The Martingale Convergence Theorem

Ishaan Sharma

Euler Circle

July 10, 2025

Why Study Martingale Convergence?

- Martingales model fair games and stochastic processes.
- Convergence theorems answer: Do martingales settle down?
- Central in:
 - Probability theory (e.g., Strong Law of Large Numbers)
 - Stochastic processes (e.g., random walks, Brownian motion)
 - Mathematical finance (e.g., risk-neutral pricing)
- Goal: Build familiarity around martingales and introduce the MCT.

Foundations of Probability Theory

Measurable Spaces and Measures

- A σ -algebra \mathcal{F} on a set Ω is a collection of subsets:
 - Closed under countable unions and complements
 - Contains Ω
- A **measure** μ assigns non-negative numbers to sets in \mathcal{F} :

$$\mu: \mathcal{F} \to [0,\infty], \quad \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

• A measure space is a triple $(\Omega, \mathcal{F}, \mu)$.

From Measure Theory to Probability

- A **probability space** is a measure space with $\mu(\Omega) = 1$.
- A random variable is a measurable function $X : \Omega \to \mathbb{R}$.
- The **expectation** of *X* is defined as:

$$\mathbb{E}[X] = \int_{\Omega} X \, d\mathbb{P}$$

• This formalism links probability with Lebesgue integration.

Conditional Expectation

- Suppose X is a random variable and \mathcal{G} represents some information we know (a sub- σ -algebra).
- The conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ is:
 - A new random variable that only depends on the information in \mathcal{G} ,
 - The best estimate of X given what we know from \mathcal{G} ,
 - Averages out to the same value as X over events in \mathcal{G} .
- **Key Idea:** $\mathbb{E}[X \mid \mathcal{G}]$ is not just a number—it's a random variable that reflects our updated knowledge.

Stochastic Processes

Stochastic Processes

- A **stochastic process** is a collection $\{X_t\}_{t\in\mathcal{T}}$ of random variables indexed by time.
- Typical choices:
 - Discrete-time: $T = \mathbb{N}$
 - Continuous-time: $T = \mathbb{R}_{\geq 0}$
- Describes the evolution of a random system over time.
- Martingales form a subclass of stochastic processes that generalize fair games.

Example: Symmetric Random Walk

• Let $X_1, X_2, ...$ be independent and identically distributed (i.i.d.) random variables with

$$\mathbb{P}(X_i=1)=\mathbb{P}(X_i=-1)=\frac{1}{2}.$$

• Define the partial sums

$$S_n = \sum_{i=1}^n X_i.$$

- Then $\{S_n\}_{n\in\mathbb{N}}$ is called the **symmetric random walk**, a discrete-time stochastic process.
- It models a particle that moves one unit left or right with equal probability at each time step.

Visualising the Random Walk

Figure 1: Sample path of a random walk in discrete then continuous time.

Martingales

Definition of Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $(\mathcal{F}_n)_{n\geq 0}$ a filtration. A stochastic process $(X_n)_{n\geq 0}$ adapted to (\mathcal{F}_n) is called:

• a martingale if $\mathbb{E}[|X_n|] < \infty$ for all n, and

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n$$
 a.s.

• a submartingale if

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \geq X_n$$
 a.s.

a supermartingale if

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \leq X_n$$
 a.s.

Example: Symmetric Random Walk

• Let $S_n = \sum_{i=1}^n X_i$ denote the simple symmetric random walk, and let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ be the natural filtration. Then:

$$\mathbb{E}[S_{n+1}\mid\mathcal{F}_n] = \mathbb{E}[S_n + X_{n+1}\mid\mathcal{F}_n] = S_n + \mathbb{E}[X_{n+1}\mid\mathcal{F}_n] = S_n$$

- since X_{n+1} is independent of \mathcal{F}_n and has mean zero.
- Thus, (S_n, \mathcal{F}_n) is a martingale.

Martingale Convergence Theorem

Martingale Convergence Theorem

Theorem 1 (Martingale Convergence Theorem)

Let (X_n) be a submartingale (or martingale) such that

$$\sup_n \mathbb{E}[|X_n|] < \infty$$

Then $X_n \to X_\infty$ a.s. for some finite, integrable random variable X_∞ .

Example: Doob's Martingale

Let $X \in L^1$ be an integrable random variable and let \mathcal{F}_n be an increasing filtration. Define:

$$X_n = \mathbb{E}[X \mid \mathcal{F}_n]$$

- \bullet (X_n) is a martingale.
- $\mathbb{E}[|X_n|] \leq \mathbb{E}[|X|] < \infty$, so the martingale is uniformly integrable.
- By the Martingale Convergence Theorem: $X_n \to X_\infty$ a.s. and in L^1 , where

$$X_{\infty} = \mathbb{E}[X \mid \mathcal{F}_{\infty}]$$

This is a key result in the foundation of modern probability and stochastic processes.

Application to the SLLN

Application: Strong Law via Martingales

Theorem 2 (Strong Law of Large Numbers)

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = \mu$ and $\text{Var}(X_1) < \infty$. Then:

$$S_n = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow{a.s.} \mu.$$

That is,

$$\mathbb{P}\left(\lim_{n\to\infty}S_n=\mu\right)=1.$$

Application: Strong Law via Martingales

- Define centered variables: $Y_k = X_k \mu$ so that $\mathbb{E}[Y_k] = 0$.
- Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ be the natural filtration.
- Define the partial sums:

$$M_n = \sum_{k=1}^n Y_k.$$

• Then (M_n, \mathcal{F}_n) is a martingale:

$$\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n + \mathbb{E}[Y_{n+1} \mid \mathcal{F}_n] = M_n.$$

• Additionally, since $Var(X_1) < \infty$, the martingale (M_n) has bounded L^2 norms.

Application: Strong Law via Martingales

By the Martingale Convergence Theorem, we have:

$$M_n \xrightarrow{\mathsf{a.s.}} M_\infty \in \mathbb{R}.$$

• Since M_{∞} is finite almost surely, dividing by n yields:

$$\frac{M_n}{n} \xrightarrow{\text{a.s.}} 0.$$

Hence, the average can be written as:

$$\frac{1}{n}\sum_{k=1}^{n}X_{k}=\mu+\frac{M_{n}}{n}\xrightarrow{\text{a.s.}}\mu.$$

Thus the SLLN follows as a direct example of martingale convergence.