0-cells.

2. Inductively form the n-skeleton, Xn, from Xn´1 by attaching the n-cells enα through the maps
φα : BDn

α Ñ Xn´1 where Dn
α is a collection of n-disks. We will do this by setting Xn as the

quotient space of the disjoint union Xn´1
Ů

α Dn
α under the relation x „ φαpxq for all x P BDn

α.
Thus the n-skeleton Xn “ Xn´1

Ů

α enα where each enα is an open n-disk.

3. The CW-complex is X “
Ť

n Xn, which could just be X “ Xn if the inductive process stops
at some n ă 8.

For this paper, we are not too concerned with the specific definitions of the boundary maps. It
is more important to us that we know they exist and what some of their properties are.

Example. Let us consider the cell structure of the projective plane P2. Let X0 “ tp0, 0, 1qu. Then
we attach a 2-cell, a copy of C, similar to a balloon in order to get X2. Finally, we attach a 4-cell,
a copy of C2, to get X4. Imagine higher dimensional balloons.

It is important to realize that Schubert cells give a cell complex structure on the Grassmannian.
We will give a brief sketch of the proof. Define X0 to be the 0-dimensional Schubert variety ΩB ,
where B is the ambient rectangle, and ΩB is the partition that corresponds to the partition that
covers all of B. Because we are working over C there are no cells of odd dimension. Next we have
X2 “ X0 Y Ω˝

λ1 where λ1 “ pn ´ k, n ´ k, . . . , n ´ k ´ 1q is obtained by removing the bottom
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right corner from the ambient rectangle. The closure of Ω˝
λ1 is Ω˝

B “ X0, so the closure maps the
boundary Ω˝

B of X2 to X0 see [8] for a full construction. We can continue and form X4 by attaching
the two 4-cells given by removing the two outer corner squares in both possible ways from λ1. By
continuing like this, we see that the 2m-th cell is formed by attaching Schubert cells with partition
size |λ| “ kpn´kq ´m. From this, we obtain the CW decomposition of the Grassmannian into cells

X0 Ă X2 Ă ¨ ¨ ¨ Ă X2kpn´kq.

Example. The Grassmannian Grp4, 2q has the cellular decomposition

Grp4, 2q “ Ω˝
p2,2q

Y Ω˝
p2,1q

Y Ω˝
p2,0q

Y Ω˝
p1,1q

Y Ω˝
p1,0q

Y Ω˝
p0,0q

With X0 “ Ω˝
p2,2q

, X2 is formed by attaching Ω˝
p2,1q

to X0, X4 by attaching Ω˝
p2,0q

Y Ω˝
p1,1q

to X2,

X6 by attaching Ω˝
p1,0q

to X6, and finally X8 by attaching Ω˝
p0,0q

to X6.

Definition 19. For a CW complex X “ X0 Ă ¨ ¨ ¨ Ă Xn let

Ck “ Z#k´cells

be the free abelian group generated by the k-cells B
pkq
α “ pD

pkq
α q˝. The cellular boundary map

dk`1 : Ck`1 Ñ Ck as

dk`1pB
pk`1q
α q “

ř

β degαβ ¨B
pkq
α ,

where degαβ is the degree of the composite map

BB
pk`1q
α Ñ Xk Ñ B

pkq

β .

The first map above is the cellular attaching map from the boundary of the closure of the ball B
pk`1q
α

to the k-skeleton, and the second map is the quotient map formed by collapsing XkzB
pkq

β to a point.
This composite map from a k-sphere to another k-sphere has a degree. See [3], section 2.2, p. 134.

The cellular boundary maps make the groups Ck into a chain complex, a sequence of maps

0 Ñ Cn
dn
Ñ Cn´1

dn´1
Ñ Cn´2 Ñ ¨ ¨ ¨ Ñ C1

d1
Ñ C0 Ñ 0

for which di ˝ di`1 “ 0 for all i. Because of this property we can consider the following quotient
groups

HipXq “ kerpdiq{ Impdi`1q

for all i. These are abelian groups and are called the cellular homology groups of the space X.

Example. Let us revisit P2. Its decomposition consisted of a point, a 2-cell, and a 4-cell. Thus its
cellular chain complex can be written as

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Z Ñ 0 Ñ Z Ñ 0 Ñ Z Ñ 0

and the homology groups are H0 “ H2 “ H4 “ Z and H1 “ H3 “ 0

From this, we can swiftly define cellular cohomology by dualizing the chain complex above.

Definition 20. Let Ck “ hompCk,Zq for each k. The boundary maps d˚
k : Ck´1 Ñ Ck are defined

as

d˚
kfpcq “ fpdkpcqq

for any f P Ck and c P Ck. These coboundary maps form a cochain complex, from which we define
the cohomology groups as

9



HipXq “ kerpd˚
i`1q{ Impd˚

i q

for all i. Finally, we have the direct sum of the cohomology groups

H˚pXq “
À

i H
ipXq

which has a ring structure when equipped with the cup product, the dual of intersections of cycles
in homology. In this setting it roughly corresponds to intersections of cohomology classes.

Definition 21. Recall that a graded ring is a ring S together with a set of subgroups Sd, d ě 0
such that S “

À

dě0 Sd as an abelian group, and st P Sd`e for all s P Sd, t P Se.

The is an equivalent definition of cohomology in the Grassmannian known as the Chow ring.
While we will not go into it in this paper, the following theorem makes use of some properties made
apparent by this interpretation.

Theorem 22. The cohomology ring H˚pGrpn, kqq has a Z-basis given by the classes

σλ :“ rΩλpF qs P H2|λ|pGrpn, kqq

for λ a partition fitting inside the ambient rectangle. The cohomology H˚pGrpn, kqq is a graded ring.
i.e σλ ¨ σµ P H2|λ|`2|µ|pGrpn, kqq and we have

σλ ¨ σµ “ rΩλpF q X ΩµpEqs

where F and E are the standard and opposite flags. We remark that σλ is independent of the choice
of flag F since any two Schubert varieties of the same partition shape are equivalent under change
of basis.

Now consider the following. Let λ1, . . . , λm be partitions such that
řm

i“1 |λi| “ kpn´kq. Because
the cohomology ring is graded, the product σλ1 ¨ σλ2 ¨ ¨ ¨σλm P H2kpn´kqpGrpn, kqq. However, the
only generator of this cohomology group is σB , which is the class of a single point ΩBpF q, where B
is the ambient rectangle. Therefore the intersection of the Schubert varieties corresponding to the
λi for m generic flags is a finite union of points. In particular, the number of points is the coefficient
c in the product

σλ1 ¨ σλ2 ¨ ¨ ¨σλm “ cBλ1,...,λmσB

In order to learn how to calculate these coefficients, we need to introduce an important type
of symmetric function, the Schur functions, and develop a connection between them, the Young
tableau, and elements in the cohomology ring.

Definition 23. The ring of symmetric functions ΛCpx1, x2, . . . q is the ring of bounded degree formal
power series f P Crrx1, x2, . . . ss which are symmetric under permuting variables. More formally,

fpx1, x2, . . . q “ fpxπp1q, xπp2q, . . . q

for any permutation π : Z` Ñ Z` and degpfq ă 8.

We will be interested in a specific class of symmetric functions, called Schur functions, which we
will define using the Young tableau. First we introduce some ways to modify partitions.

Definition 24. A skew shape is the difference, υ{λ, formed by removing the Young diagram of a
partition λ from a strictly larger partition υ. A skew shape is called a horizontal strip if no column
contains more than one box.

Now we introduce the semistandard Young tableau, which is essentially a type of skew shape
combined with a sequence of integers called the contents that have certain conditions imposed upon
them.
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Definition 25. A semistandard Young tableau of a skew shape υ{λ is a filling of the boxes of the
Young diagram of shape υ{λ with positive integers such that within each row the integers weakly
increase from left to right and within each column the integers strictly increase from top to bottom.
The content of a semistandard Young tableau is denoted µ “ pµ1, µ2, . . . , µmq where µi denoted the
number of boxes labeled with integer i. The reading word of the tableau is the word formed by
concatenating the rows from bottom to top.

Remark 26. We can also consider the semistandard Young Tableau of a single partition υ. Just
consider the definition using the skew shape, but set the second partition λ as a partition with
entries all 0.

Example. The following is a semistandard Young Tableau of shape υ{λ and content µ where υ “

p5, 4, 2q, λ “ p2, 2, 0q and µ “ p3, 1, 1, 1, 1q.

1 1

2 3

1 4 5

In this case, the reading word of the semistandard Young Tableau is 1452311.

Now that we have defined skew shapes and semistandard Young Tableaux, we have enough back-
ground knowledge to define the Schur functions and begin discussing their relationship to cohomology
classes.

Definition 27. Given a semistandard Young tableau T of skew shape υ{λ. The Schur function for
skew shape υ{λ is given by

sυ{λ “
ř

T xT

where the sum ranges over all possible semistandard Young Tableau of skew shape υ{λ T and
xT “ xm1

1 xm2
2 . . . where mi is the number of occurrences of the integer i in T . In the case that λ is

empty, we say sυ{λ “ sυ is the Schur function of shape υ.

An important aspect of Schur functions is that they are symmetric functions as well. For com-
pleteness and to better understand Schur functions let us prove this result.

Proposition 28. For any skew shape υ{λ the Schur function sυ{λ is symmetric.

Proof. Recall that any element of the symmetric group Sn can be rewritten as a product of transpo-
sitions. Thus it suffices to show that sυ{λ is invariant under the transposition pi, i`1q P Sn. Suppose
that υ{λ has size n. This means that

ř

i υi ´ λi “ n. Let α “ pα1, α2, . . . , αkq be a sequence of
non-negative integers such that there exists a semistandard Young tableau of shape υ{λ and content
α. Define α1 “ pα1, . . . , αi`1, αi, . . . , αkq by permuting αi and αi`1 in α. By constructing a bijection
φ : Tα

υ{λ Ñ Tα1

υ{λ from the set of semistandard Young tableaux of shape υ{λ and content α to the

semistandard Young tableaux of shape υ{λ and content α1. Consider T P Tα
υ{λ. Since the numbering

of the cells of T must strictly increase down columns, we will disregard any column in T that contain
both i and i ` 1, as well as columns that contain neither. The remaining columns we consider will
have exactly one of i or i ` 1. These columns form a diagram whose rows contain some number
of cells labeled i and some number of cells labeled i ` 1. In each row swap the i’s for the i ` 1’s
and vice versa. Then reorder the row to be weakly increasing. Repeat this process for each row.
No cells are being introduced or removed, so this procedure doesn’t change the overall shape of T .
This process results in the tableau φpT q P Tα1

υ{λ. φ is injective since if φpT q “ φpSq, then we simply
reverse the process we applied to show that T “ S. Similarly, we show that φ is surjective because
for any tableau T of content α1 and skew shape υ{λ applying φ twice gives T again, so φpT q P Tα

υ{λ
maps by φ to T . Thus φ is a bijection.
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Example. For λ “ p2, 1q, the tableaux

1 1

2

1 2

2

1 1

3

1 2

3

. . .

are some of the infinitely many semistandard Young tableaux of shape λ. Using this, we can write
a couple of the terms of sλ “ x2

1x2 ` x1x
2
2 ` x2

1x2 ` x1x3x3 ` ¨ ¨ ¨ .

One last fact that we will use about Schur functions sλ is that they form a basis for the vectors
space Λpx1, x2, . . . q as λ ranges over all partitions. We will not go into this proof since it requires
some additional developments not useful for this paper. We direct the reader to [5] for a complete
treatment. Accepting this fact, we are now ready to describe a very important relationship between
the cohomology ring of the Grassmannian and a quotient of the ring of symmetric functions.

Theorem 29. There is a ring isomorphism

H˚pGrpn, kqq – Λpx1, x2, . . . q{psλ | λ Ć Bq

where B is the ambient rectangle and psλ | λ Ć Bq is the ideal generated by the Schur functions.
The isomorphism sends the Schubert class σλ to the Schur function sλ.

Now, the map that carries σλ Ñ sλ forms an isomorphism of the underlying vector spaces. Thus,
in order to show that there is a ring isomorphism, it remains to show that such an isomorphism
preserves the operations in each space. It should carry the cup product of cohomology classes, or
the intersection of Schubert varieties, to the product of Schur functions. To do this, it suffices to
show that both spaces satisfy the Pieri rule, which for Schur functions tells us how to multiply a
one-row shape by any other partition and tells us about the intersection of Schubert varieties with
certain partitions for cohomology. We will introduce both rules here.

Theorem 30. Given a partition λ and a one-row shape prq the product of the associated Schur
functions is

sprq ¨ sλ “
ř

υ sυ

where the sum ranges over all partitions υ such that υ{λ is a horizontal strip of size r.

The proof of this theorem is quite technical and involved, so we will not discuss it in this paper.
See [7] for a complete proof. We are, however, able to discuss the proof of the equivalent rule for
the cohomology ring.

Theorem 31. (Pieri Rule for Schubert Classes) Let λ and µ be partitions with size |λ| ` |µ| “

kpn ´ kq ´ r. Let F and E be the standard and opposite flags, and H be a generic complete flag.
Then the intersection

ΩλpF q X ΩµpEq X ΩprqpHq

has one element if µc{λ has length r and no two boxes in the same column i.e is a horizontal strip,
and is empty otherwise.

In order to prove this, we have some preliminary observations we need to cover first. Importantly,
note that the matrices that correspond to λ and µ do not have pivots in the same position as was
the case in the Duality Theorem. As a result there may be ˚ entries that occur in the matrix
representations of Ωλ and Ωµ. The subspaces which occur in the intersection Ωλ X Ωµ are spanned
by the rows of a matrix that has non-zero elements only in the intermediary sites between pivots. To
see this, recall the initial definition of the Schubert variety and the condition required for elements
to be included in it. Now notice that the condition that the diagrams for λ and µ do not intersect
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and that no two of the r boxes between them are contained in the same column is equivalent to the
following condition:

n ´ k ´ λk ě µ1 ě n ´ k ´ λk´1 ě ¨ ¨ ¨ ě n ´ k ´ λ1 ě µk ě 0 (4)

To see this, just think about how this looks on a Young diagram. You will notice that this condition
does indeed prevent two r boxes between λ and µ from being in the same column. Now, we set
Ai “ Fn´k`i´λi , Bi “ En´k`i´µi and Ci “ Ai X Bk`1´i. Let C be the span of all the Ci’s. These
are important as they will be used in solving some essential lemmas. To make sure we understand
all this, let us go through an example.

Example. Consider the case in Grp10, 4q with λ “ p4, 3, 1q and µ “ p5, 3, 2q. In the young diagram,
we place λ in the top left and µ in the bottom right.

The white squares are precisely the skew shape µc{λ. Using this, and by recalling the definitions for
standard and opposite flags, we get the following:

A1 “ F3 B4 “ E10 C1 “ xe1, e2, e3y

A2 “ F5 B3 “ E7 C1 “ xe4, e5y

A3 “ F8 B2 “ E5 C1 “ xe6, e7, e8y

A4 “ F10 B1 “ E2 C1 “ xe10, e9y

From this we can write the subspaces V in the intersection Ωλ XΩµ as a span of the rows of a matrix
of the form

»

—

—

–

˚ ˚ ˚ 0 0 0 0 0 0 0
0 0 0 ˚ ˚ 0 0 0 0 0
0 0 0 0 0 ˚ ˚ ˚ 0 0
0 0 0 0 0 0 0 0 ˚ ˚

fi

ffi

ffi

fl

The following lemma will help us generalize the notions we have developed in the example and
introduce some key properties of our constructions.

Lemma 32. The following are true:

a. C “
Şk

i“1pAi ` Bk´iq.

b.
řk

i“1 dimpCiq “ k ` r.

c. The sum C “ C1`¨ ¨ ¨`Ck is a direst sum of nonempty subspaces if and only if the inequalities
in (4) hold.

Proof. For the first part, it is important to notice that the basis vector em is in C exactly when it is in
some Cj . Moreover, this occurs precisely when j`µk`1´j ď m ď n´k`j´λi for some j. This follows

from the definitions for standard and opposite flags. Now we focus on
Şk

i“1pAi `Bk´iq. For this, we

notice that em is in
Şk

i“1pAi`Bk´iq when eitherm ď n´k`j´λj orm ą i`µk´i. For completeness,
we will operate under the convention that λ0 “ µ0 “ n´k for the next section. We claim that these
two conditions for em are in fact equivalent. To see this, suppose j ` µk`1´j ď m ď n ´ k ` j ´ λj
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for some j. Then for all i ă j we have i`µk`1´j and for all i ą j we have that m ď n´k` j´λj ď

n ´ k ` i ´ λi. Now, consider the smallest j such that m ď n ` j ´ λj . Since this is the smallest
such j, it also follows that m ą pj ´ 1q ` µk´pj´1q, which is the condition we wanted. Since these

conditions are equivalent to each other, it follows that C “
Şk

i“1pAi ` Bk´iq. For the second part,
notice that Ci “ Fn´k`i´λi

X En´k`i´µi
and is spanned by the vectors ek´i`µi`1, . . . , en´k`i´λi

.
Therefore dimpCiq “ n ´ k ` i ´ λi ´ pk ´ i ` µi ` 1q ` 1 “ n ´ 2k ` 2i ´ λi ´ µi. Taking the sum
from i “ 1, . . . , k we get

k
ÿ

i“1

dimpCiq “

k
ÿ

i“1

n ´ 2k ` 2i ´ λi ´ µi

“ kn ´ 2k2 ` 2
kpk ` 1q

2
´ p|λ| ` |µ|q

“ kn ´ 2k2 ` kpk ` 1q ´ pkpn ´ kq ´ rq

“ k ´ r

.

Finally, we move on to the last part of the lemma. First notice that if the inequalities in (4) fail
then there is some column containing at least two stars, and the corresponding Ci’s will intersect in
a line, thus the sum will not be direct. If it is the case that the inequalities hold then the columns
each contain at most one start, and so the intersection Ci X Cj is trivial for all i and j.

Using this lemma, we can then prove yet another lemma which will finally allow us to tackle the
original theorem.

Lemma 33. If V P Grpn, kq is in the intersection Ωλ X Ωµ, then V Ă C. If it is the case that

C1, . . . , Ck are linearly independent, then dimpV X Ciq “ 1 for all i and V “
Àk

i“1pV X Ciq

Proof. By the previous lemma, it suffices to show that V Ă Ai ` Bk´i. If Ai X Bk´i ‰ t0u

then Ai ` Bk´i “ Cn so V P Ai ` Bk´i trivially. Then suppose that Ai ` Bk´i “ t0u. Since
V Ă Ωλ X Ωµ, we know that dimpV X Aiq ě i and dimpV X Bk´iq. Since V is k-dimensional,
V “ pV X Aiq ‘ pV X Bk´iq. Now we further assume that all of the Ci’s are linearly independent.
We know that dimpV X Ciq ě 1, since V X Ai and V X Bk`1´i have dimensions of at least i and
k ` 1 ´ i respectively, so that Ai and Bk`1´i intersect non trivially in V . Now because the Ci’s

are independent, V contains the direct sum
Àk

i“1pV X Ciq which has at least dimension k. Since

dimpV q “ k, we have that V “
Àk

i“1pV X Ciq and each summand must be of dimension 1.

We will now prove the Pieri rule for Schubert classes by making use of the two previous results.

Proof. (Pieri Rule for Schubert Classes) If the inequalities in (4) fail, then by part pcq of Lemma 32
the space C is not a direct sum of the Ci’s, and by part pbq of the same lemma, its dimension is at
most rk ´ 1. In this case, a general space H of dimension n ´ k ` 1 ´ r will intersect C trivially, as
pr ` k ´ 1q ` pn ´ k ` 1 ´ rq “ n and we are in Cn. Therefore no V Ă Ωλ X Ωµ is in Ωprq. Thus the

intersection of all three varieties is empty. Now, if the inequalities do hold, then C “
Àk

i“1 Ci and
a generic subspace L of dimension n ´ k ` 1 ´ r will intersect C in a line. Since C decomposes as a
sum of Ci, the line can be rewritten as the span of the vector v “ u1 ‘ . . . ‘ uk with ui P Cn{t0u.
Since we are considering the subspaces V Ă C that intersect L in at least a line, it follows that
v P V . Writing V “

Àk
i“1pV X Ciq we see that ui P V for all i, so V “ xu1, . . . , uky. It is important

to notice that this point is unique, thus the intersection ΩλpF q X ΩµpEq X ΩprqpLq contains a single
point.
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Now that we have proved the Piere rule holds for cohomology classes, we can combine this with
the corresponding results for Schur functions, and fully establish that there does indeed exist a ring
isomorphism between the cohomology ring and Schur functions in some ambient rectangle. Now, in
order to solve intersection problems, we require one more construction, that being the Littlewood
Richardson tableau. We first introduce some important terminologies and definitions that we will
use to describe these tableaux.

Definition 34. A word w1w2w3 ¨ ¨ ¨wn where each wi P t1, 2, . . . u is Yamanouchi, also lattice or
ballot, if every suffix wkwk`1 ¨ ¨ ¨wn contains at least as many letters equal to i as i ` 1 for all i.

Definition 35. A Littlewood Richardson Tableau is a semistandard Young tableau whose reading
word is Yamanouchi

The following is an important construction and will be helpful for future computations.

Definition 36. A sequence of skew tableaux T1, T2, . . . form a chain if their shapes do not overlap
and

T1 Y T2 Y ¨ ¨ ¨ Y Ti

is a partition shape for all i.

Going forwards, we will utilize an important property of Schur functions which is known as the
Littlewood Richardson rule.

Theorem 37. Let λp1q, λp2q, . . . , λpmq, the product of their corresponding Schur functions can be
written in the basis of Schur functions via the formula

sλp1qsλp2q ¨ ¨ ¨ sλpmq “
ř

υ c
υ
λp1q,λp2q,...,λpmqsυ

where cλp1q,λp2q,...,λpmq is the number of chains of Littlewood Richardson tableaux of contents λpiq with
total shape υ.

While we will not prove the general theorem given that such a proof is quite involved, we will
direct the reader to the following proofs. [1] contains a combinatorial approach while [5] opts for
a different method that involves some extra setup that we have not covered in this paper. We
will however, prove a commonly used corollary using this theorem. This treatment follows what is
presented in [2].

Corollary 38. Given partitions λ and µ, the product of the corresponding Schur functions can be
written in the basis of Schur functions via the formula

sλsµ “
ř

υ c
υ
λ,µsυ

where cυλ,µ is the number of Littlewood-Richardson tableaux of skew shape υ{λ and content µ

Proof. By the above theorem, cυλµ is the number of chains of two Littlewood Richardson tableaux
of content λ and µ with total shape υ. The first tableau of content λ is a straight shape tableau,
so by the Yamanouchi reading word condition and the semistandard condition, the top row can
only contain 1’s. Continuing this reasoning inductively, it has only i’s in its i-th row for each i.
Therefore the first tableau in the chain is the unique tableau of shape λ and content λ. Thus the
second tableau is the Littlewood Richardson tableau of shape υ{λ and content µ, which leads to our
result.

Now we can finally relate this all back to cohomology classes and intersections of varieties. First
we use our results about the relationship between the cohomology ring and Schur functions to obtain
some properties about multiplication of elements in the cohomology ring.
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Theorem 39. In H˚pGrpn, kqq we have

σλp1q ¨ ¨ ¨σλpmq “
ř

υ c
υ
λp1q,...,λpmqσυ

where the sum is restricted to partitions υ fitting in the ambient rectangle.

Proof. By the general Pieri formula for Schur functions,

sλp1qsλp2q ¨ ¨ ¨ sλpmq “
ř

υ c
υ
λp1q,λp2q,...,λpmqsυ

where cυ
λp1q,λp2q,...,λpmq is the number of chains of Littlewood Richardson tableaux of contents λpiq

with total shape υ. Because of the isomorphism between Schur functions and the cohomology ring,
we get our result.

And finally, we introduce the theorem that will let us calculate the answer to some of our linear
intersection problems, know as the Zero-Dimensional Littlewood Richardson Rule.

Theorem 40. (Zero-Dimensional Littlewood Richardson Rule) Let B be the k ˆ pn ´ kq ambient
rectangle and let λp1q, . . . , λpmq be partitions fitting inside B such that |B| “ kpn´kq “

ř

i |λi|. Also
let F p1q, . . . , F pmq be any m generic flags. Then

cB
λp1q,...,λpmq :“ |Ωλp1q pF p1qq, . . . ,Ωλpmq pF pmqq|

is equal to the number of chains of Littlewood Richardson tableaux of contents λp1q, . . . , λpmq with
total shape equal to B.

In this last section, we will bring together all that we have covered so far to approach the following
problem. We want to know that how many lines intersect 4 given lines in 3-dimensional space. The
Schubert variety Ωp1,0qpF q Ă Grp4, 2q consists of the 2-dimensional subspaces V of C4 for which
dimpV X F2q ě 1. Under the quotient map from C4 Ñ P3, we can see that this is equivalent to the
space of all lines that intersect a given line in at least a point, which is what we want. Using this,
we can reduce the problem to finding out properties of the intersection

Ωp1qpF p1qq X Ωp1qpF p2qq X Ωp1qpF p3qq X Ωp1qpF p4qq

where F p1q, F p2q, F p3q, and F p4q are distinct flags. Using our results on the cohomology ring of the
Grassmannian, we can restate this problem again as

σp1q ¨ σp1q ¨ σp1q ¨ σp1q “ c ¨ σp2,2q

where the value of c is our answer. Finally we use our results about Schur functions and the

Littlewood Richardson rule. We find that c “ c
p2,2q

p1q,p1q,p1q,p1q
which is the number of ways to fill a

2 ˆ 2 rectangle using a chain of Littlewood Richardson tableaux each consisting of a single box.
Since each tableau of the chain must contain a single 1 as its entry, we label them with subscripts
to indicate their step in the chain. From this, we find that there are exactly two chains satisfying
these conditions

11 12

13 14

11 13

12 14

.

Therefore c
p2,2q

p1q,p1q,p1q,p1q
“ 2, thus there are 2 lines intersecting 4 generic lines in P3.

In fact, by introducing a couple more tools, we can prove a more complicated result: How many
k ´ 1 dimensional subspaces of Pn´1 intersect kpn ´ kq given subspaces of dimension n ´ k ´ 1
non-trivially?

We first introduce the notions of a standard Young tableau and of hook length.
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Definition 41. A standard Young tableau of shape λ where |λ| “ n is a semistandard Young
tableau numbered by the integers 1, 2, . . . , n.

Definition 42. For a square s in a Young diagram, the hook length is defined to be the sum of the
number of squares strictly below s, plus the number of squares strictly to the right of s, plus 1 for
s itself. We denote this sum to be hookpsq

We can in fact use hook length to find the number of standard Young tableaux of a particular
shape.

Theorem 43. (Hook Length Formula) The number of standard Young tableaux of shape λ is

|λ|!
ś

sPλ hookpsq

It is beyond the scope of this paper to prove this. We direct the reader to [7] for a full proof.
Now we can approach our question. Similarly to our first example, we can reduce the problem

to computing the coefficients in the expansion

σ1 ¨ ¨ ¨ ¨ ¨ σ1 “ cB1,...,1σB .

This is the number of ways to full the ambient rectangle with content p1, 1, . . . , 1q. Notice that this
is the same as finding the number of standard Young tableau of shape pkpn ´ kqqk, which is what
we get by applying the hook length formula to the ambient rectangle. In the table, the integer in
each box denotes its hook length.

n´1 n´2

n´2 n´3

¨ ¨ ¨
k`1 k

k k`1

...
...

k`1 k

k k`1

¨ ¨ ¨
3 2

2 1

Now, to apply the Hook length formula, we notice that the produce of the hook lengths along the
top and right sides of the box, starting from the first box in row i to the n´ k ` 1´ i-th box in row
i, and then down the n ´ k ` 1 ´ i-th column is given by the expression

pn´iq!
pi´1q! .

So when considering the number of standard Young tableaux in the ambient rectangle, i.e considering
all i, we have the following:

ś

sPB hookpsq “
pn´1q!pn´2q!¨¨¨pn´k`1q!pn´kq!

1!2!¨¨¨pk´2q!pk´1q! .

Thus, we can apply the hook length formula to find that

cB1,...,1 “
|B|!

ś

sPB hookpsq
“

ppkpn´kqq!
pn´1q!pn´2q!¨¨¨pn´k`1q!pn´kq!

1!2!¨¨¨pk´2q!pk´1q!

“
pkpn´kqq!pk´1q!pk´2q!¨¨¨2!1!

pn´kq!pn´k`1q!¨¨¨pn´2q!pn´1q! .

This is the number of k ´ 1 dimensional subspaces of Pn´1 which will intersect each of the kpn ´ kq

fixed subspaces of dimension n ´ k ´ 1 non-trivially.
From these two example, we can see that it is possible to solve problems using the framework

we have established and some simple reasoning, or more complicated problems if we are willing to
work with a bit more machinery.
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5 Conclusion

The rigorous foundation we have presented for solving these intersection problems reveals many
interesting connections between different constructions in math. We have only covered a couple
of these connections, and have alluded to many more. For those interested in the subject, Young
Tableaux by William Fulton [1] is a more advanced text that covers these topics in greater detail and
in more general settings, while also presenting more connections to combinatorics and representation
theory that we have not delved into here.

Finally I would like to thank Serkan Salik, my TA, for providing guidance throughout this process
and for explaining the concepts in a clear and insightful manner, and thank Dr. Simon Rubinstein-
Salzedo for hosting this program and helping me choose this very interesting topic.
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