PROOF OF THE NEGATIVE OF THE BURNSIDE PROBLEM
JASON CHEN

ABSTRACT. The Burnside Problem asks whether a finitely generated group in which every
element has finite order must necessarily be a finite group. We utilize important properties
of profinite p-groups to help prove the Golod-Shafarevich Theorem, an infinite group that
satisfies the negative of the Burnside Problem.

1. INTRODUCTION

In 1902, William Burnside posed the Burnside problem, which asks whether every finitely
generated group in which all elements have finite order must itself be finite [Bur02]. This
question, which is deceptively simple in formulation, gave rise to several major subproblems
in group theory, including the general Burnside problem, the bounded Burnside problem,
and the restricted Burnside problem.

The Bounded Burnside problem asks:

Question 1. If G is a finitely generated group with exponent n, is G necessarily finite?
More generally, if we define the free Burnside group of rank m and exponent n, to be denoted
B(m,n), to be a group with m distinguished generators and =™ = e for every x € B(m,n),
for which m and n is the free Burnside group B(m,n) finite?

For instance, B(1,n) is merely a cyclic group of order n, while B(m,?2) is the direct
product of m copies of the cyclic group of order 2. In Burnside’s paper, he proved that
B(m,3), B(m,4), and B(m,6) are finite for all m. In 1968, Pyotr Novikov and Sergei
Adian made a breakthrough. Using a complicated combinatorial method, they were able to
prove that for every odd number n > 4381, there exist infinite, finitely generated groups of
exponent n. Adian later lowered it to 665 [NAGS|.

Formulated in the 1930s, the Restricted Burnside problem asks:

Question 2. If it is known that a group G with m generators and exponent n is finite, can
one conclude that the order of GG is bounded by some constant depending only on m and n?

The case of arbitrary exponent has been completely settled in the affirmative by Efim
Zelmanov |Zel91], who was awarded the Fields Medal in 1994 for his work.

In 1964, over 60 years after the Burnside problem was posed, Evgeny Golod and Igor
Shafarevich proved that there did in fact exist finitely generated groups where every element
had finite order, with infinitely many elements |[GS64]. This theorem, the Golod-Shafarevich
Theorem, is the main subject of this paper.

In this paper, we look to [Zhol7] and [Cas22| for the proof of the Golod-Shafarevich
Theorem. Due to the complex nature of both this proof and the problem, complex topics
like cohomologies may pop up.

Date: July 2025.
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2. PRELIMINARIES

We first begin with some important preliminaries. This is to help the reader generally
understand what the Burnside Problem even asks, while also supporting future proofs. Then,
we introduce some more complex definitions, which may not be as easily understandable to
a lay audience.

2.1. Burnside Problem. We now begin with three important definitions to help under-
stand the Burnside Problem. We define Group, Order, and Generators.

Definition 1. A Group (G,+) is a nonempty set defined under a binary operation, with
the following properties:
) such that for all g € (G, +),e+g = g+e =g.

e Identity: There exists some e € (G, +
G, +), there exists some inverse g~! € (G, +) such

e Inverse: For every element g € (G,
thatg+g =g t+g=ce.

e Associativity: For arbitrary elements a,b,c € (G,+), (a +b) +c=a+ (b+¢).

e Closure: For arbitrary elements a,b € (G,4),a+b € G.

One intuitive example of a group is a 12-hour clock. The elements of our group would
be the hours, while the operation would be addition, albeit a little altered from the typical
interpretation. For example, 3 hours after 11 isn’t 14, since it’s not on our clock. Rather,
it’d be 2, the remainder after 14 is divided by 12.

Our identity would simply be 12 (typically the identity would be denoted as 0, but clocks
don’t have a 0 on them), since 12 hours after 1 is still 1, 12 hours after 2 is still 2, and so on.
To obtain the inverse of some hour g, simply add 12 — g to get the identity. For example, 3
hours after 9 would be 12, 4 hours after 8 would be 12, and so on.

Definition 2. The order of an element g € GG is the smallest positive integer m such that
g combined m times results in the identity. Under multiplicative notation, g = e. If there
exists no such integer, then we say that the order of g is infinite.

In our clock example, some elements have different order. For instance, 1 has order 12,
while 2 has order 6. However, no element has an infinite order.

Definition 3. The generators S of a group G are a subset such that every element of G
can be written under group operation of finitely many elements in S and their inverses.

In our clock example, a generator could be 1, since you can get to every single hour on
the hand by adding enough 1’s. However, this example is rather simple, as it needs only one
generator, while many other groups are much more complex.

We now define some other important terms.

Definition 4. For a group G, a normal subgroup N < G is a subgroup that is invariant
under conjugation. That is, N is normal if and only if gng= € N for all g € G and n € N.

Definition 5. Let N be a normal subgroup of G. Then, the quotient group G/N is the
set of left cosets, {gN : g € G.} Keep in mind that gN = {gn : n € N.}

We now have enough background to understand what the Burnside Problem asks. In the
clock example, it is equivalent (isomorphic) to Z/12Z, the integers modulo 12, and is an
example of a finitely generated group (generated by 1), where every element has finite order,
with a finite number of elements.
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We will now begin defining important information which will be utilized for the Golod-
Shafarevich Theorem.

Definition 6. For a prime p, the group G is a finite p-group if |G| = p" for some positive
integer n.

We'll see this definition pop up a lot more, so make sure to keep this in mind.

Definition 7. For a group G, the commutator of two elements a,b € G is defined as
la,b] = a~'b~'ab. The commutator subgroup of G, denoted [G,G] is the set of all
commutators of G, defined as {[a,b] : a,b € G}.

The commutator serves as a measure for how commutative two elements are. In fact, if
we take the quotient of G by the closure of our commutator subgroup [G, G|, we obtain an
abelian version of G, called the abelianization of G, often denoted as G*. We now turn
from our group theory reminders over to algebras and rings, which are defined under two
operations, instead of just one.

2.2. Rings and Group Algebras.

Definition 8. A ring R is a set defined under two binary operations, +, - that satisfy the
following properties:

e [t is an abelian group under addition, meaning that it is commutative under
addition (a 4+ b = b+ a) and forms a group under addition.

e [t is a monoid under multiplication, meaning that under multiplication, it has
associativity and an identity, but not necessarily an inverse. A monoid is a weaker
version of a group.

e Multiplication is distributive, meaning that (a+b)-c = (a-c)+(b-c), and ¢- (a+b) =
(c-a)+(c-b).

We now are going to define an R-module to help define a group algebra, which we’ll
be using in future proofs.

Definition 9. For a ring R, and 1 being its multiplicative identity, the left R-module M
is an abelian group under addition and has multiplicative operation - : R x M — M such
that for all elements r, s € R and x,y € M, the following properties are satisfied:

or-(z+y)=r-x+r-y

e (r+s)-z=r-x+s-z

o (rs)-x=r-(s-x)

ol -z=u=x.
A right R-module is one defined similarly in terms of the operation - : M x R — M. If R
is commutative, the left and right R-modules are simply called R-modules.

Modules can be thought of as generalizations of a vector space, though in this case, our
scalars, usually taken from a field, are taken from a ring.

Definition 10. Let G be a multiplication group, and A a commutative ring ( under mul-
tiplication). The group algebra of G over A, also commonly known as the group ring,
denoted A[G], is defined to be the free A—module on the basis G. That is, we can think of
it as all linear combinations

a = Z agzg

geG
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with ay € R and a, = 0 for all but finitely many g. We define the sum of two elements to

S ()

We also define the product to be:

) ()5

geG geG geG
where ¢y = > o azby14

One intuitive way of thinking about the group algebra is as a polynomial space (a vector
space if A is a field). The group ring A[G] can be thought of as the ring of polynomials with
coefficients in A, and variables coming from G, except multiplication is defined with groups
rather than by “adding” the order of groups, which is what we’re used to for polynomials.

For example, consider the group ring Z[C3], where C3 denotes the cyclic group of order 3,
generated by element a. Then, for integers zq, 21, 20, Z[C3] = {20€ + z1a + 226}, which is
isomorphic to Za]/(a® — 1).

Definition 11. The group ring A[G] has an augmentation map € : A|[G|] — A defined as
YIRS
geG geG
The kernel I(G) of this map (elements sent to the identity) is the augmentation ideal of
A[G].
Proposition 1. The set {g —1: g # 1,9 € G} is a A-basis for I(G).

Proof: We follow [Zhol7]’s proof, on page 6 of their paper.

From above, we know that €(g) = 1 for every g € G. Thus, e(g — 1) =1 -1 =0, so
we conclude that {g —1: g # 1,9 € G} C ker(e) = I(G). For any element > _,a,9 €
I(G), > ,eq @y = 0. We can combine this information to see:

Zagg = Zagg - Zag = Zag(g —-1).
9eG geqG geqG geG

Since every element of I(G) has a corresponding preimage in {g —1: g # 1,9 € G}, we
conclude that this set spans I(G). We now show linear independence. Suppose

D aglg—1)=0.

geG

Then, we see that
o= 0,
geG geG

Since this right side is a constant, this can only be true if all a, terms are equal to 0,
demonstrating linear independence. Since {g — 1 : g # 1,9 € G} spans and is linearly
independent, we conclude that this set is a basis for 1(G).

We now turn to our final section, which is on group cohomologies.
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2.3. Group Cohomology. Group cohomology is a set of mathematical tools used in group
theory to help study groups. We look at the group actions (special mappings from a group
onto itself) of a group in an associated G-module (similar to the A-module but defined over
a group). There is a category theory definition of something called a cohomology group,
but we can define it through an alternate method, utilizing cochains.

Definition 12. A chain complex (A,,d,) is a sequence of abelian groups of modules
<o+ A, Ay, As, - -+ linked by homomorphisms d,, : A, — A,_1, where d,, o d,y; = 0 for all
n. That is, the composition of two consecutive maps nets the zero map. The chain complex
can be written out like so:

d d d: d. d d
i Ag i A A A A&

A cochain complex, (A®,d*) is the dual notion to a chain complex. It is a sequence of
abelian groups or modules linked by homomorphisms d,, : A, — A, 1, where d,,;,; 0d,, =0
for all n. It can be written as:

d-! 0 d! 2 i d
e —— Ag— A — Ay — A3 — Ay — -

Notably, we can think of a cochain complex as a chain complex that’s simply going in the
opposite direction, hence why it serves to be the dual of the chain complex.

While these chain and cochain complexes will be useful in defining cohomology groups, it
is also important to note that they are able to provide insight onto the algebraic structure,
such as the image and kernels of maps.

Definition 13. Let GG be a group and M a G-module, and an integer n > 0. The group of
n-cochains is defined as C"(G, M) = {f : G — M}, the continuous maps from G" to M.
These result in a cochain complex

an dn+1
”'_>Cn_>0n+1_>0n+2_>__‘

with our d” being the coboundary homomorphisms defined as
(dnf)(gh s 7gn+1) =01 f(g27 s 7gn+1) + Z<_1)lf(g17 <3 9i-1, 9i9i415 Ji+25 - - - 7gn+1>'
i=1

Under this definition, our coboundary homomorphisms satisfy the property d"*tod” =
0, so we know these are still cochains.

A little intuition behind what this definition of the differential d” does comes from un-
derstanding what happens to each of the specific g’s you put into the differential. Each d"
alternates the signs, and “drops” some of the values. For instance,

(d'f)(g.h) = gf (h) = f(gh) + f(9),
while
(d®f)(g,h, k) = gf(h.k) — f(gh. k) + f(g,hk) = f(g, D).
Note how going from d? to d' drops some terms (we have 3 instead of 2), and the signs are

alternated.

Definition 14. Let us define G, M, n to be the same as in Definition [I3] Then, the set of
n-cocyles of G with coefficients in M, is defined as

Z"(G, M) = ker(d").
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The group of n-coboundaries is defined as

0 n=>0
im(d") n>1

B"(G, M) = {

Now that we have enough information, we can define the nth cohomology group
H"(G, M) of G to be
H"(G,M)=272"(G,M)/B"(G,M).

The kernel of d* (Z"(G, M)) represents the cochains that are sent to 0, while the image of
d"(B"(G, M)) represents the cochains that are equal to d" composed of something. So, when
we divide by B"(G, M), we essentially say that when these cocyles differ by a co-boundary,
they are equivalent.

For example’s sake, let us consider the Oth cohomology group, H°(G, M). The 0-cochains
are going to simply represent all functions ¢ : G — M. The 0-cocycles are cochains where
(d°) = 0. Thus, by utilizing the formula above, we see that this implies that

(d°c)(g) = gc —c.

In order for ¢ to be a 0-cocycle, we need to have (d°c)(g) = 0 for every g € G, which means
that

gc=c.

Thus, we can conclude that 0-cocyles will merely send every element to itself, so they are
invariant. The O-coboundaries is BY(G, M) = im(d°), but since there exist no —1-cochains,
we know that B(G, M) = {0}, the zero map. Thus, H(G, M) = {m € M : mg = mVg € G}.

3. PrRO-p GROUPS

Before we get to the proof of the Golod-Shafarevich Theorem (it’s the next section, so
it’s coming quick!), we must first introduce pro-p groups, a type of profinite group. We will
first define them through topology, which utilizes some important terminology we must first
define.

3.1. Relevant Definitions for Pro-p groups.

Definition 15. A set X with collection of subsets 71" is said to be a Topology if it falls
under the following criteria:

e The trivial subsets X and {0} are in T.
e For ABeT ANBeT.
e For two or more sets in T, their union is also in T.

We say that Topological space is a pair (X, 7) where X is a set and 7 is a topology on
X.

Definition 16. We say that a function is continuous over G if for any open set U C
G, f~Y(U) is open in the domain of f.

Definition 17. A Topological Group G is a topological space under a group operation for
which the group operation (- : G x G — G, -(x,y) = zy) and inverse maps ("' :7! (z) =27 1)
are continuous.
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Definition 18. A topological space X is compact if every open cover of X has a finite
subcover. That is, if {Us}aeca is a collection of open sets with X C (J .4 Ua, then there
exists a finite subcollection U,, . o, wWhere

XgO%,
=1

A more intuitive definition can come from the Heine-Borel Property, which states that a
subset is compact if it is closed and bounded. However, this only works in euclidean spaces,
which we aren’t working with, so it’s not technically the correct definition.

Definition 19. A topological space X is a Hausdorff space if any two points in X are
separated by a neighborhood. That is, for any two points x,y, there exists neighborhoods
U about x and V about y such that U and V' are disjoint.

A compact space is closed in a Hausdorff space, but boundedness isn’t a required property
for the Hausdorff space (it isn’t necessarily a metric space).

Definition 20. A topological space T is totally disconnected if all the connected com-
ponents are one-point sets (essentially the point itself). The connected components of
a point x € T is the union of all connected subsets that contain x.

The connected component of a point x can be thought of as the largest connected subset
that still contains x, so if a topological space is totally disconnected, we can imagine that
it means that every single point is “by itself”.

Definition 21. A profinite group is a compact, Hausdorff, totally disconnected
topological group.

We will introduce an example shortly. Note that open subgroups of profinite groups are
closed due to compactness, and every closed subgroup of a profinite group is also profinite.
This definition is topological, and we will shortly define this in algebraic notation, which
will be more useful for this specific context. However, before doing so, we must include the
notion of inverse limits.

Definition 22. A directed partially ordered set is a poset (I, <) such that for every
1,7 € I, there exists k € I such that k£ > i,j. An inverse system over I, sometimes also
called a projective system, is a family of groups (4;);c; with a family of homomorphisms
fij 1 A; = Aj for all i > j, where f;; is the identity on A; and f;;0 fjr = fir for alle > j > k.
The inverse limit of the inverse system ((A;)ier, (fij)i>jer, sometimes called the projective
limit, is a subgroup of the direct product of the A;’s, defined as follows:

gg&:{mj]&

iel el

aj:fij(ai),‘v’:iZjGI}.

We can think of the inverse limit as the infinitely long chain of elements as they slowly
get projected. For example, with a sequence

Xo(—X1<—X2<—"',

we find the space which compiles the sequences in a manner that shows us what a term is
mapped to: (zg, 1, xs,...), where xg € Xo, 21 € X1, ...
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One example of a directed partially ordered set is the natural numbers, N. Every
element precedes the next by increasing (directed), and for every pair, it’s also ordered
(totally ordered, which is also partially ordered).

Now, we can put a profinite group into algebraic notation, which will be quite helpful.

Proposition 2. If G is a profinite group, then G is isomorphic to lim(G/N), where N ranges
F

over the open normal subgroups of GG. Furthermore, the inverse limit of an inverse system
of discrete finite groups is profinite. Therefore, the topological definition and inverse limit
definition are equivalent.

We omit this proof for sake of brevity, but it can be found in Chapter 1 of [DSSD99].
An example of a profinite group is the p-adic integers, Z,. A p-adic integer can be repre-
sented as the sequence

r={r (modp),r (modp?),r (modp*), ...}
In this instance, N approaches p"Z, denoted by the inverse system
oo = LT — T)p* T — T) L.

We now define another example of profinite groups, called the profinite completion of
a group.

Definition 23. Let G be an arbitrary group, and N the family of normal subgroups N <1G
of finite index in G, ordered by reverse inclusion (left is largest, right is smallest). The
profinite completion of G is the inverse limit lim(G/N)yen -

F

Now, we can define what a pro-p group is.

Definition 24. For a prime p, a pro-p group is a profinite group that is the inverse limit
of finite p-groups. A finite group is pro-p if and only if its order is a power of p.

A common example of the pro-p groups are the p-adic integers Z, under the addition
operation, since they're defined as limZ/p"Z. In fact, this is the pro-p completion of the
(—

ring Z, since every p"Z is a normal subgroup of Z.

3.2. Presentations. The Golod-Shafarevich theorem is deeply related to the minimal pre-
sentation of p-groups, which is a method of representing groups in terms of their relations and
generators. Because of this, it is important to look at how we define the finitely generated
pro-p groups and their presentations.

Definition 25. Let G be a profinite group, and N C G a closed normal subgroup of G.
Let I be an index set and S = {s; : ¢ € I} be a convergent subset of N. That is, every
open subgroup of N contains all but finitely many elements of S. Then, we say that the s;
generate N if N is the smallest closed normal subgroup of G containing S. Equivalently,
we can say that these s; generate N if the subgroup generated by the conjugates of s; is
dense in N.

This definition doesn’t vary too much from the definition of generators for a standard
group. One key point to note is the fact that E is slowly converging to a subset of N, which
is relevant since we are working over a topology, not just a group. The subgroup containing
S must contain all the elements of S in combination with each other, mirroring the group
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theoretic definition above. However, something to note is that this subgroup needs to be
normal.

In the context of this problem, we can take G to be a normal subgroup of itself (under the
property of closure), so thus we now have a definition for the generators of a pro-p group.

Definition 26. Let G be a profinite group, and let S = {s; : ¢ € I'} be a convergent subset of
G. Then S is a system of generators for GG if G is the smallest closed subgroup containing
S. We say that S is minimal if no proper subset of S generates G. The cardinality of a
minimal system of generators is the generator rank of GG, denoted by d(G) or d.

The Golod-Shafarevich Theorem will utilize this generator rank d(g), so keep this definition
in mind (or reference it later).

Given the similarities between the generators in standard group theory and that of the
profinite group, it makes sense that there also exist free pro-p groups, constructed through
profinite completions (more specifically, pro-p completions).

Definition 27. Let I be an index set and F; be the free group on the generators {s;|i € I}.
Let & be the set of normal subgroups N <1 F; of p-power index (the index of the group is a
power of p) containing all but finitely many generators. Then, the inverse limit

P(I) = lim(F1/N) ves

is called the free pro-p group with system of generators {s;|u € I'}.

Since F7 is defined to be a free group based on some generators, we see that F(I) is the
inverse limit of the free group as we quotient it by normal subgroups. Thus, the free group
structure should still be preserved, though we lose some of the relations that are defined
within the normal subgroups. Thus, we can see that the free group in standard group theory
is still similar enough to that of the pro-p groups.

Now, we move to define the presentation of these pro-p groups, but we need one more
definition.

Definition 28. A sequence

Gohe Ba, . Ina,

of groups G; and group homomorphisms f; is said to be exact at G,, if im(f,,) = ker(f,+1)-
The sequence is an exact sequence if it is exact at every G; for 1 < i < n.

The exact sequence is useful since it lets us know how one group is influencing another.
In the definition below, we will see how this is useful.
Now, we can move onto the definition for the presentation of a pro-p group.

Definition 29. Suppose E is a system of generators of the pro-p group G. Let F' be the
free pro-p group on the system of generators E. Then, similarly to the presentation of
ordinary groups, we have the exact sequence

1= R—-F—>G-—1,
which is called a presentation of G by F|, denoted by (E; R).

Notably, 1 denotes the trivial group, {e}, so our first homomorphism (from R to F) is
injective, while the last homomorphism (from F' to () is surjective. This means that the
image of R onto F' is exactly the elements which get mapped from F' to G’s identity. In
other words, F is like an extension of G by A.
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Definition 30. Let R, F,G, E be defined like Definition 29] We let a set S C R to be
a system of relations with respect to E if S is a system of generators for R, a normal
subgroup of F. A system of relations S is minimal if there is no proper subset of S that can
generate R. The cardinality of S is the relation rank of G, denoted r(G), or r.

Essentially, G = F'/ R since we’ve done restrictions upon the free group through R, and now
we want to see what the cardinality of the system of generators for this specific restriction
is.

The relation rank is another key definition which will be utilized in the proof of the
Golod-Shafarevich Theorem, so keep it in mind.

3.3. Cohomological Interpretations of Generators and Relations. In this section,
we will begin actually computing d(G) and r(G), which is extremely important. We’ll do
this by putting relations and generators in terms of the cohomology groups of pro-p groups,
while utilizing tools such as exact sequences to simplify our work.

The main motivation for this comes from Pontryagin duality, which states the category of
discrete torsion abelian groups is dual to the category of profinite abelian groups.

A topological group is discrete if there is no limit point for it. Equivalently, it means
that the identity is isolated. Such a group is a torsion group if every element has finite order,
a type of group that the Burnside Problem is about.

The Pontryagin dual of a group G is defined as G* = Hom(G, Q/Z), the set of continuous
maps from G to Q/Z.

3.3.1. Computing d(G).

Definition 31. The Frattini subgroup ®(G) of a group G is the intersection of all maximal
closed subgroups of G.

A maximal subgroup H is a group for which no other proper subgroup contains H strictly.
They will always share elements (at a minimum, e), but H cannot be contained within any
other subgroup.

Remark 1. If G is a finite p-group, then ®(G) = G?|G, GI.

This is a subgroup that is generated by products of pth powers (elements that are raised
to the pth power)and the commutators in G (elements of the form a='b~'ab).

This subgroup is useful because this subgroup becomes abelian when quotienting G by
¢ (@), while also killing all pth powers. If we quotient by ®(G), we set all commutators to be
equivalent to the identity, and do the same with all pth powers, which means that we're left
with a commutative group that doesn’t have any pth powers. This means that every element
raised to the pth power will get sent to the identity, meaning this group has exponent p.
This means that G/®(G) is the largest profinite abelian quotient of exponent p of G.

We can also interpret G/®(G) as a vector space over F,, a finite field of order p (essentially
just Z/pZ). If we take the Pontryagin dual of G/®(G), we get

(G/®(G))* = Hom(G/®(G),Q/Z) = Hom(G, F,) = H'(G,TF,).

We can combine this result with Burnside’s Basis Theorem to give us a new interpretation
of generator and relation rank.
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Theorem 1. (Burnside’s Basis Theorem) Let G be a pro-p group and let S = {s; : i1 € I}

be a convergent subset of G. Then S is a system of generators of G if and only if the subset
S of residue classes modulo ®(G) generates G/P(G).

To note, the residue classes are just the possible values of S after modding by ®(G)/ A
proof can be found in [Lin10], but we will not prove this theorem.

Taking the dual doesn’t actually change the dimension of the group, which is extremely
useful in this case. By Burnside’s Basis Theorem, we see that G and G/®(G) have the same
dimension, and thus this is the same for (G/®(G))* = H'(G,F,). Therefore, we can draw
equalities to the generator rank like so:

d(G) = dimp, (G/®(G)) = dimg, (G/P(G))* = dimg, H'(G).

3.3.2. Computing r(G). We first note that through the same cohomological interpretation
from above, we can conclude that the rank of the relation of G is dimg, H'(R) (this is in
terms of R, not G like above). Furthermore, the presentation of G by the free pro-p group F
from Definition [29| yields the isomorphism G = F'/R. This allows us to apply a special type
of sequence called the Hochschild-Serre spectral sequence. That is, given our sequence

l1-R—-F—>G-—1,

for a G-module A, the Hochschild-Serre spectral sequence is H?(G/R,HY(R,A)) =
HPT(G, A). This inner cohomology (H?(R,A)) describes how our module A acts on the
restriction R, while the outer cohomology, (H?(G/N,—)) tells us how the quotient group
acts on the other cohomology groups. From this, we obtain the sequence:

0— Hl(G,Iﬁﬁ) — HY(R,F,) — HQ(G,IF;?) — H*(F,F,),

given that FY is the set of functions from R to F,, and H'(R)“ is the set of invariants under
the group action of G on H'(R). We now can start talking about dimensions, but we first
need to define cohomological dimension.

Definition 32. The cohomological dimension of G, denoted cd(G), is the least integer
n such that H*(G) = 0 for all k > n.

In this case, our free group F has cohomological dimension cd(F) < 1. For a proof of
this, reference [Ser01]. Because of this, we know that H?*(F) = 0, and we can utilize sum
dimensions, yielding

dimp, H'(G) — dimg, H'(F) + dimg, H'(R)“ — dimg, H*(G) = 0.
Since dimg, H'(G) = dimg, H'(F'), we can conclude that
dimg, H'(R)“ = dimg, H*(G).

Note that the action of any element g € G on any f € H'(R) is defined as (g - f)(r) =
g- f(g7rg), where g € F is a representative of the residue class g (think of g as being the
element that represents the entire class g). We can thus conclude the set of G-invariants of
HYR)is {f: R —TF,| f(r) = f(g"'rg)Vr € R}. So, the dimension of H'(R) (the set
of invariants under the group action of G on H'(R)%) is the number of conjugacy classes
of generators on R. However, R is the smallest normal subgroup containing the generators
of R, which lets us know that dimg, H'(R) = dimg, H'(R)®. Therefore, we come to the
following conclusion:
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Theorem 2. For a pro-p group G,
d(G) = dimg, H'(G,F,) and r(G) = dimg, H*(G,F,).

3.4. Completed Group Algebras. We now want to provide a little more structure to our
pro-p groups, and we can do this by defining an object with structure similar to a polynomial
ring, allowing us to treat it like a graded algebra.

Definition 33. A graded algebra A over a ring is a direct sum of groups or modules such

that .
A=A,
n=0

where A, is a degree n component, and A,, - A, C Ain-

The grading in a graded algebra is analogous to the degree of a polynomial in polynomial
space.

Definition 34. The completed group algebra A[[G]] of the pro-p group G is
lim(A[G/N]) e,
where R is the set of all open normal subgroups of G.

The completed group algebra is the profinite completion of group rings of the quotients of
open normal subgroups. One key property of group algebras is the following:

Theorem 3. If ¢ : G — G’ is a morphism of profinite groups with N = ker ¢, we have that
the kernel of the induced morphism ¢’ : A[[G]] — A[[G']] is the closed ideal I(N) generated
by all h — 1 where h € N.

While we will not fully prove this (the full proof can be found in [Koc02], Theorem 7.3 (iii)),
we provide an outline for the proof. We know that I(/N) C ker ¢ since N = ker ¢, so we can
induce a morphism ¢ : A[[G]]/I(N) — A[[G"]]. To prove inclusion in the other direction, we
restrict the morphism ¢ to G, yielding the isomorphism {G+1(N)}/I(N) — G’. The inverse
map ' — {G + I(N)}/I(N) gives us an inverse of ¢, letting us know that I(N) = ker ¢.

This theorem is useful for the Golod-Shafarevich Theorem as the presentation of a pro-p
group G gives us morphisms F' — G of pro-p groups with kernel R. Thus, we are able to
apply what we know about free pro-p groups to general pro-p groups. Free pro-p groups are
easy to work with because their group algebras have structures similar to polynomial rings,
shown below.

Definition 35. Let A be a ring with identity and let m be a positive integer. The Magnus
Algebra A(m) in the variables z; ..., z,, over A is the algebra of formal noncommutative
power series in the x; with coefficients in A.

We can now easily relate rings to Magnus algebras, through the following theorem:

Theorem 4. If F is a free pro-p group with system of generators {si,...,sm}, then the
completed group ring A[[F]] is isomorphic to the ring A(m) by linearly extending the homo-
morphism ¥(s1) = 1+ x;

The details of this proof will be omitted, as they are contained within Theorem 7.16
of [Koc02].

We can now relate A[[F]] to A(m), and in the proof of the Golod-Shafarevich theorem, we
will consider A = F,,.
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3.5. Filtrations.

Definition 36. Let G be a finitely generate pro-p group, and F,[G] the group ring over F,
with augmentation ideal I(G) = (g — 1)F,[G]. For positive integer n, let the ideal I"(G)
in F,[[G]] denote the closure of the nth power of I(G) in F,[[G]]. Then, define the nth
modular dimension subgroup of G, G, as

Gp={g9:9—-1€I"(G)}.
The chain of dimension subgroups

G - G1 2 GQ 2 e

forms the Zassenhaus Filtration of G.

Recall the first part of the definition requires Proposition [I} This filtration allows us to
divide the relations of a pro-p group into levels.

Definition 37. Let G be a pro-p group with minimal presentation 1 - R — F — G — 1.
The level of any r € R is given my the largest integer m such that r € F,, \ F,,11, where
{F,, : m € N} is the Zassenhaus Filtration of F.

If Fis a free pro-p group with d generators, each element of F,,[[F']] = F,(d) can be uniquely
represented as a linear combination ) Ax My, where A\ € F, and M, is a monomial of
the variables {z1, ..., z4.} This allows us to define something that acts like a degree function
on F,(d).

Definition 38. Let F be a d-generated free pro-p group, and let 7,..., 74 be positive inte-
gers. The Lazard valuation of type (7,...,74) on F,(x1,...,x4) is an additive function
v:Fy(z1,...,24) = ZU{oo} where v(x;) = 7;, with the valuation determined additively:

V(T Ty . Ty = Tiy + Tiy + -+ Ty,
v(1) =0,v(0) = oco.
The valuation of an element ), Ax M is defined as

v (Z AKMK> — min{v(Mg) : Ag # 0}.

Remark 2. Extending the definition, for all a,b € Fy(z1, ..., zq), we also hold the following
properties:
v(ab) = v(a) + v(b)
v(a + b) > min{v(a),v(b)}.

We can intuitively think of the Lazard Valuation as similar to the log(z) function.

Definition 39. ), A\x Mk is homogenous of degree m if A\x = 0 for all v(Mg) # m.

If G is a pro-p group with minimal presentation 1 - R — F %G - 1, then the Lazard
valuation on F' will also result in a Lazard valuation on G. For any g € F,[[G]], we define

v(B8) = max{v(a | @ € F,[[F]], ¢(a) = B}.
We can thus define a filtration

Gh={geG:vlg—1) 2 n}
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defining the level of any element in G to be the greats n where g € G}.

In this context, the Zassenhaus filtration is the induced filtration given by the Lazard
valuation of type (1,...,1), where valuation is equivalent to taking the degree of a power
series.

4. GOLOD-SHAFAREVICH THEOREM

Now that we have the preliminary background for understanding the Golod-Shafarevich
theorem, we march forward and begin proving it.

4.1. Setup. Like previously, let G be a finitely generated pro-p group with minimal presen-
tation

1—>R—>F£>G—>1.

The map ¢ induces a map F,[[F]] — F,[[G]], which will also be denoted ¢. For simplicity’s
sake, let

A = Fp[[F]] and F,[[G]].

Let {s1,...,sq4} be a lift of the generators of G to F' (what we send the generators to), and
let {p1,...,pr} be asystem of relations for G (and thus a system of generators for R). Using
the results from Magnus Algebras (which relate rings to specific polynomials), we see that

A=TFy(z1,...,2q)

under the isomorphism given by s; — x; + 1. Then, since the kernel of ¢ : A — B is given
by I(R) (generated by {p1 —1,...,p, —1}), we have B = A/I(R). Denote the generators of

B by yi = ¢(si) — 1 = o(z).

Let v be a Lazard valuation of type (11, ..., 74) on A. Without loss of generality, we assume
that 7; < 7341 for 1 <14 < d— 1(if not, we can reorder z; to fit this inequality). Furthermore,
we can suppose that the relations are ordered so the levels are monotonically increasing. The
valuation v (on A) induces a valuation on B (similarly denoted v), giving us the filtration

I, ={be B |v(b) >n}
forn e Z. If n <0, we let [,, = B. We also introduce the sequence
¢, = dimg, B/Iy.
With this filtration, we count relations and generators by level, defining
rn = [{pi | v(pi = 1) = n} and dy, = [{z)i | 7 = n}|.

Note that ry = 1, since the valuation of a constant is 0.
Our proof will rely on the sequence

B Bt 2 B ST, 0,

with its restriction to the sequence

d
@In v(p;—1) 1#_)@ n—r; Yo I — 0.

We first prove that these sequences are exact. Then, after a little work with dimensions, we
will produce an inequality in terms of r; and d;, yielding the Golod-Shafarevich Theorem.
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4.2. Proof. Consider the sequence
(1) BT Bt 2 B ST, 0,

where € is the augmentation map of B — F,. One way to think about € is to consider B as
A/I(R) (shown in Equation so € needs to only be (0,...,0). We define

do(br, .., ba szyz

To define ¢, we first note that each p; — 1 has unique representation in the ring of formal

power series Fp(z1,...,zq):
d
pi—1= E 2ij T,
j=1

since we can reference monomials based on the last free variable. Then, we can define

G1(br, ..., b (Z bid(zi1), Zblqb Zid ) .

Proposition 3. The sequence given in Equation [I] is exact.

As a little refresher, a sequence is exact if the image of a morphism is the kernel of the
next (im(f,) = ker(fr41))-

Proof: Since € is surjective, the sequence is exact at IF,,. For B, we note the augmentation
idea of B is generated by the elements y;, so im(¢g) = ker(e).

Exactness at BY is found from the fact that ker(¢) is generated by the p; — 1. Specifically,
let (by,...,b.) € B". Then

Go(dr1(br, -, b)) =D > bid(z)y;

j—l i=1

= Z Z bip(zi5)

7j=1 =1

= Z bi Z ¢(2i5;5)
=1 j=1

= Z bz‘Cb(P
i=1

=0.

This last step follows from the fact that ker(¢) is generated by the p;—1, so thus ¢(p;—1) = 0.
From these equations, we know that im(¢;) C ker(¢g). To show equality, we do double-
containment, so we show inclusion in the other direction. Let by,...b; € B such taht
ijl bjy; = 0. We lift the b; to a; € A, so that 2?21 a;jz; € ker(¢). Since ker(¢) is generated

by the p; — 1 = Z?Zl zij:rj, we have

d r
!
E :ayxy E : § :z”xj § § :aiz,-jxj,

Jj=1 j=1 i=1
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. . . r
which gives us a; = Y ._, a;z;;. Thus, we have

$1(¢(dh), - . <Z¢> (ajzn), Z¢ az,d>

= (¢(ar), ..., ¥(aq))
— (bl, e ,bd),

so thus we know that (by,...,bs) € im(¢). Therefore, Equation [1]is exact. O
For a fixed integer n, the restriction of Equation induces the sequence

(2) @Jn opeet) 5 @In_ﬁ. 2 I, — 0,

where 1, and 1y denote the restriction of ¢, and ¢, respectively.
First, we verify that @©j_;l,_,—1) is sent to &% I, ,, under ¢1. Let (hy,..., h,) €
Di—1Ln—v(p;—1), Which gives us

(3) v(hi) = n—wv(p;i—1).
Furthermore, since p; — 1 = Z?:1 2;;¢j, we have that

v(pi —1) =min{v(z; + 7, : 1 < j < d}.
This gives us
(4) v(zij) = v(e(z;)) = v(pi — 1) — 75
Combining Equation [3] and Equation [ together, we have

v(hy) +v(9(zi5)) = n —75.

We also have that the jth term ¢(1)(hy,..., h,) is

v (Z hj¢(Zij)> = min{v(h;) + v(d(25))} = n —7;

5o ¢(hy,...,h,) € ®L, I, ., as desired.
Similarly, ¢ sends elements of &% I, .. to I,. Now that we've verified the restriction
under the maps is correct, we show that Equation [2]is exact at [,.

Proposition 4. The map 1), is surjective.

Proof: Let h € I,. Select a g € A such that ¢(g) = h and v(h) = v(g). Such a g exists,
since ¢ is surjective and v(h) = max{v(g) : #(g) = h}. This g has a unique representation
Zle ¢;ix;. Denoting the homogenous components of g with degree m by ¢(™, we have

d
=1

Since g cannot have homogenous components of degree less than n (¢(g) € I,,), we have
v(g;) > n — 7;, which means that v(h;) > n — 7;, where h; = ¢(g;). Thus, (hy,...,hq €
@gzllnfv(xi)a and

d d
Yo(hr, .. ha) =D higi = > dlgiwi) = ¢(g) = h.
=1 =1
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Since Equation [2]is exact in [,, and Equation [1] is exact, the factor sequence

r d
B B/Li-vip—1) = P B/L—r, = B/I, = F, >0

i=1 =1

n n
Z TiCpn—i — Z diCp—i +cp 2 1.
i—1 i—1

Noting that ro = 1,dy = 0,¢p = 1, we can rewrite this as

n

1=0

is exact, which gives us

With this, we make the following claim:

Proposition 5. Let G be a finite pro-p group, with d; and r; defined as above, Then

Gul(t) =1+ (rn — dy)t"
n=1
converges, and is greater than 0 for 0 <t < 1.
Proof: Multiplying each side of Equation |5 by " and summing for all n, we have

gy e 1
> <Z(m - di)cni> "> ;tn =T

n=0 =0
The Cauchy product of the two series gives us

n=0 n=0 n=0 \1¢=0
Thus, we have that

(i(rn _ dn)t"> (catgn) > %_t

n=0
We have that )" ¢,t™ is convergent for 0 < t < 1, since ¢, is bounded above if G is finite.
See lemma 7.9 in [Koc02] for a proof that I"(G) = 0 for sufficiently large n.

Furthermore, since r is finite, we can also assume without loss of generality that almost
all of the r, = 0. Because almost all the d,, and r,, are 0 and ) ¢} converges, the lefthand
side is a polynomial in ¢ and also converges.

Dividing both sides by > ¢,t" > 0, and noting that %_t > (0, we get

o0 > Z(rn —d,)t" > 0.
n=0
Rewriting gives us
Gu(t) = 1+ (rn — dn)t" >0,
n=1

as desired. n
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Corollary 1. Let G be a finite pro-p group with d(G) d and r(G) = r, and let 1 — R —
F — G — 1 be a minimal presentation. of G with R C F,, where {F,} is the Zassenhaus
filtration of G. Then,

m—1
r > %(m - 1™
Proof: Since R C F,,, we have ¢,(t) = 1 —dt+rt™. Suppose for the sake of contradiction
that .
m—1
r < %(m —1)"
This gives us
mo1] d m
mr — d(m—1)

Setting t = ™7/ % gives

%(ml i) g A

which contradicts Proposition [5] O
For m = 2, Corollary (1] gives us the Golod-Shafarevich Theorem in the form given of
Gaschiitz and Vinberg’s refinement |[Koc69).

Theorem 5 (Golod-Shafarevich Theorem). Let G' be a nontrivial finite pro-p group with
d(G) = d denoting the generator rank, and r(G) = r denoting the relation rank. Then,

d2
7’>I.

By the Golod-Shafarevich Theorem, if you have r < Cfl—z, then this group G must be an
infinite pro-p group. However, d and r can still be finite integers, which provides a negative
to the general Burnside Problem.
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