
COOPERATION IN REPEATED GAMES

JADEN ZHU

1. Abstract

This paper goes over how cooperation can emerge in repeated games, with exam-
ples based on the Prisoner’s Dilemma. I analyze several strategies including Grim
Trigger, Tit-for-Tat, and Win-Stay Lose-Shift, examining the specific conditions
needed for cooperation to become rational. We also dig into many ways to sustain
cooperation, like the discount factor and the Folk Theorem. Towards the end of
this paper, we examine challenges that prevent a one-to-one correspondence with
real-world scenarios and game theory. Alas, repeated games offer valuable insights
to understanding real-world interactions, from business to international relations.

2. Introduction

2.1. What is game theory?
Game theory is the formal study of a player’s actions whether it be conflict or
cooperation. Concepts of game theory are used whenever there are many parties
interacting. Game theory allows an approachable way to analyze, discuss, and
interpret strategic scenarios. The earliest known trace of Game theory dates back
to 1838 in Antoine Cournot’s study of duopolies. Game theory really started gaining
recognition after the 1944 publication of the book Theory of Games and Economic
Behavior by John von Neumann and the economist Oskar Morgenstern. This book
provides a lot of basic terminology that is still used today.

Game theory further evolved in 1950, when John Nash discovered that all finite
games have an equilibrium path of play where all players choose optimal actions
given the other players’ choices. In the late 1950s and 1960s, Game theory had
applications to problems in war and politics as well. Since then, Game theory has
evolved to find application in all sorts of areas, from psychology to biology, and
raised billions of dollars in the United States and Europe. Nowadays, Game theory
is increasingly relevant in sectors like biology, politics, economics and AI.

2.2. Introduction.
This paper explores the transformation that occurs in player behavior when games
turn from single encounters to repeated interactions and how cooperation can arise
even in unlikely situations where individual interests de-incentivize it.
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The main paradox is that in many situations, individual interests lead to worse
collective results for all parties. This tension is illustrated in the Prisoner’s Dilemma,
one of the most famous examples in game theory, perfectly. When two players play,
both play to optimize their individual gain, which compels them to defect. even
though mutual cooperation would provide a greater payoff for both players. This
outcome is so important and necessary to study because it appears in countless
real-world scenarios, like environmental protection, trade agreements, and social
cooperation.

In contrast, in repeated games, players know that they will have a future inter-
action so they are more incentivized to cooperate today to not recieve retaliation
in the future. This idea helps create a huge variety of strategic possibilities that
otherwise could not be sustained in one-shot games.

Next, we will analyze how repetition enables cooperation through several differ-
ent ways. We will explore the difference between finitely and infinitely repeated
games, and the key difference between them that allows infinitely repeated games
to host a much larger possibility of cooperation than the latter. The concept of
the discount factor is also crucial to sustain this, as it represents how much players
value future payoffs compared to immediate gain.

Following this, we will then compare various strategic approaches that play-
ers can use in repeated games, from simple strategies like Always Cooperate and
Always Defect, to more complicated ones like Tit-For-Tat, Grim Trigger, and Win-
Stay Lose-Shift. All of these strategies are a blend between forgiving, ruthless,
retaliatory, exploitable, and everything in-between.

In the next section, we will go over how to look for equilibria, to make sure that
these strategies are rational for players to carry out. We use the One-Shot Deviation
Principle, as well as the discount factor to simplify and reduce the amount of time
needed to look for equilibria. Then, we do a case study of four key strategies played
in infinitely repeated games and calculate a sufficient amount that the discount
factor can be to sustain cooperation.

Moving on, the next section describes the Folk Theorem, which demonstrates
that virtually any outcome can be sustained as an equilibrium in infinitely repeated
games given that players are sufficiently patient. This result shows that cooperation
is not just ’possible’ in infinitely repeated games, but there are a vast amount of
sustainable cooperative outcomes that can be played.

However, this paper also goes over limitations to the Folk Theorem and ideas of
game theory as a whole. Pure game theory often overlooks challenges like noise, im-
perfect monitoring, human limitations which are present in real-world interactions.
These issues can drastically reduce the probability of cooperation arising because
of various uncontrollable factors in the real world.
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Finally, all of our analysis presented here is essential to answer some of the
most pressing problems in the real-world. The analysis can draw a lot of parallels
to real-world interactions, like the Cold War, where both the United States and
the Soviet Union were able to reduce tensions by nuclear disarmament through
mutual cooperation. The insights gained from studying repeated games extend far
beyond mathematics, providing wisdom in dozens of areas, from business, to social
interactions, international agreements, and understanding actions.

Ultimately, this analysis reveals that cooperation, while challenging, is both
theoretically possible and achievable under the right conditions. This paper serves
as both a mathematical exploration of cooperation in repeated games, and a guide
for understanding why organizations or governments react a certain way in real-
world interactions.

3. Preliminaries

3.1. What is a game?
In game theory, a game is a formal model used to represent strategic interactions
among decision-makers, known as players. Each player is assumed to be perfectly
rational and to possess common knowledge (they know the rules of the game, and
they know that all other players also know the rules). See [1] for more.

There are two main types of games:

(1) Strategic Form Games: In these games, players make decisions simulta-
neously. The outcomes are represented in a payoff matrix, where each cell
corresponds to a combination of strategies chosen by the players.

(2) Extensive Form Games: These games are represented as game trees.
The tree structure shows the sequence of moves, the points at which players
make decisions, and the information available to them at each decision
point.

3.2. What are payoffs?
Payoffs are numerical values assigned to outcomes in a game. These values, also
referred to as utility, indicate how desirable a particular outcome is for a player. A
higher payoff is considered more favorable.

3.3. What is a strategy?
A strategy is a complete plan of action a player follows throughout the game. In
extensive-form games, this includes specifying the action the player would take at
every decision point.



4 JADEN ZHU

3.4. What are payoff matrices?
A payoff matrix is a table that summarizes the outcomes of a game for all pos-
sible strategy combinations. Each cell in the matrix contains the pair of payoffs
that the players receive when they choose a specific combination of strategies. The
rows typically represent the possible choices of one player, while the columns rep-
resent the choices of the other player. This structure helps to clearly visualize the
consequences of each strategic interaction. See [11].

3.5. Dominant Strategies.
A dominant strategy is one that yields a better (or at least equal) payoff for a player
regardless of the strategy chosen by the opponent. Rational players choose domi-
nant strategies because they maximize individual benefit in any scenario, especially
in one-shot games where the interaction occurs only once.

There are two types of dominance:

• Strict Dominance: A strategy strictly dominates another if it always pro-
vides a higher payoff, no matter what the opponent does.

• Weak Dominance: A strategy weakly dominates another if it provides a
payoff that is at least as good in all cases and strictly better in some cases.
See [6] for more.

3.6. Nash Equilibrium.
A Nash Equilibrium is a strategy profile in which each player’s strategy is a best re-
sponse to the strategy of the other player. In this state, no player can improve their
payoff by changing their strategy. Nash equilibrium represents a stable outcome
where both players are satisfied with their decisions after considering their oppo-
nent’s actions. Importantly, every finite game has at least one Nash equilibrium.
These equilibria often model outcomes driven by self-interest.

3.7. Subgame Perfect Equilibrium.
In extensive-form games, it is useful to analyze smaller segments of the game known
as subgames. A strategy profile is a Subgame Perfect Equilibrium (SPE) if a Nash
equilibrium is played in every subgame of the original game. In other words, players’
strategies must form a Nash equilibrium not only in the overall game but also in
every part of the game that can be considered on its own. This ensures that players
make rational choices at every stage of the game.

4. The Prisoner’s Dilemma

The Prisoner’s Dilemma is one of the most commonly studied and well-known
scenarios in all of game theory. It’s simple format and game scenario parallels fields
such as economics, political science, business strategy, and psychology.
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The game is as follows. In the classic example, two people are taken into a police
station because they are suspected of committing a crime. While the police have
proof that they were trespassing, they lack adequate proof to convict them of a
more serious offense. To get confessions, the police put the prisoners in separate
rooms and offer each the same deal:

• If neither confesses, each receives a light sentence for trespassing.
• If one confesses (defects) and the other remains silent (cooperates), the
confessor is released while the silent prisoner receives a long sentence.

• If both confess, each receives a moderate sentence.

Importantly, both prisoners know that the other has been given the same offer.
However, since they are unable to communicate, they must make their decision
independently. This setup can be modeled using a payoff matrix, where the action
“confess” is labeled as Defect (D), and “remain silent” is labeled as Cooperate (C).

Classic Payoff Matrix for the Prisoner’s Dilemma:

C D

C (3, 3) (0, 5)

D (5, 0) (1, 1)

Player 2

Player 1

Conditions for a game to be classified as a Prisoner’s Dilemma:

C D

C (R,R) (S, T )

D (T, S) (P, P )

Player 2

Player 1

To qualify as a Prisoner’s Dilemma, the following inequality must hold:

T > R > P > S

Where
R = Reward
T = Temptation
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P = Punishment
S = Sucker’s payoff (Or just sucker)

This structure guarantees that each player has a dominant strategy: to defect.
Regardless of what the other player does, defecting always provides a better in-
dividual outcome (for example, 5 > 3 and 1 > 0). As a result, both players will
logically choose to defect.

This leads to the game’s Nash Equilibrium at the outcome (D, D), or mutual
defection. In this situation, neither player can profitably improve their outcome
by changing their strategy. Ironically, both players would have achieved a better
outcome through mutual cooperation, but both players’ dominant strategies tell
them to defect. This paradox is what makes the Prisoner’s Dilemma so interesting
and useful in understanding real-world decision making.

5. Repeated Games

5.1. One Shot vs. Repeated Games.
Games can be played only once, or multiple times. A one-shot game is a game
that only occurs a single time between players. Some properties of these games are:
no memory of past actions, no anticipation of future interactions, and no influence
from reputation or threats. As a result, players focus on maximizing individual
gain.

However, one-shot games are often unable to capture the complex nature of real-
world interactions, where decisions and outcomes are influenced by past outcomes
and behavior. This key limitation makes one-shot games not suitable for modeling
real-life scenarios.

5.2. Overview of Repeated Games.
In contrast, repeated games allow players to remember past actions and adjust
their strategies accordingly. In these settings, players must weigh the potential
consequences of their present choices, and recognize that today’s actions can in-
fluence the behavior of others in future rounds. This dynamic allows the use of
strategies that are not possible in one-shot games, including punishment, reward,
and cooperation.

For example, in a single one-shot version of the Prisoner’s Dilemma, the dominant
strategy for each player is to defect, leading to the Nash equilibrium of (D, D).
Despite this, both players would prefer the mutual cooperation outcome.

Repeated games changes this drastically. If the same game is played multiple
times, cooperation can be sustained through credible threats of future punishment.
For cooperation to be stable, players must believe that any deviation will trigger
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retaliation in future rounds. In addition, the threat of punishment must also be
rational for the punisher to carry it out when the time comes. Later in this paper,
we will explore several strategies that make this possible.

There are two main types of repeated games:

• Finitely Repeated Games, and
• Infinitely Repeated Games.

5.3. Finitely Repeated Games.
A finitely repeated game is a game where a ’stage game’ is played repeatedly a
fixed number of times. A big feature of these games is that players can adjust their
strategies based on the outcomes of previous rounds. To analyze these games, we
utilize a tool called backward induction, which prescribes starting by working
out a strategy from the final period and working backward to the beginning.

For example, applying backward induction to the Repeated Prisoner’s Dilemma,
in the final round, both players have no future consequences to worry about and
will therefore play their dominant strategy, Defection. Given that mutual defection
is guaranteed in the final round, the same logic applies to the second-to-last round.
Since players know they will defect in the last round regardless of current choices,
they have no incentive to cooperate now. This reasoning continues through all of
the earlier stages. The outcome is that mutual defection is played in every round,
forming a subgame perfect equilibrium.

Noting down the results, even if the players prefer cooperation, they anticipate
defection from their opponent, making cooperation unappealing. Thus, finitely
repeated games with known endpoints and dominant strategies telling the player
to defect cannot support cooperation, even when threats are available.

5.4. Infinitely Repeated Games.
On the other hand, infinitely repeated games are games that have no determined
endpoint. This drastically changes player behavior. and strategies because without
a final round, the unraveling effect seen in finite games disappears. This allows for
cooperation to emerge as a rational strategy.

In these settings, players shift from focusing on immediate payoffs to considering
the long-term consequences of their actions. Cooperation becomes sustainable
because players recognize that current deviations may lead to future punishments,
potentially outweighing any short-term benefits.

5.5. Discount Factor.
To calculate payoffs in infinitely repeated games, we use a discount factor, which
is denoted as δ. This factor represents the idea that future rewards are typically
valued less than immediate ones. The range of δ is 0 < δ < 1. A higher δ value
implies players are more patient and value future payoffs high, while a lower δ value
indicates greater preference for short-term gains.
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The discount factor allows us to compute the value of an infinite stream of future
payoffs by reducing the weight of later rounds. This shows how players evaluate
their strategies over the long run.

5.6. What’s Next.
Because infinitely repeated games contain an infinite number of possible strategy
sets, players must use comprehensive strategies that specify exactly what to do
in any scenario, no matter how the opponent behaves. It is not feasible to predict
every possible move the other player might make, so strategies must provide clear
guidelines that can be applied after every potential sequence of past plays.

6. Strategies

This section outlines common strategies used in repeated games, with particular
emphasis on their application in the Repeated Prisoner’s Dilemma. Many of these
strategies have proven success in Axelrod’s Tournament of strategies, a well-known
competition designed to test the effectiveness of different strategies in repeated
interactions.

6.1. Always Defect and Always Cooperate.
The most basic strategies in infinitely repeated games are Always Defect and Always
Cooperate. Always Defect involves a player choosing to defect in every round, re-
gardless of previous outcomes. This strategy is considered one of the most ruthless,
because it leaves no room for trust or collaboration. In contrast, Always Cooperate
involves a player choosing to cooperate in every round. While this approach is very
trusting, it is very vulnerable to exploitation and is therefore unsustainable in real
scenarios.

6.2. Grim Trigger.
One of the most notable strategies in Repeated Games is Grim Trigger. The
strategy starts with players cooperating and continued cooperation as long as both
players have done so in the past. However, if either player defects even once, the
strategy prescribes permanent defection from that point forward. Grim Trigger can
be extremely effective in promoting cooperation, but its unforgiving nature means
that it requires specific conditions to be rational, which will be discussed in the
next section.

A lesser-known variant of Grim Trigger is Naive Grim Trigger. This strategy
is similar to Grim Trigger but introduces a key difference: the player permanently
defects only in response to the other player’s defection, and not their own. While
this is interesting, this approach is not a stable equilibrium, as it fails to hold both
players equally accountable.
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6.3. Limited Retaliation.
Limited Retaliation is a middle ground between Grim Trigger and the next strategy,
Tit-for-Tat. This approach begins with cooperation and prescribes punishment of
defection for a fixed number, k periods in response to any defection. After serving
the retaliation period, the strategy returns to cooperation. Unlike strategies like
Tit-for-Tat, the punishment duration in Limited Retaliation does not depend on
the opponent’s behavior after the initial defection.

6.4. Tit-For-Tat.
One the most famous strategies in repeated games is Tit-for-Tat (TFT). Similarly
to Grim Trigger, TFT begins with cooperation in the first period. However, in
following periods, the player mirrors the opponent’s previous moves. TFT is both
retaliatory and forgiving because it punishes defection immediately, but cooperation
can resume as soon as the opponent returns to cooperation. TFT rose to fame due to
its success in Axelrod’s Tournament, where it performed exceptionally well against
a range of alternative strategies.

Two other notable variants of TFT include Generous Tit-for-Tat and Tit-for-
2-Tats (TF2T). Generous Tit-for-Tat operates like TFT but is more forgiving; it
introduces a probability to cooperate even after the opponent defects, therefore
reducing the likelihood of endless retaliation due to accidental defections. On the
other hand, Tit-for-2-Tats only retaliates after two consecutive defections, which
offers an even higher tolerance for mistakes.

6.5. Win-Stay, Lose-Shift.
Another well-known strategy is Pavlov, also known as Win-Stay, Lose-Shift (WS-
LS). This strategy starts with cooperation. If the outcome of the previous round was
either mutual cooperation (C,C) or mutual defection (D,D), the strategy repeats
the same action in the next round. However, if the result was mismatched (e.g.,
C,D or D,C), the strategy switches its choice. Pavlov replays successful outcomes
while adjusting in response to unfavorable ones, which makes this strategy simple
but adaptive.

6.6. What’s Next.
To conclude, these strategies represent a broad spectrum of approaches in repeated
games, each with its own advantages, vulnerabilities, and implications for equi-
librium. These strategies range in performance, depending on game structures,
environment, noise and the discount factor, which will be analyzed further in later
sections.

7. Conditions for Cooperation

Now that we have examined various strategies that can be used in repeated
games, it is important to determine whether these strategies are actually rational
to carry out. In other words, we must ensure that these strategies represent an
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equilibrium, meaning that they are stable and not just empty threats. This is
where the One-Shot Deviation Principle comes in.

7.1. One-Shot Deviation Principle.
The One-Shot Deviation Principle states that a strategy is optimal if and only if
it cannot be improved by making a single deviation at any decision point in the
game. In other words, if you cannot get a better result by changing a single move,
then changing multiple moves won’t help either. Therefore, the current strategy is
considered unimprovable.

This principle is especially useful in repeated games, whether they are very long
finite games or infinitely repeated games. OSDP allows us to avoid the grueling
and/or impossible task of checking every possible strategy.

OSDP has many real-world applications because it is often unrealistic to con-
sider every possible plan in complex situations. However, by testing whether small,
single-step changes can improve the outcome, we have a practical and reliable
method to test strategies. This is one reason why many businesses and corpo-
rations use the One-Shot Deviation Principle in their decision-making processes.

7.2. Sustainable Cooperation.
Continuing to build onto the concept of making sure that strategies are rational,
we now look at another method to identify subgame-perfect equilibrium. This
approach involves the discount factor, or also referred to as the “shadow of the
future.” As previously discussed, the discount factor represents how much a player
values future rewards compared to immediate ones.

When δ is close to 1, it indicates that players value future payoffs almost as much
as present ones. This reflects perfect patience.

On the other hand, when δ is close to 0, it shows that players prioritize immediate
gains and place little to no value on future outcomes.

The value of δ has a significant influence on player behavior and strategy. When
players anticipate facing each other again in future rounds, they are more likely to
cooperate in the present to avoid retaliation later on.

Applying this concept to the Repeated Prisoner’s Dilemma, we see a change
in player behavior between the one-shot version of the game. In a single round,
defection strictly dominates cooperation. However, when the game is repeated,
players begin comparing short-term and long-term consequences. For example,
choosing to defect today might yield a temporary advantage, but it will likely
trigger retaliation from the opponent in future rounds. In contrast, cooperating
today might result in a lower immediate payoff, but it builds trust and stability
that can lead to better outcomes in the long run.
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Thus, the higher the value of δ, the more likely cooperation is to emerge. Players
are incentivized by the threat of future retaliation to maintain cooperative behavior.

Cooperation can become a subgame-perfect equilibrium in strategies such as
Grim Trigger or Tit-for-Tat as long as the discount factor is at a sufficiently high
level. In these scenarios, cooperating becomes the rational choice when the long-
term cost of provoking future defection (resulting in perpetual punishment with a
payoff of P permanently) outweighs the short-term benefit from a single defection
(the difference T − R). For this logic to hold, players must believe that defection
will be punished in future rounds. As a result, they are better off cooperating
consistently, even though defecting once may appear more profitable in the short
term.

7.3. Analysis of Strategies.
In this subsection, we will be investigating four different examples of possible strat-
egy sets two players could play in the Repeated Prisoner’s Dilemma. We will be
applying the One-Shot Deviation Principle to try and conclude for which strategies
is cooperation a subgame-perfect equilibrium. If so, we want to find how high the
discount factor has to be to satisfy the conditions.

1. (GRIM, GRIM)
First up, we will be analyzing when both players play Grim Trigger. To start, we
calculate the payoff if both players agree to cooperate forever.

Since the two players cooperate, they have an infinite stream of 3’s.

3 + 3δ + 3δ2 + . . . = 3
1−δ .

If either player defects now, their payoff is:

5 + δ + δ2 + . . . = 5 + δ
1−δ .

To make cooperation the preferred option, the following inequality must hold:

3
1−δ ≥ 5 + δ

1−δ .

Continuing to simplify the inequality, we get

3 ≥ 5− δ5 + δ,

So, δ ≥ 1
2 must hold for (GRIM, GRIM) to be sustainable.

Some concluding remarks: We notice that the greater the temptation is to defect
(T ), the higher δ must be to sustain cooperation. On the other hand, if the

punishment (P ) is harsh, then δ can be lower.

2. (LR-K, LR-K)
Now, we want to find the minimum value of δ to sustain cooperation when both
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players play Limited Retaliation strategies. Following a similar procedure, the
payoff if both players agree to cooperate is 3

1−δ . Now, we want to calculate the
payoff if one player defects now.

5 + δ + δ2 + . . .+ δK + 3δK+1 + . . .

Using the formulas for a geometric sequence and infinite geometric series, we can
simplify to get:

3
1−δ ≥ 5 + δ(1−δK)

1−δ + 3δK+1

1−δ ,

3 ≥ 5(1− δ) + δ(1− δK) + 3δK+1,

3 ≥ 5− 5δ + δ − δK+1 + 3δK+1,

3 ≥ 5− 4δ + 2δK+1,

δK+1 ≥ 2δ − 1.

For a numerical value, we would need to plug in a value for K. Just to
demonstrate, we plug in K = 2.

δ3 ≥ 2δ − 1, so δ has to be approximately greater than or equal to 0.63.

Something interesting to note here is that as K approaches infinity, δ approaches
1
2 , which makes sense because as K approaches infinity, this new version of Limited

Retaliation fits the definition of Grim Trigger, whose δ value matches 1
2 .

3. (TFT, TFT)
Our next example is when both players play Tit-for-Tat as their strategy. For this
analysis, we will need to break it down into cases.

Case 1: The previous outcome was (C,C). If the player sticks with TFT, their
payoff is 3

1−δ .

Now what if the player deviates once? The payoffs will cycle in between (C,D)
and (D,C). (Alternating payoff between 5 and 0). Since all of the odd payoffs are
zero, we can disregard them. Only the even powers of delta contribute to the total

payoff. We can express this with 5
1−δ2 .

We also have to multiply by (1− δ) to ”normalize” or compare it to the stage
payoff. Now let’s write the inequality.

5
1+δ ≤ 3

1−δ .

Simplifying, we get:

5− 5δ ≤ 3 + 3δ,
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8δ ≥ 2,

So, δ ≥ 1
4 .

Case 2: The previous outcome was (C,D) (You cooperated and your opponent
defected). If the player sticks with TFT, similar to Case 1, your expected payoff is
5

1+δ . Now, if the player deviates to cooperation, the sequence then stays at (C,C)

forever, or payoff 3
1−δ .

We would like to prevent deviation, so 5
1+δ ≥ 3

1−δ must hold. After simplifying

equations, δ ≤ 1
4 .

Case 3: The previous outcome was (D,C). This is a similar outcome to the
previous case, but with the roles reversed. If we stick to TFT, our payoff is 5δ

1+δ

(Now, we have a payoff of 5 for odd terms).

If we deviate again to defection, then we get (D,D) or a payoff of 1 forever, which
is 1

1−δ . We want to make deviation unappealing, so our inequality is

1
1−δ ≥ 5δ

1+δ .

Simplifying, we get: 1 + δ ≥ 5δ − 5δ2,

5δ2 + 4δ − 1 ≥ 0.

The roots of this polynomial are: 4±
√
−4

10 .

This polynomial yields no real solutions, so no δ satisfies this inequality, and
deviation is always better if the last outcome was (D,C).

Case 4: This is our final case, where the previous outcome was (D,D). If we stick
to TFT, our payoff is 1

1−δ .

If we deviate to cooperation, then we cycle between (D,C) and (C,D) forever,
which is 5

1+δ . This leads to the same result as above, with no solution for δ. So,

staying with TFT is not optimal after (D,D) is played.

Some interesting observations are that the δ value has to be exactly 1
4 for Tit-

For-Tat to be a Nash equilibrium. Although, TFT cannot be a subgame perfect
equilibrium because even under these extremely fragile and special conditions, there
is no incentive to resume cooperation when you defected in the last outcome.

4. (WS-LS, WS-LS)
Our last example is when both players play Win-Stay, Lose-Shift. Similarly to
other examples, the payoff for cooperation forever is 3

1−δ . However, now we need
to calculate what happens when one player deviates once.
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Firstly, in round zero, the payoffs are (D,C) where the deviator gets 5. In the
next round, both view (D,C) as a ”lose” so both switch their actions, which

results in (C,D), where the deviator gets 0. This results in an infinite alternation
between these two options, whose payoff is 5− 4δ like in previous examples. After
cross-multiplying and using the quadratic formula, we end up with δ ≥ 0.25 for

deviation to be unappealing.

5. Concluding Remarks
Out of the four different examples we tested, the only strategy set that was not a
subgame-perfect equilibrium was when both players played Tit-for-Tat.

8. The Folk Theorem

The folk theorem is one of the most important and useful tools used in repeated
games. The main idea is that virtually any outcome in an infinitely repeated game
can be sustained given that players are sufficiently patient, even if the outcomes in
each subgame aren’t Nash equilibriums.

First, let’s introduce some new definitions.

Feasible payoffs are payoffs that can be achieved through some combination of
the players’ strategies. For example, in the Prisoner’s Dilemma, this would be any
weighted average of (3,3), (5,0), (0,5), or (1,1).

The minmax payoff is the minimum payoff a player can guarantee themselves no
matter what the other player plays. In the Prisoner’s Dilemma, this value is 0.

Finally, a payoff vector u = (u1, u2, u3, . . . , un) is strictly-enforceable if and only
if for every period the player gets strictly more than their minmax payoff. (ui > ei)

So, the Folk Theorem states that there exists a discount factor such that for all δ
greater than this value, there exists a Subgame Perfect Equilibrium of the infinitely
repeated game in which each player receives the average vector u. (or arbitrarily
close).

In other words, the Folk Theorem tells us that for any payoff vector that is both
feasible and enforceable, it is theoretically possible to be an equilibrium of the game
given that players are sufficiently patient.

8.1. What This Means.
The Folk Theorem tells us that player behavior is completely changed in repeated
games. In the Prisoner’s Dilemma, the theorem tells us that not only can mutual
cooperation be sustained given a high enough discount factor, but virtually any out-
come in the feasible set can be achieved as a SPE. This results because repetition
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creates a large set of possible combinations of strategies. Especially in infinitely re-
peated games, the discount factor becomes so powerful that it can support outcomes
that would be impossible in one-shot interactions.

For example, mutual cooperation in the Prisoner’s Dilemma is unstable in a one-
shot game because each player has more incentive to defect and receive 5 instead
of 3. However, in the repeated version, where δ is sufficiently high, the short-term
gain from defection (5 − 3 = 2) is outweighed by the long-term cost of triggering
permanent punishment (3− 1 = 2 in every future period).

8.2. Implications.
The Folk Theorem has a lot of implications for cooperation and social behavior.
Firstly, it shows that player decisions are largely affected by repetition because
repeated interactions open up lots of new possibilities for players to achieve desired
results.

Second, the theorem shows how crucial patience is to sustain cooperation. As
players become more patient, the set of sustainable equilibria expands drastically.

Third, the theorem shows how multiple equilibria can coexist in repeated games.
This means that cooperation is possible even when it seems unlikely. However,
this also complicates things because it is not clear which equilibrium players will
actually play. Usually, the answer to these issues depends on outside factors like
monitoring, social norms, and noise.

8.3. Limitations to the Folk Theorem.
Applications of the Folk Theorem are limited because it relies on a few strong
assumptions that are unrealistic conditions in the real world. We will go more
in-depth into these in the subsequent section.

Firstly, we have perfect monitoring. The theorem assumes players can perfectly
observe each other’s actions. In contrast, information is usually imperfect or noisy
because players can accidentally choose the wrong action, forget past actions, or
make observation errors. This can lead to the discouragement of cooperation even
when no one intended to defect.

Next, The theorem assumes that players can keep track of infinite streams of
payoffs and perform complex calculations every period to evaluate their next move.
Real humans have these limitations that can prevent them from implementing the
various strategies required by the Folk Theorem.The Folk Theorem also assumes
that players are perfectly rational, where in the real-world this is impossible to
control.

Despite these limitations, the Folk Theorem remains an extremely powerful tool
used in game theory because it reveals that there are in-fact lots of possibilities for
cooperation to emerge from repeated interaction.
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9. Challenges to Cooperation

Building onto the last section, there is a big gap between Game Theory and
real-world scenarios due to key assumptions mentioned in the previous section.
This section will go over big obstacles in the real-world that stop cooperation from
emerging even though using methods from Game Theory tells us that cooperation
is possible.

9.1. Noise and Miscommunication.
Firstly, there is something called noise which is almost always present in real-world
scenarios. Noise is what is referred to when a player accidentally deviates from
their strategy in a game. This can result from miscommunication, accidental move,
or various other factors.

Noise can present a lot of unintended consequences for certain strategies like Tit-
for-Tat or Grim Trigger. Imagine a scenario where both players intend to cooperate
but one player accidentally defects due to a random error. Following this, this
mistake triggers an infinite alternation of mutual punishment or an infinite stream
of defection respectively.

This is one of the main reasons why variants of Grim Trigger and Tit-for-Tat (like
GTFT, LR-K, and TF2T) perform better in real-world experiments because they
have more tolerance for occasional mistakes, allowing cooperation to still emerge
after accidental defections.

Similarly, miscommunication is when players interpret the game rules, payoffs
and strategies differently which can lead to conflict.

9.2. Monitoring Issues.
Repeated games typically involve perfect monitoring, where players perfectly ob-
serve their opponent’s moves. However, real-world interactions involve imperfect
monitoring because players cannot completely verify opponent choices.

When players cannot clearly observe whether their opponent cooperated or de-
fected, they cannot reliably implement strategies that are based on opponent actions
like TFT or Grim Trigger. So, this could lead to no punishment when the oppo-
nent defected on purpose. On the flip side, this could also lead to false accusations
and unnecessary punishment if a player mistakenly believes their opponent defected
when in reality, they cooperated.

Also, imperfect monitoring makes it harder to coordinate playing a specific equi-
libria because it is always safer to revert to a non-cooperative strategy when you
aren’t sure what the opponent is playing.

9.3. Human Constraints.
Another big issue is that in game theory, players are assumed to be perfectly ratio-
nal, have the ability to do complex calculations, and have infinite memory. However,
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in the real-world this is not the case. Real players cannot keep track and calculate
infinite streams of discounted payoffs or evaluate every possible strategy and then
decide which one to play. This is especially outlined in the Folk Theorem where all
of the possible subgame perfect equilibria exceed human brain capacity.

Also, humans have limited memory, so strategies like Tit-For-Tat, and Grim
Trigger may not function as well because human players could forget crucial details
of past interactions leading to strategies not working as intended.

Finally, all humans have bias, so factors like overconfidence, revenge, and loss
aversion can affect players actions by deviating from their strategy to pursue a
different outcome.

9.4. Many Equilibria.
The Folk Theorem reveals to us that infinitely repeated games have a vast amount
of equilibria, many of which support cooperation. However, now we are presented
a problem: in a real-life scenario, which equilibrium will the players actually play?

This can also further the challenge of cooperating due to two players having con-
flicting strategies, unclear communication, and overlying expectations for players
to follow when they make decisions.

9.5. Finite Horizons.
As discussed in Section 5.3, finitely repeated games with known endpoints face
the unraveling problem due to backward induction. This is relevant because in
real-world scenarios, most interactions DO have definite endpoints.

So, for games to be played in the real world, organizations should avoid creating
clear endpoints to eliminate the possibility triggering backward induction.

9.6. Other Issues.
There are also other differences between game theory and the real world. Just to
name a few, firstly we have Reputation and how it affects decisions because players
care about their reputation for future interactions.

Second, in the real-world, games are played with incomplete information where
players are uncertain about opponent payoffs, strategies, and thoughts so this un-
certainty could affect the probability of cooperation emerging.

9.7. Concluding Remarks.
In summary, this section went over common misconceptions and gaps between game
theory and the real-world. In the next section we will explore how these theories
and principles apply and scale to real-world problems and situations.
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10. Real-World Applications

This section examines the various applications of repeated games to different
areas of the real-world. From business to politics to biology, the principles learned
in this paper provide countless valuable insights into real-life behavior. Firstly, we
can draw several parallels from the concepts discussed to the Cold War.

Initially, the United States was the sole nuclear power of the world throughout
the late 1940s. This all changed when an American weather monitoring plane de-
tected trace amounts of materials in the air, only possible from a detonation of a
nuclear bomb. However, the US hadn’t conducted any tests recently. This con-
firmed American suspicions that the Soviet Union was able to conduct a successful
nuclear test, which occurred on September 3, 1949, ending the US monopoly on
nuclear weapons.

The US government was in chaos. Officials were experiencing considerable stress
and many began to form opinions on how to handle the decision. Many advocated
for a preemptive nuclear strike on the Soviet Union as an ”aggressor for peace”.
The strategic position of the United States had switched from a strong advantage
to a very vulnerable one almost overnight.

Following this, the threat of Mutually Assured Destruction (MAD) stroke fear
into citizens of both countries. The theory hypothesized that if one nation at-
tempted a preemptive strike on the other, then the other superpower had enough
nuclear weapons to destroy them. This strategy is a Nash equilibrium because once
both countries have been armed, neither side has any incentive to initiate an attack
or disarm.

Tension reached a boiling point during the Cuban Missile Crisis in October 1962,
where the incident showed both countries that nuclear confrontation would only end
with the destruction of the world. Both countries recognized this, and in response,
the United States removed missiles from Turkey, and the Soviet Union removed
missiles from Cuba.

Although the reconciliation period started slow, many gradual changes led to the
reduction of tensions throughout the later Cold War period. Inititally, throughout
the late 1960s and the early 1970s, both sides agreed to limit testing of and the
spread of nuclear weapons to other countries through numerous treaties. This
snowballed to the Strategic Arms Limitation Talks (SALT) in the 1980s, where
both countries stated numerical limits on the amount of nuclear weapons that a
country could have. Finally, in the late 1980s, tensions grew to an all-time low with
large reforms that completely changed the international landscape.

Firstly, the United States and the Soviet Union established direct communication
lines to communicate more clearly to prevent misunderstandings from escalating
into full-scale wars in the future.
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Second, both sides signed the Strategic Arms Reduction Treaty (START I),
which was the largest nuclear arms reduction in history. In detail, almost 30 per-
cent of nuclear warheads on each side were destroyed and this created permanent
infrastructure that promoted cooperation.

What we can learn from this is that both sides learned to match their opponent’s
actions while simultaneously avoiding escalation. Military and political leaders
from both sides recognized the importance of maintaining good communication
and avoiding provocative actions that would deter cooperation.

In the end, nuclear weapons transformed from tools of war to one of the most
important instruments in causing diplomacy between two superpowers.

In the modern day, NATO and Russia have continued clashes that closely mirror
Cold War dynamics which make this all the more important to learn from. Russian
nuclear threats in the Russian-Ukraine conflict closely resemble Cold War levels of
tension, with both sides preparing to deploy their military and modernizing their
nuclear weapons. On top of this, in the Cold War, there were only two main
nuclear superpowers. However, today, there are many nuclear powers that add to
the complex dynamics of the world, with China, North Korea, Pakistan, India and
more possessing nuclear arsenals. Along with new technologies and AI being the
forefront of modern discussion, this makes the study of game theory and repeated
games all the more important.

11. Conclusion

11.1. What’s Next?
As game theory continues to evolve, this opens many doors for future research.
Game theory has a lot of applications to actual human behavior, and with the
increasingly popular AI and machine learning sectors, this opens new questions
about how game theory can be applied there. For anyone intrigued, game the-
ory has various diverse applications, from computer science, to political science, to
psychology, to business, to biology, and countless others. The mathematical foun-
dations explained here provide the essential skills needed to understand the insights
of cooperative potential of our increasingly complex world.
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