Permutohedra and Associahedra Irmak Zelal Cengiz iramk.zelal.cengiz2@gmail.com Euler Circle July 2025 # Permutohedra **Permutohedra** are special types of polytopes that geometrically represent permutations. Given the vector (1, 2, ..., n) in \mathbb{R}^n , the **permutohedron** \mathcal{P}_n is the convex hull of all vectors obtained by permuting its coordinates. #### Definition 1.1 $$\mathcal{P}_n := \operatorname{conv}\{(\sigma(1), \sigma(2), \dots, \sigma(n)) \mid \sigma \in S_n\}$$ where S_n is the symmetric group on n elements. The vertices of the permutohedron \mathcal{P}_n are all permutations of the vector $(1, 2, \ldots, n)$. Since permutations preserve the sum of entries, every vertex lies on the same hyperplane. #### Theorem 1.2 The permutohedron \mathcal{P}_n is an (n-1)-dimensional polytope contained in the hyperplane $$H := \left\{ x \in \mathbb{R}^n \,\middle|\, x_1 + x_2 + \dots + x_n = \frac{n(n+1)}{2} \right\}.$$ #### Proof. Every vertex of \mathcal{P}_n is a permutation of (1, 2, ..., n). The sum of the coordinates is always $$1+2+\cdots+n=\frac{n(n+1)}{2}.$$ So all vertices lie on the hyperplane H. Since H is a single linear constraint in \mathbb{R}^n , it reduces the dimension by 1. Therefore, \mathcal{P}_n lies entirely in an (n-1)-dimensional space. # \mathcal{P}_2 and \mathcal{P}_3 Figure 1: P_2 - \mathcal{P}_2 : 1D segment - \mathcal{P}_3 : hexagon Figure 2: 2D projection of P_3 # \mathcal{P}_4 : Truncated Octahedron - 24 vertices, 36 edges - 14 faces: squares and hexagons - Lies in \mathbb{R}^4 but is 3D # Volume of the Permutohedron #### Theorem 1.3 The volume of \mathcal{P}_n (normalized so that the smallest simplex has volume 1) is $$Vol(\mathcal{P}_n) = (n-1)! \cdot number \ of \ trees \ on \ n \ vertices = (n-1)! \cdot n^{n-2}.$$ - This result connects \mathcal{P}_n to **Cayley's formula**, which states that the number of labeled trees on n vertices is n^{n-2} . - The geometry of the permutohedron encodes rich combinatorial structures, including trees and networks. #### **High-dimensional Permutohedra:** For n > 4, the permutohedron \mathcal{P}_n exists in (n-1)-dimensional space, making it difficult to visualize directly. ### Why \mathcal{P}_n Matters: - \mathcal{P}_n lives in 3D space (a hyperplane in \mathbb{R}^4), making it the highest-dimensional permutohedron that can be meaningfully visualized. - It serves as a crucial example to understand the geometry and combinatorics of permutohedra. # What is a Lattice? - A **lattice** is a partially ordered set where every pair of elements has: - a **least upper bound** (called the **join** ∨) - a greatest lower bound (called the meet ∧) - Lattices appear in algebra, geometry, and combinatorics, especially when studying polytopes like permutohedra. A simple lattice: $a \wedge b = 0$, $a \vee b = 1$ # Face Lattice of \mathcal{P}_4 and the Weak Bruhat Order ### Hierarchical Structure of \mathcal{P}_4 : - The faces of \mathcal{P}_n (vertices, edges, 2D faces, etc.) are organized into a face lattice. - This lattice reflects how lower-dimensional faces are nested within higher-dimensional ones. #### Connection to Weak Bruhat Order: - The face lattice of P_4 corresponds to the **weak Bruhat order** on the symmetric group S_4 . - In this order, one permutation is "less than" another if it can be reached by a sequence of *adjacent transpositions*. - A covering relation represents a single adjacent swap: $(1234) \prec (2134)$ # Weak Bruhat Order on S₃ - The weak Bruhat order is a partial order on permutations where: - A permutation covers another if it is obtained by an adjacent transposition. - Below is the Hasse diagram of the weak Bruhat order on S_3 : # Why is the Bruhat Order Important? ### Sorting Networks: The shortest paths represent optimal sorting strategies, minimizing steps. ### Real-life Applications: - Parallel computing: Sorting networks optimize data flow across processors. - Data analysis - Economics and decision theory: Models of preference rankings use Bruhat-like orders. # Why is the Bruhat Order Important? ### Significance in Algebraic Combinatorics: - The edges of P_4 represent covering relations. - Therefore, P_4 is a geometric realization of the weak Bruhat poset on S_4 . - This allows algebraic and order-theoretic properties to be studied via geometry. # Associahedra # What is an Associahedron? The **associahedron** (*Stasheff polytope*) is a convex polytope whose: - **Vertices** correspond to all distinct full parenthesizations of a product of n + 2 elements using binary operations, - Edges connect parenthesizations that differ by a single associativity move (e.g., $(ab)c \leftrightarrow a(bc)$), - Faces of higher dimension correspond to partial associativity relations. # What is an Associahedron? ### Formal Properties Let K_n denote the associahedron of dimension n-2. Then: - $\dim(K_n) = n$, - It corresponds to parenthesizing n elements, - It has $C_{n-1} = \frac{1}{n} \binom{2n-2}{n-1}$ vertices (the $(n-1)^{\text{th}}$ Catalan number). ### **Applications** ### Appears in: - Homotopy theory and loop spaces, - Category theory (coherence laws), - Algebraic and combinatorial structures (operads, triangulations), - Syntax trees and expression evaluation in computer science. ## Permutohedra to Associahedra Associahedra can be obtained from the permutohedra through certain geometric operations such as: - Taking specific subdivisions of the permutohedron, - Projecting the permutohedron along certain directions, - Or truncating the permutohedron in a way that retains only part of its face structure. ### Permutohedra to Associahedra #### Permutohedron \mathcal{P}_3 ### Associahedron \mathcal{K}_4 Figure 5: A projection from the permutohedron \mathcal{P}_3 to the associahedron \mathcal{K}_4 . # Why Permutohedra and Associahedra - Investigating their properties and relationships reveals deep insights into: - Symmetry and ordering (permutohedra) - Associativity and parenthesization patterns - Linking abstract mathematics with practical problems across science and engineering. - Their interplay helps us understand complex structures such as: - Sorting algorithms and optimization - Higher-dimensional category theory and homotopy - Network theory and data structures - Computational biology - Robotics and motion planning Thank you for listening!