Permutohedra and Associahedra

Irmak Zelal Cengiz
iramk.zelal.cengiz2@gmail.com

Euler Circle

July 2025

Permutohedra

Permutohedra are special types of polytopes that geometrically represent permutations.

Given the vector (1, 2, ..., n) in \mathbb{R}^n , the **permutohedron** \mathcal{P}_n is the convex hull of all vectors obtained by permuting its coordinates.

Definition 1.1

$$\mathcal{P}_n := \operatorname{conv}\{(\sigma(1), \sigma(2), \dots, \sigma(n)) \mid \sigma \in S_n\}$$

where S_n is the symmetric group on n elements.

The vertices of the permutohedron \mathcal{P}_n are all permutations of the vector $(1, 2, \ldots, n)$. Since permutations preserve the sum of entries, every vertex lies on the same hyperplane.

Theorem 1.2

The permutohedron \mathcal{P}_n is an (n-1)-dimensional polytope contained in the hyperplane

$$H := \left\{ x \in \mathbb{R}^n \,\middle|\, x_1 + x_2 + \dots + x_n = \frac{n(n+1)}{2} \right\}.$$

Proof.

Every vertex of \mathcal{P}_n is a permutation of (1, 2, ..., n). The sum of the coordinates is always

$$1+2+\cdots+n=\frac{n(n+1)}{2}.$$

So all vertices lie on the hyperplane H. Since H is a single linear constraint in \mathbb{R}^n , it reduces the dimension by 1. Therefore, \mathcal{P}_n lies entirely in an (n-1)-dimensional space.

\mathcal{P}_2 and \mathcal{P}_3

Figure 1: P_2

- \mathcal{P}_2 : 1D segment
- \mathcal{P}_3 : hexagon

Figure 2: 2D projection of P_3

\mathcal{P}_4 : Truncated Octahedron

- 24 vertices, 36 edges
- 14 faces: squares and hexagons
- Lies in \mathbb{R}^4 but is 3D

Volume of the Permutohedron

Theorem 1.3

The volume of \mathcal{P}_n (normalized so that the smallest simplex has volume 1) is

$$Vol(\mathcal{P}_n) = (n-1)! \cdot number \ of \ trees \ on \ n \ vertices = (n-1)! \cdot n^{n-2}.$$

- This result connects \mathcal{P}_n to **Cayley's formula**, which states that the number of labeled trees on n vertices is n^{n-2} .
- The geometry of the permutohedron encodes rich combinatorial structures, including trees and networks.

High-dimensional Permutohedra:

For n > 4, the permutohedron \mathcal{P}_n exists in (n-1)-dimensional space, making it difficult to visualize directly.

Why \mathcal{P}_n Matters:

- \mathcal{P}_n lives in 3D space (a hyperplane in \mathbb{R}^4), making it the highest-dimensional permutohedron that can be meaningfully visualized.
- It serves as a crucial example to understand the geometry and combinatorics of permutohedra.

What is a Lattice?

- A **lattice** is a partially ordered set where every pair of elements has:
 - a **least upper bound** (called the **join** ∨)
 - a greatest lower bound (called the meet ∧)
- Lattices appear in algebra, geometry, and combinatorics, especially when studying polytopes like permutohedra.

A simple lattice: $a \wedge b = 0$, $a \vee b = 1$

Face Lattice of \mathcal{P}_4 and the Weak Bruhat Order

Hierarchical Structure of \mathcal{P}_4 :

- The faces of \mathcal{P}_n (vertices, edges, 2D faces, etc.) are organized into a face lattice.
- This lattice reflects how lower-dimensional faces are nested within higher-dimensional ones.

Connection to Weak Bruhat Order:

- The face lattice of P_4 corresponds to the **weak Bruhat order** on the symmetric group S_4 .
- In this order, one permutation is "less than" another if it can be reached by a sequence of *adjacent transpositions*.
- A covering relation represents a single adjacent swap:

 $(1234) \prec (2134)$

Weak Bruhat Order on S₃

- The weak Bruhat order is a partial order on permutations where:
 - A permutation covers another if it is obtained by an adjacent transposition.
- Below is the Hasse diagram of the weak Bruhat order on S_3 :

Why is the Bruhat Order Important?

Sorting Networks:

 The shortest paths represent optimal sorting strategies, minimizing steps.

Real-life Applications:

- Parallel computing: Sorting networks optimize data flow across processors.
- Data analysis
- Economics and decision theory: Models of preference rankings use Bruhat-like orders.

Why is the Bruhat Order Important?

Significance in Algebraic Combinatorics:

- The edges of P_4 represent covering relations.
- Therefore, P_4 is a geometric realization of the weak Bruhat poset on S_4 .
- This allows algebraic and order-theoretic properties to be studied via geometry.

Associahedra

What is an Associahedron?

The **associahedron** (*Stasheff polytope*) is a convex polytope whose:

- **Vertices** correspond to all distinct full parenthesizations of a product of n + 2 elements using binary operations,
- Edges connect parenthesizations that differ by a single associativity move (e.g., $(ab)c \leftrightarrow a(bc)$),
- Faces of higher dimension correspond to partial associativity relations.

What is an Associahedron?

Formal Properties

Let K_n denote the associahedron of dimension n-2. Then:

- $\dim(K_n) = n$,
- It corresponds to parenthesizing n elements,
- It has $C_{n-1} = \frac{1}{n} \binom{2n-2}{n-1}$ vertices (the $(n-1)^{\text{th}}$ Catalan number).

Applications

Appears in:

- Homotopy theory and loop spaces,
- Category theory (coherence laws),
- Algebraic and combinatorial structures (operads, triangulations),
- Syntax trees and expression evaluation in computer science.

Permutohedra to Associahedra

Associahedra can be obtained from the permutohedra through certain geometric operations such as:

- Taking specific subdivisions of the permutohedron,
- Projecting the permutohedron along certain directions,
- Or truncating the permutohedron in a way that retains only part of its face structure.

Permutohedra to Associahedra

Permutohedron \mathcal{P}_3

Associahedron \mathcal{K}_4

Figure 5: A projection from the permutohedron \mathcal{P}_3 to the associahedron \mathcal{K}_4 .

Why Permutohedra and Associahedra

- Investigating their properties and relationships reveals deep insights into:
 - Symmetry and ordering (permutohedra)
 - Associativity and parenthesization patterns
 - Linking abstract mathematics with practical problems across science and engineering.
- Their interplay helps us understand complex structures such as:
 - Sorting algorithms and optimization
 - Higher-dimensional category theory and homotopy
 - Network theory and data structures
 - Computational biology
 - Robotics and motion planning

Thank you for listening!