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ABSTRACT. The Martingale Convergence Theorem (MCT) is a central result in probabil-
ity theory, asserting that any L!'-bounded martingale converges almost surely to an inte-
grable limit. This paper presents a self-contained proof of the MCT, beginning with core
measure-theoretic foundations such as o-algebras, measures, and Lebesgue integration, and
developing the probabilistic framework of random variables, conditional expectation, and
martingales. Key tools including Fatou’s Lemma, the Monotone Convergence Theorem, and
Doob’s Upcrossing Lemma are established and applied to prove the theorem. Applications
and counterexamples are explored to illustrate the theorem’s scope and limitations. We
conclude with extensions to continuous-time processes and LP-convergence, and include a
detailed application in mathematical finance as well as in the proof of the SLLN.

INTRODUCTION

Martingales are a central concept in modern probability theory, with applications ranging
from stochastic calculus and mathematical finance to statistical estimation, potential theory,
and online algorithms. A martingale represents a “fair game”, where the expected future
value, conditioned on the present, equals the current value. The Martingale Convergence
Theorem (MCT) reveals a deep regularity in such processes: under a simple L'-boundedness
condition, martingales converge almost surely to a well-defined random variable.

0.1. Statement of the Main Theorem.

Theorem 0.1 (Martingale Convergence Theorem). Let (X,,)nen be an L'-bounded martin-
gale adapted to a filtration (Fy)nen. That is,

sup E[| X,|] < o0.

Then there exists an integrable random variable X, € L' such that
X, 25 X
Moreover, if (X,,) is uniformly integrable, the convergence also holds in L.

0.2. Outline of the Paper. This paper is structured to provide a clear and rigorous deriva-
tion of the Martingale Convergence Theorem from first principles. The main components
are as follows:

e Section 1 introduces the foundational elements of measure theory including o-algebras,
measures, and measurable spaces.

e In Section 2, we develop the theory and purpose of Lebesgue integration, and discuss
L? spaces in probability.
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e Section 3 introduces probability spaces and random variables, formalizing the prob-
abilistic framework as a special case of measure theory.

e In Section 4, we define expectation as a Lebesgue integral and frame conditional
probability and expectation as random variables.

e Section 5 presents the fundamental properties of conditional expectation: uniqueness,
linearity, the tower property, positivity, measurability, and Jensen’s inequality.

e Section 6 defines filtrations, martingales, submartingales, and supermartingales, with
motivating examples such as symmetric and biased random walks.

e Section 7 presents the Monotone Convergence Theorem and Fatou’s Lemma, which
are essential for managing limits of integrals throughout the convergence proof.

e In Section 8, we prove Doob’s Upcrossing Lemma and its corollaries, which control
oscillations in submartingales and form the heart of the convergence argument.

e Section 9 presents a detailed, step-by-step proof of the Martingale Convergence The-
orem, emphasizing the role of upcrossings and boundedness.

e Section 10 explores extensions and applications: convergence in L”, continuous-time
martingales, an example from mathematical finance in derivative valuation, and an
elegant proof of the SLLN using the MCT.

e Finally, Section 11 summarizes the main results and discusses the theorem as a whole.

Each section is self-contained and motivated by examples, with the goal of making the
Martingale Convergence Theorem accessible to students and researchers.

1. MEASURE THEORY FOUNDATIONS

1.1. Sigma-Algebras and Measurable Spaces. Measure theory provides the mathemat-
ical framework for modern probability theory by generalizing concepts like length, area, and
volume to abstract spaces. Probability measures are special cases of measures, and integra-
tion with respect to them forms the backbone of expectations, variances, and distributions.

Definition 1.1. A o-algebra F on a set 2 is a collection of subsets of {2 satisfying:

(1) Qe F,
(2) If Ae F, then A°=Q\ A € F (closed under complements),
(3) If (A,)pe, C F, then | J 2, A, € F (closed under countable unions).

The pair (2, F) is called a measurable space.

A o-algebra defines the class of sets for which we can consistently assign a measure or
probability. Closure under complements and countable unions ensures compatibility with
limits and allows for the application of convergence theorems central to probability theory.

Ezample (Finite o-algebra). Let Q = {1,2,3}. Then the power set P(2) is a o-algebra. A
smaller o-algebra could be

F = {®> {1}.{2,3}. @},
which is closed under complements and countable unions.
Ezample (Borel o-algebra). On R, the Borel o-algebra B(R) is generated by open intervals.

It includes all open and closed sets, countable intersections and unions of such sets, and
much more. It is the smallest o-algebra containing all open sets.
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1.2. Measures and Measure Spaces.
Definition 1.2. A measure p on a measurable space (2, F) is a function p : F — [0, 00]
satisfying:

(1) u(®) =0,
(2) (Countable additivity) For any sequence of pairwise disjoint sets (4,)5, C F,

n=1 n=1
The triple (2, F, ) is called a measure space.

Ezample (Lebesgue measure). The Lebesgue measure A on R assigns to each interval (a, b)
the length b—a, and extends this to the Borel sets via countable additivity. It underpins the
Lebesgue integral, which generalizes the Riemann integral to a far broader class of functions.

Ezxample (Counting measure). Let 2 = N and define pu(A) = |A| for all A C N, where |A|
denotes the (possibly infinite) cardinality. Then p is a measure, called the counting measure.
This is useful for defining discrete probability spaces and sums as integrals.

2. MEASURABLE FUNCTIONS AND INTEGRATION

2.1. Measurable Functions. Before we define integration on a probability space, we must
identify the class of functions that are integrable: measurable functions.

Definition 2.1 (Measurable Function). Let (Q, F) and (S,S) be measurable spaces. A
function X : Q@ — S is said to be F-measurable (or simply measurable) if for every set
A € S, the preimage X '(A) € F.

In this paper, we will primarily be concerned with real-valued functions X : 2 — R, where
R is equipped with the Borel o-algebra B(R). In this setting, the following definition is more
accurate.

Definition 2.2. Let (2, F) be a measurable space. A function X : Q@ — R is said to be
F-measurable if for every Borel set B C R, the preimage X !(B) € F.
Key Properties of Measurable Functions.

e Any continuous function from a topological space to R is Borel measurable.
e The pointwise limit of a sequence of measurable functions is measurable.
e The composition of measurable functions is measurable.

Why Measurability Matters. Measurability ensures that the preimages of “observable” events
(in R) correspond to measurable sets in (2, making integration well-defined. Only measurable
functions can be Lebesgue-integrated.

2.2. Simple Functions and the Lebesgue Integral. We begin with the class of functions
on which the integral is first defined: simple functions.

Definition 2.3 (Simple Function). Let (€2, F) be a measurable space. A function ¢ : @ — R
is called a simple function if it takes on only finitely many real values, i.e.,

gp(w) = Z a; 14, (w)v

where a; € R and A; € F are pairwise disjoint measurable sets, and | J;_, 4; = Q.
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Definition 2.4 (Integral of a Non-negative Simple Function). Let ¢ be a non-negative simple
function on a measure space (2, F, i), i.e., a; > 0 for all i. Then the Lebesgue integral of ¢
with respect to pu is defined by:

/Q<pdu = Zaiu(Ai).
i=1

This definition is well-defined because the representation of ¢ can be reduced to a unique
(up to null sets) canonical form with disjoint sets.

Definition 2.5 (Integral of a Non-negative Measurable Function). Let f: Q — [0, 00| be a
non-negative measurable function. The Lebesgue integral of f with respect to u is defined

by:
/fdu:sup{/godu : nggf,wsimple}.
Q Q

This definition extends the integral from simple functions to arbitrary non-negative measur-
able functions via supremum approximation from below.

Definition 2.6 (Integral of a General Measurable Function). Let f : Q@ — R be an arbitrary
measurable function. Decompose it into its positive and negative parts:

f*zmax(f,O), fﬁ :maX(—f,O),
sothat f = f*—f  and |f| = ft+ f~. Then, if [ fTdu < ocoand [ f~ du < oo, we define:

/Qfduz/gﬁdu—/ﬂf‘du-

If either of these integrals is infinite, we say the integral of f is undefined (or diverges).

This construction ensures that the Lebesgue integral handles signed functions correctly and
aligns with our intuitive notion of area under a curve (positive minus negative contribution).

Remark 2.7 (Comparison with Riemann Integration). Unlike the Riemann integral, the
Lebesgue integral is defined with respect to a measure rather than partitioning the do-
main into intervals. This allows it to integrate functions with dense sets of discontinuities,
manage changes on sets of measure zero and handle limit operations more robustly.

Ezample. Let f = 1gnp,1, the indicator function of the rational numbers in the interval

[0,1]. That is,
)1, 2eQn]o,1],
f(:B)_{o, ze[0,1]\ Q.

This function is measurable because the set Q N [0, 1] is countable and hence a Borel set.
However, f is discontinuous at every point of the interval [0, 1], since every open interval
contains both rational and irrational numbers. Consequently, f is not Riemann integrable,
as it is discontinuous on a set of positive measure. Nonetheless, the Lebesgue integral of f
over [0, 1] exists and is equal to the measure of the set where f is nonzero:

/0 flz)dx = / 1gnp,(z) de = A(QN[0,1]) =0,

0
because the rationals form a countable set and thus have Lebesgue measure zero.
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2.3. LP Spaces and Integrability. A central concept in both measure theory and proba-
bility is that of integrability. The integrability of a function determines whether its expected
value or more general integral can be meaningfully defined.

Definition 2.8. Let (2, F, ) be a measure space. A measurable function X : Q@ — R is
said to be (Lebesque) integrable with respect to pu if

/]X|du<oo.
Q

The set of all such functions is denoted by L!(1), the space of absolutely integrable functions.
The LP Spaces. More generally, for 1 < p < 0o, we define the LP-spaces:

/ | X|P dp < oo} .
Q
These are normed vector spaces under the norm

1/p
1X1l, = ( / IledM) |

The space L () consists of essentially bounded measurable functions.

LP () = {X : Q — R measurable

Ezxample. Let f(x) = x~* on the interval (0, 1], and consider the measure space ([0, 1], B, \),
where )\ is the Lebesgue measure. Then

/01 ()P d = /01 27 da.

This integral converges if and only if ap < 1. Therefore,

1

felP(0,1]) <= a< o
2.4. Why Lebesgue Integration in Probability Theory? In probability, we frequently
work with expectations (i.e., integrals), limits of random variables, and conditional distribu-

tions. The Lebesgue integral is preferred over the Riemann integral because:

e [t accommodates limits and infinite sequences of functions rigorously.

e It is defined on abstract measure spaces, enabling generality in probabilistic models.

e It ignores events of probability zero — aligning with the probabilistic notion that
such events do not affect outcomes.

o [t generalizes the Riemann integral in the sense that every Riemann integrable func-
tion is also Lebesgue integrable, but the converse does not hold.

Lebesgue integration provides the rigorous analytical tools needed for advanced proba-
bility theory, including martingale convergence, where control of expectations and limiting
behavior is crucial. More information can be found in [RF10, Ax122].

3. PROBABILITY THEORY AS MEASURE THEORY

3.1. Probability Spaces. Probability theory is naturally framed within the language of
measure theory [Bil95, Durl9]. This foundational connection, formalised by Kolmogorov
[Kol56], allows probabilistic concepts to be rigorously interpreted as special cases of measure-
theoretic constructions. In particular, probability measures are measures of total mass one.
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Definition 3.1. A probability space is a triple (Q, F,P), where:

e () is the sample space, the set of all possible outcomes;
e F is a o-algebra of subsets of 2, called the collection of events;
o P: F —[0,1] is a probability measure, satisfying P(2) = 1.

Unlike general measures, which may assign infinite total mass and are not necessarily
bounded, probability measures are normalized so that the entire space has measure one.
This reflects the interpretation of P(A) as the likelihood of event A occurring.

Example (Coin Toss Space). For an infinite sequence of coin tosses, take Q = {H, T}".
Let F be the o-algebra generated by finite cylinder sets, and P the product measure with
P(H) =P(T) = 1/2. This models fair, independent coin tosses.

3.2. Random Variables.

Definition 3.2. A random variable is a measurable function X : 2 — R. That is, for every
Borel set B C R, the preimage X 1(B) € F.

Remark 3.3. Random variables are not inherently random; rather, they are deterministic
functions from the sample space to the reals. Their randomness arises from the underlying
uncertainty described by the probability measure P.

Example. Let X be a standard normal random variable. Then 2 = R, F is the Borel
o-algebra, and for any Borel set A,

P(A) = V% /A e 2 dx.

3.3. Expectation. Measure theory provides a general and robust theory of integration via
the Lebesgue Integral, which extends the classical Riemann integral and overcomes many of
its limitations—particularly in the context of convergence and measurability.

Definition 3.4. Let X : Q@ — R be a measurable function on a measure space (£, F, ).
The Lebesgue integral of X with respect to u is denoted by

/Xd,u.
Q

In the context of a probability space (€2, F,P), the Lebesgue integral of a random variable
X is referred to as its expectation:

E[X] = /Q X dP.

Ezample. Let X (w) = w on [0, 1] with P the Lebesgue measure. Then the expectation of X
is

! 1
EX]|= [ zdx==.
0 2

Ezample. Let X be the indicator function of a coin flip resulting in heads: X(H) = 1,
X(T) = 0. Then for P(H) = p, the expected value is

EX]=1-p4+0-(1—p) =p.
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3.4. Stochastic Processes. A stochastic process is a mathematical model for a system
that evolves randomly over time and appear in diverse areas such as physics, finance, and
biology. Formally, it is defined as a collection of random variables indexed by a parameter
that typically represents time.

Definition 3.5 (Stochastic Process). Let (€2, F,[P) be a probability space. A stochastic
process is a family of random variables (X;);er, where each X, : Q — R is measurable with
respect to F. The index set T typically represents time and may be discrete (7" = N) or
continuous (7" = [0, 00)).

That is, a stochastic process is a function:

X:TxQ—->R, (tw)+— Xi(w),
such that for each fixed ¢ € T', the map w — X;(w) is a random variable.

Intuitively, for each outcome w € €, the function ¢ — X;(w) describes a sample path or
realization of the process, capturing how the system evolves over time for that particular
outcome. Conversely, for a fixed time ¢t € T, the random variable X; represents the state of
the process at that time.

Ezample (Simple Random Walk). Let (€2, F,P) be a probability space on which is defined a
sequence of i.i.d. random variables (&, ),en taking values in {—1,+1} with equal probability
1/2. The process (Sy)nen defined by

So=0, Su=> &
k=1

is called a Simple Symmetric Random Walk. It models the position of a particle moving on
Z that takes a step left or right with equal probability at each time step.

4. CONDITIONAL PROBABILITY AND EXPECTATION

4.1. Conditional Probability. In elementary probability, conditional probability is defined
via the ratio:
P(AN B)

P(B)
for events A, B € F with P(B) > 0. This formula, however, fails to generalize in measure
theory. Notably, if P(B) = 0, the definition is meaningless, yet such events often arise in
continuous probability spaces. A more robust formulation uses conditional probability with
respect to a o-algebra [Durl9, Klel3].

P(A| B) =

Example. Consider the product probability space ([0, 1], B([0, 1]?), A), where X is Lebesgue
measure. Let X (x,y) = x be the first coordinate projection and define the event,
A={(z.y) € (0,1 : y < a}.

We would like to compute the probability P(A | X). However, for a fixed z € [0,1], the
vertical line {z} x [0, 1] has measure zero in A and thus, the basic definition of conditional
probability as a ratio is undefined. In this case, the conditional probability is given by:

P(A | X)(2) = M (4,) = .
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Definition 4.1 (Conditional Probability). Let (€2, F,P) be a probability space and let G C F
be a sub-o-algebra. For any event A € F, the conditional probability of A given G, denoted
P(A | G), is defined as a G-measurable function P(A | G) : Q — [0, 1] satisfying

/P(A]g)dP:]P’(AﬁB) for all B € G.
B

This means that P(A | G) is itself a random variable, not just a number. It is measurable
with respect to G, and hence can be interpreted as the probability of A under the information

encoded by G.

4.2. Conditional Expectation.

Definition 4.2 (Conditional Expectation). Let X € L'(Q, F,P) and let G C F be a sub-
o-algebra. The conditional expectation of X given G, denoted E[X | G], is a G-measurable
random variable such that:

(1) E[X | G] is G-measurable,

(2) For all A e g,
/]E[X]g]d]P’:/XdP.
A A

As with conditional probability, the conditional expectation E[X | G] is a random variable
itself—specifically, a function measurable with respect to the information encoded in G. It
represents the best approximation of X given the information available in G.

Ezample (Discrete conditioning). Let (2, F,[P) be a probability space where we first flip a
fair coin, then roll a fair six-sided die. Let the random variable X be the die roll result, and
let G = 0(C), where C' denotes the coin outcome (either H or T'). Since the coin and die are
independent, and the die is uniform,

E[X | G =E[X] =35 as.

In this case, knowing the coin flip gives no information about the die result, so the conditional
expectation equals the marginal expectation.

Example (Conditional Expectation under Symmetry). Let (X,Y) ~ Uniform([0, 1]?), and
define Z = X +Y. Let G = 0(Z). To compute E[X | G], we observe that the line X +Y = z
intersects the unit square in the interval

X € [max(0,z — 1), min(1, 2)].

Given Z = z, the conditional distribution of X is uniform over this interval. Thus,
1
EX | Z=z2]= 5 (max(0,z — 1) +min(1,2)).
Since this is a function of Z, we conclude E[X | G] = f(Z), which is G-measurable.

5. PROPERTIES OF CONDITIONAL EXPECTATION

Let (2, F,P) be a probability space, and let G C F be a sub-o-algebra. Unless stated
otherwise, all random variables are assumed to be integrable (i.e., belong to L'(Q, F,P)).
The conditional expectation E[X | G| plays the role of a best G-measurable approximation
of X, and it satisfies the following foundational properties.
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Uniqueness. Conditional expectation is defined up to sets of measure zero. That is, any
two versions of E[X | G| are equal almost surely.

Proposition 5.1 (Uniqueness). Let X € L', and let Zy, Zy be two G-measurable functions

such that
/ZldIP’:/XdIP’:/ZQd]P’, forall A € g.
A A A

Then Zy = Zy almost surely.
Proof. Let D ={w € Q: Z;(w) > Z3(w)} € G. Then,

/(ZI—ZQ)dIP’:/Zld]P—/Z2dIP’:/XdIP>—/XdIP’:O.
D D D D D

But Z, — Zy > 0 on D, so this implies P(D) = 0. Similarly, P(Zy > Z;) = P(D’) = 0, and
thus Z; = Z5 almost surely. O

Linearity. Conditional expectation behaves like a linear operator.
Proposition 5.2 (Linearity). For a,b € R and X,Y € L',

ElaX +bY | G] = aE[X | G| + VE[Y | G] a.s.
Proof. Let Z =aX +bY. For any A € G,

/AIE[Z]g]dIP’:/AZdIP’:a/AXd]P’er/AYdP
_ /A (E[X | G] + bE[Y | G]) dP.

By uniqueness, the two sides are equal almost surely. 0

Tower Property (Iterated Expectations). Conditioning twice is the same as condition-
ing once on the smaller o-algebra. This is known as the tower property.

Proposition 5.3 (Tower Property). Let H C G C F. For X € L',
E[E[X |G] | H] =E[X | H] as.
Proof. Let A € H. Then:
/E[E[X|g] |H]d1p:/]E[X|g]dp:/XdP:/E[X|mdP.
A A A A

Since both sides are H-measurable, they are equal almost surely. U

Positivity. Conditional expectation preserves non-negativity.
Proposition 5.4 (Positivity). If X > 0 almost surely, then E[X | G] > 0 almost surely.
Proof. Suppose E[X | G] < 0 on a set A € G with positive measure. Then:
/IE[X | G| dP < 0,
A

contradicting the fact that

/E[X | g]d]P:/Xd]on,
A A
since X > 0 a.s. Therefore, E[X | G] > 0 a.s. O
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Factoring Out Measurable Random Variables. Measurable functions can be pulled out
of the conditional expectation.

Proposition 5.5 (Measurable Multipliers). Let X € L', and let Y be a bounded, G-
measurable random variable. Then:

EXY |G =Y -EX|G] as

Proof. For any A € G, since Y is G-measurable:

/XYd]P:/Y-XdIP:/Y-E[X | Q]dIP’:/(Y-E[X | G]) dP.

A A A A

By uniqueness, the result follows. O
Jensen’s Inequality. Convex functions commute with conditional expectations in an in-
equality.

Theorem 5.6 (Conditional Jensen’s Inequality). Let X € L'(Q, F,P), and let G C F be a
sub-c-algebra. Let ¢ : R — R be a convezr (and thus Borel-measurable) function such that
o(X) € L*. Then:

p (EX [G]) <Elp(X) ]G] as.
Proof. By convexity of ¢, for any xg € R, there exists an affine support:
o(x) > o(xo) + alzo)(x — z9) YV 2z €R.
Setting o = E[X | G] and 2 = X, we take conditional expectations to get,
Elp(X) | 6] = ¢(E[X | 6]) + a(E[X | G))-E[X —E[X | g]| 4.
Finally, using linearity and the tower property, the inequality simplifies to
v (E[X | G]) <E[p(X) | g]
as desired. O

6. MARTINGALES

Martingales are fundamental objects in modern probability theory, capturing the idea of a
“fair game” in a rigorous, measure-theoretic framework. They are widely used in stochastic
processes, statistics, mathematical finance, and the analysis of algorithms [Wil91].

6.1. Filtrations and Adaptation. To model the evolution of information over time, we
introduce the concept of a filtration.

Definition 6.1 (Filtration). A filtration is an increasing sequence {F, },,>o of sub-o-algebras
of F:
FoCF S CFCF.

Intuitively, JF,, represents the information available up to time n.

Ezample (Filtration for Coin Tosses). Consider a probability space where we repeatedly toss
a fair coin. Define F,, = o(Y1,...,Y,), where Y, € {0,1} encodes the outcome of the kth
toss. Then {F,} forms a natural filtration representing information revealed after each toss.
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6.2. Definition of Martingales.

Definition 6.2 (Martingale). Let {X,},>0 be a sequence of integrable random variables
adapted to a filtration {F,}. Then {X,} is called a martingale if, for all n > 0,
E[X,1 | Fol = X, as.
Definition 6.3 (Submartingale and Supermartingale). Let { X, },>0 be a sequence of inte-
grable random variables adapted to a filtration {F,,}. Then:
o {X,} is a submartingale if, for all n > 0,

E[X,i1 | Fol = X, as.
e {X,} is a supermartingale if, for all n > 0,
E[X,i1 | Fo)l < X, as.

Remark 6.4. Martingales model “fair games” where, given the current information, the ex-
pected value of the next observation equals the present - no expected gain. Submartingales
and supermartingales correspond to “favorable” and “unfavorable” games, respectively, in
the sense of expected value trends.

Ezample (Random Walks as Martingales and Sub/Supermartingales). Let {Y,} be i.i.d.
random variables with P(Y,, = 1) = p and P(Y,, = —1) = 1 — p. Define the partial sums
Xn => 1 Yy, with filtration F,, = o(Y1,...,Y,). Then:
E[Xpi1 | Fol = X0 +EY, ] =X+ (2p—1).

Consequently:

e When p = 3, {X,} is a martingale (fair game)

e When p > 1, {X,} is a submartingale (favorable game)

e When p < 3, {X,} is a supermartingale (unfavorable game)

Ezample (Doob Martingale). Let X € L'(Q, F,P), and let {F,} be a filtration. Define
X, =E[X | F.].
Then {X,} is a martingale. This is known as the Doob martingale associated with X. Tt

reflects the best estimate of X given the information available at time n. The martingale

property
E[Xni1 | Fo] = E[EX | Fopa] | Fu] = E[X | Fo] = Xo

follows from the tower property.
Ezample. Let (X,,)n,>0 be a submartingale adapted to a filtration (F,), and fix a threshold
a € R. Define the process

Y, = (X, — a)t = max(X,, — q,0).

Then (Y,,) is also a submartingale. This will be used in the proof of the Martingale Conver-
gence Theorem and follows from the convexity of f(z) = (x—a)". By Jensen’s Inequality 5.6
the submartingale property is preserved under convex transformations:
ElY, | Fooa] = B[(Xy — a)" | Fora] 2 (B[X, | Foa] —a)*.
From the submartingale property of X,,, we get:
(E[Xn ’ fn—l] - CL>+ Z (Xn—l - CL)+ — In—1-

Combining the two inequalities proves that (Y;,) is a submartingale.
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7. MEASURE-THEORETIC CONVERGENCE THEOREMS

Before we approach martingale convergence, we collect two essential tools in integration
theory: the Monotone Convergence Theorem and Fatou’s Lemma. Both theorems concern
the interplay between limits and integration and give sufficient conditions under which these
operations commute. Deeper analysis is in [RF10, Ax122].

7.1. Monotone Convergence Theorem.

Theorem 7.1 (Monotone Convergence Theorem). Let ( f,,)nen be a sequence of non-negative
measurable functions such that:

(1) fu < fax1 for alln (i.e., the sequence is pointwise increasing),
(2) f=1lim, o fn exists pointwise.

Then,
lim E[f,] = E[f].

n—0o0

Proof. Since f,, T f, we may approximate f from below using simple functions. Let ¢ be any
simple function such that 0 < ¢ < f. Then there exists N such that ¢ < f, for all n > N.
Hence,

/qf)du <E[f, foralln> N.
Taking lim inf,
[ odn < mintE(s,)
Taking the supremum over all such ¢ < f, we get

E[f] < liminf E[f,].

n—oo

On the other hand, f, < f implies E[f,] < E[f], so
lim sup E[£,] < E[f].

n—oo

Combining the two inequalities we have,

lim E[f,] = E[f]

n—oo

as desired. O

Remark 7.2. Tt is crucial that the functions f, are non-negative and increasing. If either
condition is relaxed, the conclusion may fail.

7.2. Fatou’s Lemma.

Theorem 7.3 (Fatou’s Lemma). Let (X, ),en be a sequence of mon-negative measurable
functions. Then:

n—o0 n—oo

[hm inf X ] lim inf E[X,].
<

Proof. Define Y, = inf,>; X,,. Then Y}
increasing:

X, for all n > k, and the sequence (Y}) is

Y. = 1nf X, inf X,, = Yi.1.
n>k+1
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We have lim;_, Yy = liminf, ., X,, and since Y, 1, the Monotone Convergence Theo-
rem 7.1 gives:

E [hm inf Xn} — lim E[Y;].
k—o0

n—oo

Since Y;, < X, for all n > k, it follows that:

E[Y;] < inf E[X,,].

n>k
Taking limits:
klim E[Y;] < lim inf E[X,] = liminf E[X,,].
—00

k—oon>k n—00
Thus,
E [lim inf Xn] < liminf E[X,]
n—oo n—o0
as desired. 0

8. UPCROSSINGS AND CONVERGENCE

A central idea in establishing almost sure convergence of submartingales is the concept
of upcrossings. The fundamental idea is that if a process fails to converge, it must oscillate
infinitely often between two levels. Upcrossings provide a quantitative measure of such
oscillations [Wil91, Doo48].

8.1. Definition of Upcrossings.

Definition 8.1 (Upcrossings). Let (X,,),>0 be a real-valued stochastic process and let a < b
be real numbers. The number of completed upcrossings of the interval [a,b] by time n,
denoted U, (a,b), is defined as the maximal integer k such that there exist increasing indices

0< <o <m<oy<- <1 <0 <n,
with
X, <a and X, >0 foralli=1,... k.

Remark 8.2. Intuitively, an upcrossing of [a, b] occurs when the process falls below the level
a and subsequently rises above the level b. The count U, (a,b) measures how many such full
oscillations between a and b occur up to time n.

The fundamental result that bounds the expected number of upcrossings of a submartin-
gale is the following lemma due to Doob [Doo48].

8.2. Doob’s Upcrossing Lemma.

Theorem 8.3 (Doob’s Upcrossing Lemma). Let (X,,)n>0 be a real-valued submartingale
adapted to a filtration (F,), and let a < b. Let U,(a,b) denote the number of completed
upcrossings of [a,b] by time n. Then:

(b—a)E[Un(a,b)] < E[(X, —a)"],

where (x)* = max(z,0).
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Proof. Define the process Z,, = (X,, — a)*. By Example 6.2, (Z,,) is also a submartingale,
since the positive part of a submartingale remains a submartingale.

Let 79,1 denote the time of the k-th entry below a, and let 75, be the next time the
process reaches or exceeds b. We define the indicator variable I; to capture whether time ¢
falls within an upcrossing interval:

I 1 if 71 <1 < 79 for some k,
" 10 otherwise.
That is, I; = 1 precisely when the process is between entering below a and exiting at or
above b, making an upcrossing of the interval [a, b].
Note that during each upcrossing, the process must increase from at most a to at least b,

so the corresponding increase in Z,, = (X,, — a)% is at least b — a. Hence, the total increase
in Z, over all completed upcrossings by time n satisfies:

n

(b—a)-Un(a,b) <> (Z; — Zia)I;,

i=1
Taking expectations:
i=1

Now, observe that each I; is F,;_i;-measurable, and we can apply the tower property of
conditional expectation:

E[(Zi = Zi )| = E L - E[Z; — Zi 1 | Fid]]
=E[; - (E[Z; | Fina] = Zi-1)].-

Since (Z,) is a submartingale, E[Z; | F;_1] > Z;_1, so the inner difference is nonnegative.
Also, I; € [0, 1], so dropping [; can only increase the expectation:

E[(Zi — Zi1) L] < E[E[Z; | Fioi] — Zia] = E[Z)] — E[Zi].

Summing over ¢ = 1 to n, we obtain a telescoping sum:
> E[(Z — Zi-) L] < E[Z,) — E[Z).
i=1

Since Zy = (Xo — a)™ > 0, this implies:
(b — a) E[Un(a,b)] < E[Z,] — E[Z] < E[(X, —a)"].
This completes the proof. O

8.3. Convergence from Finite Upcrossings. We now connect upcrossings to almost sure
convergence.

Theorem 8.4 (Upcrossing Criterion for Convergence). Let (X, ),>0 be a real-valued sub-
martingale adapted to a filtration (F,). Suppose that for every rational pair a < b,

P(U(a,b) < o0) =1,
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where Ula,b) is the total number of upcrossings of [a,b]. Then the sequence (X,,) converges
almost surely to a finite random variable:

P ( lim X, exists and is ﬁm’te) =1.

n—0o0
Proof. Suppose the limit lim,,_,,, X,, does not exist on a set of positive probability. Then
there exists w € 2 such that:

lim inf X, (w) < limsup X, (w).
n—oo

n—o0

As the rational numbers are dense over R, we can choose rationals a < b such that:

liminf X, (w) < a < b < limsup X, (w).
Then the trajectory X, (w) must cross from below a to above b infinitely often, implying
U(a,b)(w) = oo, contradicting the assumption that P(U(a,b) < oco) = 1. Hence, with
probability one, (X,,) converges to a finite limit X. Since submartingales are integrable
and X, — X a.s., we conclude that X, < oo almost surely. [

9. MARTINGALE CONVERGENCE THEOREM

The Martingale Convergence Theorem is a cornerstone result in probability theory. It
guarantees that martingales and submartingales with uniformly bounded expectations con-
verge almost surely and in L' [Doo48, Durl9, Wil91]. This theorem is a culmination of the
previous results involving upcrossings and measure-theoretic convergence theorems.

Theorem 9.1 (Martingale Convergence Theorem). Let (X,,),>0 be a real-valued submartin-
gale adapted to a filtration (F,,), and suppose
supE[| X,|] = M < .

Then:
(1) (X,,) converges almost surely to a finite random variable X,
(2) Xoo € LY, ice., E[|X|] < 0.

Proof. Fix a < b and define U, (a, b) as the number of completed upcrossings of [a, b] by time
n. By Doob’s Upcrossing Lemma 8.3:

(b—a)-E[Ua(a,b)] < E[(X, —a)"].
Note that (X, —a)™ < |X,| + |al, so:
E[|X,[] + |al M+ \a]‘

E[Un (a,b)] < 55— < =

Taking n — oo, we conclude:
M + |a|
OO?
b—a
so U(a,b) < oo almost surely. Since this holds for all rational a < b, Theorem 8.4 implies

that (X,,) converges almost surely to some finite limit X,.
To show X, € L', apply Fatou’s Lemma 7.2:

E[|X.|] =E [nmmf an|] < liminf E[|X,.[] < M.
n—oo n—oo

E[U(a,b)] = lim E[U, (a,b)] <

Thus, X, is integrable. O
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Remark 9.2. The L'-boundedness condition is essential and cannot be dropped. For instance,
let S, = > ,_, Yy be a symmetric random walk where Y}, € {—1,1} are i.i.d. with mean
zero. Then (S,) is a martingale, but E[|S,|] ~ y/n — oo. The process does not converge
almost surely, demonstrating that boundedness in expectation is a necessary condition for
convergence.

Ezample (Convergence of a Bounded Martingale). Let (X,,) be a simple symmetric random
walk on Z starting at 0, and let 7 be the hitting time of either —5 or +5. Define the stopped
process Y,, = X,n,. Then (Y,,) is a martingale bounded between —5 and 5, so

sup E[|Y,|]] < 5.

By the Martingale Convergence Theorem, Y, — Y., a.s. and in L'. Indeed, Y, converges
almost surely to the value Y,, = 5 depending on whether the walk hits +5 or —5 first.

We now present a useful corollary, which simplifies the conditions when the martingale is
either bounded or non-negative.

Corollary 9.3 (Convergence of Bounded or Non-negative Martingales). Let (X,,)n>0 be a
real-valued martingale adapted to a filtration (F,). Suppose either:

o X, >C foralln, or

o X, <C foralln,

for some constant C € R. Then there exists a finite random variable X, such that:

X

=5 Xoo.
Proof. First, consider the case when X,, > 0 for all n. Then, the expectations E[X,] are
constant:

E[|X,|] = E[X,] = E[X,], for all n,

so (X,) is uniformly bounded in L!. Hence, by the Martingale Convergence Theorem 9.1,
X, — X, almost surely for some finite X..

Now suppose X,, > C for some C' € R. Define the shifted process Y,, = X,, — C, which
satisfies Y,, > 0. Since (X,,) is a martingale, so is (Y,,), and by the same argument, Y,, — Y,
a.s. for some finite Y,,. Hence,

X, =Y, +C—->Y +C=X, as.

Similarly, if X,, < C, define Z,, = C' — X,, > 0, so that (Z,) is a non-negative martingale.
Then Z,, —» Z, a.s., and

X, =0—-272,—-C—-Z,=X, as.
as desired. O

Remark 9.4. This corollary is frequently used in applications, where martingales arise with
natural lower or upper bounds—for example, likelihood ratios in hypothesis testing or capital
in gambling systems.

Ezample (Martingale with Non-negative Increments: Gambling Game). Let a gambler’s
wealth process be modeled by a martingale (X,,), where the player starts with $1 and re-
peatedly bets all their wealth on a fair coin flip. If they win, they double their money; if
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they lose, they go bankrupt. The wealth process can be described as:

2X,, with probability 1/2,
Xn+1 -

0 with probability 1/2,

This process is not bounded in L!, since:
E[X,] =1 for all n,

but
E[X,|]=1 and supE[|X,[] = 1.

So it satisfies the Martingale Convergence Theorem. In fact, X,, = X, = 0 almost surely,
since the probability of bankruptcy tends to 1 as n — oo.

Ezxample. Let (Z,)n>0 be a Galton-Watson branching process with Zy, = 1, and let m =
E[X] be the expected number of offspring for a single individual, where X is the offspring
distribution. Assume m < oco. Define the normalized process

Zn,
M, = —.
mn
Then, (M,)n>0 is a non-negative martingale with respect to the natural filtration (F,,). By
the Martingale Convergence Theorem, since M,, > 0 and E[M,,] = 1, we have:

M, £ M., asn — oo,
for some random variable M.,. Moreover, M, is Fy-measurable and satisfies E[M ] < 1.

Ezample (Failure Without L'-Boundedness). Define X,, = n - 1{7<,}, where T is a random
variable with tail:

1
P(T'>n)= ————.
( n) log(n + 2)

Then (X,,) is adapted and increasing, hence a submartingale. However,

1
EX,)=n-P(T<n)=n{l——— | = o0,

log(n + 2)
so sup,, E[|X,|] = oo, and the Martingale Convergence Theorem does not apply. In fact,

X, — 0o almost surely, and does not converge.

10. EXTENSIONS AND APPLICATIONS

10.1. Doob’s LP Convergence Theorem. The martingale convergence theorem guaran-
tees almost sure and L! convergence under boundedness in expectation. Doob’s LP version
strengthens this by requiring boundedness in higher moments, and concludes convergence in
the stronger LP-norm [Doo53, Durl9].

Theorem 10.1 (Doob’s L? Convergence Theorem). Let (X,,),>0 be a real-valued submartin-
gale (or martingale) adapted to a filtration (F,,). Suppose 1 < p < oo and

sup E[| X,,|P] < oc.

Then:

(1) X,, = X almost surely,
(2) Xn — Xoo in Lp’ i'e'; ||Xn - XOOHP - 0’
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(3) The limit satisfies E[| X |?] < 0.

Remark 10.2. This result strengthens the Martingale Convergence Theorem by providing
convergence in LP, not just in probability or almost surely. It is particularly useful when
working with square-integrable martingales and appears frequently in stochastic calculus.

Ezxample. Let (Bt)i>o be standard Brownian motion and fix A € R. Define the exponential
martingale

)2
Mt = exp (ABt — ?t> .
Then (M;)¢>o is a positive martingale. For any p > 1, we can compute:
i Nt At — 1A%
]E[Mtp]:E{eXp (p)\Bt—th)} = exp (p2 _p2 ) — exp (%)7

which is finite only if ¢ is sufficiently small. However, for small time horizons ¢, M, is bounded
in LP, so:

LP
M, — M, ast— oo.

10.2. Continuous-Time Extension. The Martingale Convergence Theorem extends nat-
urally to continuous-time processes, provided we work in an appropriate framework [KS98].
Let (€2, (Ft)i>0,P) be a filtered probability space satisfying the usual conditions (i.e., the
filtration is right-continuous and complete).

Definition 10.3 (Continuous-Time Martingale). A stochastic process (X;);>o is a continuous-
time martingale with respect to the filtration (F;) if:

(1) X; is Fi-measurable for each ¢ > 0 (i.e., the process is adapted),
(2) E[|X¢|]] < oo forall £ >0,
(3) For all 0 < s <t, we have

E[X; | Fs] = Xs almost surely.
If the inequality E[X; | Fs] > X, holds instead, the process is a submartingale; if the

inequality is reversed, it is a supermartingale.

Theorem 10.4 (Continuous-Time Martingale Convergence). Let (X;)i>0 be a real-valued,
right-continuous submartingale adapted to (F;), and suppose:

sup E[| X;|] < oc.
>0
Then there exists an integrable random variable X, such that:
Xy — X almost surely as t — oo.

Moreover, if (X;) is a uniformly integrable martingale, then convergence also holds in L.

Ezample (Brownian Motion Stopped at an Integrable Time). Let (B;):>o be standard Brow-
nian motion. For any stopping time 7 with E[7] < oo, the stopped process (Bias)i>0 is a
uniformly integrable martingale. By the Martingale Convergence Theorem in continuous
time, we have:

Binr — B, almost surely and in L' ast — 0.

This convergence underpins many classical results in stochastic calculus, including the op-
tional stopping theorem and properties of predictable processes.
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10.3. Application: Martingales in Mathematical Finance. Martingales lie at the
heart of modern financial mathematics. Under a risk-neutral measure, the prices of trad-
able assets—when properly discounted—evolve as martingales. This fundamental principle
ensures that the market is free of arbitrage opportunities and allows for the fair pricing of
financial derivatives [EKO05].

Ezample (Pricing a European Call Option via Martingale Representation). Let (2, F, (Ft)i>0, Q)
be a filtered probability space satisfying the usual conditions, where Q denotes the risk-
neutral probability measure. Let (S):>o be the price process of a stock, modeled by the
stochastic differential equation:

dSt = TSt dt + O'St th,

under the measure Q, where:

e 1 is the constant risk-free interest rate,
e o0 > 0 is the volatility of the stock,
e IV, is a Brownian motion under Q.

This model is known as the Black-Scholes model. Now let B; = €™ represent the value
of a risk-free bond (bank account), which grows deterministically at rate r. We define the
discounted stock price by:

Applying Ité’s lemma, we can show that the drift term in S; vanishes, and thus (S;);>¢ is
a Q-martingale. This reflects the key financial insight: under the risk-neutral measure, the
expected future discounted price of an asset is its current price.

Now consider a European call option with strike price K > 0 and maturity 7" > 0. Its
payoff at maturity is given by:

H = max(Sr — K,0),

which is the amount the option holder gains if the stock price exceeds the strike price at
time 7', and zero otherwise.

By the fundamental theorem of asset pricing, the arbitrage-free price of this option at
an earlier time t < T is the expected discounted payoff under @Q, conditional on current
information F;:

H

V, = EQ {_

By

This defines a stochastic process (V;):cjo,rj, which represents the option’s price through

time. Since conditional expectation of a square-integrable (or integrable) random variable

defines a martingale, the process (V}) is itself a Q-martingale.

The Martingale Convergence Theorem now tells us that because (V;) is a non-negative

L'-bounded martingale, it must converge almost surely and in L'(Q) to:
H

t—T BT )

7.

That is, the price process (V;) evolves in a way that ensures it converges to the actual
payoff (appropriately discounted) at maturity. This formalizes the idea that the option price
“tracks” the future payoff as more information is revealed over time.
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From a financial perspective, this convergence ensures that as we approach maturity, the
option’s value increasingly reflects the known final outcome. If the stock ends above the
strike, the option’s value approaches the in-the-money amount; otherwise, it converges to
zero. This behavior is not just expected — it is guaranteed by the Martingale Convergence
Theorem under the no-arbitrage pricing framework.

10.4. Application: Martingale Proof of the Strong Law of Large Numbers. The
Martingale Convergence Theorem can be used to give an elegant proof of the Strong Law
of Large Numbers (SLLN) under mild moment conditions, illustrating its strength beyond
direct modeling applications [Durl9].

Theorem 10.5 (Strong Law via Martingales). Let (X,,)n,>1 be a sequence of i.i.d. random
variables with E[X] = p and Var(X;) < co. Then

Proof. We define a new process by first centering the variables:
Yi = Xp — p,
so that E[Yy] = 0. Define the filtration F,, = o(Xy,...,X,,) and the sequence:

M, = z”: Ys.
k=1

This is a martingale with respect to (F,), since:
E[Mn-H | Fn] = M, +]E'[Yn-i-l | }—n] = M,.

We now normalize:
M, 1< 1 &
k=1 k=1

To prove A,, — 0 almost surely (which implies the SLLN), we can apply the Martingale
Convergence Theorem 9.1 directly. Define the stopped martingale:
M7§,T) = Mmin(n,T)7

where T is a fixed index. Since M,, has bounded second moment, the MCT guarantees that:

a.s. Mn a.s.
M, — M, and — —0.
n

Thus,

I~ as.

- Z Xk: — My

n

k=1

as desired. 0

Remark 10.6. This martingale-based proof highlights how viewing partial sums of zero-
mean i.i.d. variables as martingales allows the elegant use of convergence theorems. While
traditional proofs invoke Kolmogorov’s Three Series Theorem or Chebyshev’s Inequality with
the Borel-Cantelli Lemma, the martingale route provides a unifying probabilistic perspective.



The Martingale Convergence Theorem 21

11. CONCLUSION

The Martingale Convergence Theorem stands as a cornerstone of modern probability the-
ory, revealing the deep regularity underlying fair or unfavorable stochastic processes under
minimal boundedness assumptions. In this paper, we have:

Developed the measure-theoretic framework for probability, including filtrations, con-
ditional expectations, and integrability,

Introduced martingales, submartingales, and supermartingales through intuitive ex-
amples such as random walks and conditional projections,

Proved key analytic tools, including Jensen’s inequality, Fatou’s Lemma, and the
Monotone Convergence Theorem,

e Established control over pathwise oscillations via Doob’s Upcrossing Lemma,

[Ax122]
[Bil95)]
[Doo48]

[Doo53]
[Durl19]
[EKO5]

[Klel3]
[Kol56]

[KS98]

[RF10]
[Wil91]

Derived the Martingale Convergence Theorem and its corollaries for bounded and
non-negative martingales,
Explored extensions to continuous time and convergence in L”, as well as applications
to financial mathematics.
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