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Introduction

“Permutohedra” and “Associahedra” are two special types of polytopes. The most excit-
ing aspect of these geometrical objects is their ability to visualize mathematical operations
involving permutations and combinations, one of the most fundamental concepts in mathe-
matics. Moreover, both structures possess rich geometric and algebraic properties and are
found in surprising areas of mathematics and science.

A permutohedron is an n-dimensional polytope whose vertices represent each permutation
of a group of the first n positive integers and whose edges represent the shortest way to reach
from one vertex to another, through swapping places of two elements in the permutation. It
is deeply connected to the symmetric group and the concept of orderings, such as weak and
partial orders on permutations.

On the other hand, the associahedron is a polytope whose vertices correspond to ways
to fully parenthesize a group of n symbols. For instance, for four symbols, there are five
valid ways to insert parentheses, and the corresponding associahedron is a pentagon. The
structures also relate to binary trees, Tamari lattice, and Dyck paths. The number of vertices
of the associahedron is calculated by the Catalan numbers.

While permutohedra present a neat and symmetrical appearance, associahedra seem
relatively disorganized. However, the connection between these two types of polytopes is
closer than expected. This paper explores the definitions, structural properties, and real-
world applications of these two families of polytopes. While some advanced topics exist,
this paper focuses on the fundamentals, aiming to build a general understanding of the
subject and show how science benefits from the further applications of these combinatorial
structures.
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Preliminaries

Definition 0.1 (Hyperplane). A hyperplane is an n — 1 dimensional geometrical shape
described in an n dimensional space. For example, the convex hull of the points {(4,0,0),
(4,4,0), (4,0,4),(0,4,4)} forms a rectangular two-dimensional shape, a hyperplane.

Definition 0.2 (Convex hull). Assuming we have a set of finite points in space, a convex
hull is the smallest geometrical shape that contains all of these points within itself with flat
faces and straight edges.

Definition 0.3 (Polytope). If py,ps, - -+ , p, are points in R", a polytope is the convex hull
of these points, where

An n dimensional polytope is referred to as an “n-polytope.”

Definition 0.4 (Symmetric group). A Symmetric group consisting of n elements is shown
with S,, notation. .S,, is the group of all possible permutations of n elements.

Definition 0.5 (Poset). A partial order defines a way to arrange elements within a set
so that certain pairs have a defined order—one element that is considered to come before
another. The term partial highlights that this ordering does not necessarily apply to every
pair of elements. A partial order is a binary relation on a set that satisfies three properties: it
is reflezive (every element relates to itself), antisymmetric (no two distinct elements precede
each other mutually), and transitive (the order is consistent across chained comparisons). A
partially ordered set, or poset, is then defined as a pair

P =(X, <),

where X is the underlying set (often called the ground set) and < is a partial order relation
on X. In many cases, when the partial order is understood from context, the set X alone
may be referred to as a poset.



Definition 0.6 (Hasse diagram). A Hasse diagram is a graphical representation of a finite
poset (P,<). Each element of P is represented as a vertex, and edges are drawn between
elements to indicate the covering relations in the poset. Specifically, there is an edge from
x to y if and only if x < y and there exists no z € P such that z < z < y; in this case, we
say that y covers x, and write x < y. The diagram is drawn so that if z <y, then y is placed
higher than = on the page, and no arrowheads are used, as the vertical positioning conveys
the direction of the order. Transitive and reflexive relations are omitted for clarity, making
the diagram a minimal visualization of the ordering structure.

Example 0.1. Consider the poset ({1,2,4,8},|), where | denotes divisibility. The Hasse
diagram represents the covering relations between these elements.

Definition 0.7 (Lattice). A lattice is a partially ordered set (L, <) in which every pair of
elements a,b € L has both a least upper bound (called the join and denoted by a V b) and a
greatest lower bound (called the meet and denoted by a A b). Formally, for all a,b € L, the
elements

aVb=inf{r e L|a<zand b<z}

and
aNb=sup{z € L |z <aandz <b}

exist in L.

Definition 0.8 (Dyck Path). A Dyck path of length 2n is a lattice path in the Cartesian plane
from (0,0) to (2n,0) that consists of n up-steps U = (1,1) and n down-steps D = (1, —1),
and that never passes below the horizontal axis. That is, for every prefix of the path, the
number of up-steps is greater than or equal to the number of down-steps.

Equivalently, a Dyck path can be viewed as a balanced sequence of n opening and n
closing parentheses such that no initial segment of the sequence contains more closing than
opening parentheses.

0 >
0 2n

An example Dyck path of length 6: the step sequence is UUDU DD.



1 Permutohedra

Permutohedra are special types of polytopes that represent the concept of permutations
in a spatial form. Given a set of first n natural numbers, the permutohedron P, is the
convex hull of all points obtained by permuting the coordinates of the vector (1,2,...,n) in
R™. The symmetric group of this set defines all the vertices of this shape, and each vertex
corresponds to one of the permutations. Formally,

P, :=conv{(o(1),0(2),...,0(n)) | o € S, },

where S, is the symmetric group on n elements.

Y
(1,2) (1,3,2) (1,2,3)
(3,1,2) (2,1,3)
(2,1)
x
(3,2,1) (2,3,1)
Figure 1: P, Figure 2: 2D projection of Pj

As seen in Figure 1 and Figure 2, each vertex of the permutohedra represents one partic-
ular permutation of their set. Each permutohedron forms a hyperplane. This property of
permutohedra is explained in the following theorem.

Theorem 1.0 The permutohedron P, is an (n — 1)-dimensional polytope contained in
the hyperplane

H::{xER":x1+x2+---+xn:@}.

Proof. Since each vertex of P, is a permutation of (1,2,...,n), the sum of coordinates
is always
1
1—0—2—1—---—1—7”&:@.

Thus all points lie in H, and P, is contained in this hyperplane. Moreover, the dimension is
n — 1 because this hyperplane reduces the dimension by one. [

1.1 P,;: The Permutohedron of S,

The permutohedron P, is the convex polytope in R* defined as the convex hull of all permu-
tations of the vector (1,2,3,4). Explicitly, let

Py :=conv{(o(1),0(2),0(3),0(4)) e R* | o € Si},
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where S; denotes the symmetric group on four elements. Since |S,| = 24, the polytope P,
has 24 vertices. Each vertex lies in the affine hyperplane

4
> a= 10},

i=1

H:—{xeR‘*

and thus P; lies entirely within a 3-dimensional affine subspace of R*. Therefore, P; is a
3-dimensional polytope, see Figure 3.

Figure 3: Image of P, by [10]

The permutohedra of S,, with n > 4 are not properly visualizable since the resulting
geometric shapes exist in spaces of dimension > 4.Therefore, P, remains as an important
object to observe. Lets break-down the combinatorial structure of Pj:

e P, has 24 vertices, each representing a different permutation of the set {1,2,3,4}.

e Two vertices are connected by an edge if you can go from one permutation to the
other by swapping two adjacent elements. For example, (1 2 3 4) <» (2 1 3 4) involves
swapping the first two elements.

e There are 36 edges in total, each corresponding to one such adjacent swap between
two permutations.

e P, contains 14 two-dimensional faces, which are flat surfaces bounded by edges. These
faces come in two types:

— Square faces appear when two adjacent swaps involve non-overlapping positions.
For instance, swapping elements in positions 1 and 2, and separately in positions
3 and 4, can be done in either order with the same result. This symmetry forms
a square.

— Hexagonal faces appear when three swaps involve overlapping positions, such
as swapping in positions 2 and 3, then 3 and 4, then 2 and 3 again. These
sequences follow a pattern known as the braid relation, and the result is a cycle
of six permutations forming a hexagon.



e The entire structure forms a three-dimensional polytope, which we call the permuto-
hedron P,.Although embedded in R*, the geometric realization of P; as a 3-polytope
allows for visualization via projections. In such projections, the vertices can be layered
according to their number of inversions, i.e., the length of the permutation, making it
possible to observe the underlying weak order on Sj.

1.2 Face Lattice and Order Structure of , P,

The structure of the faces of the permutohedron P, can be organized into a hierarchy called
a face lattice. This lattice captures how faces of different dimensions (vertices, edges, 2D
faces, and so on) fit together.

Interestingly, this face lattice corresponds exactly to a particular ordering of permutations
known as the weak Bruhat order on the symmetric group Sy. In simpler terms, the weak
Bruhat order is a way to arrange all permutations of four elements in a sequence where one
permutation is considered ”less than” another if it can be obtained by performing a series
of adjacent swaps in a specific, minimal way.

Each step in this order, called a covering relation, corresponds precisely to swapping
two adjacent elements in a permutation — the same operation that defines the edges of
P,. Thus, the permutohedron P, provides a geometric shape that visually represents this
abstract ordering of permutations.

This connection between the geometric object P, and the weak Bruhat order is signifi-
cant in algebraic combinatorics because it allows us to study algebraic and order-theoretic
properties through the geometry of the permutohedron, linking combinatorial structures
with spatial intuition. The face lattice of P, is isomorphic to the weak Bruhat order on Sy,
where covering relations correspond to adjacent transpositions. This makes P, a geometric
realization of a well-studied poset in algebraic combinatorics.

1.3 Volume of Permutohedra

The volume of the permutohedron P, is an interesting geometric quantity that has been
studied in combinatorics and geometry. A well-known formula for the volume of the permu-
tohedron P,, normalized concerning the standard lattice in the hyperplane
n(n+1)
Tit e B = —
is given by
Vol(P,) = n"2.

This remarkable formula links the volume to the number of spanning trees on a complete
graph with n vertices, highlighting deep combinatorial connections. The fact that the volume
equals n"~? suggests that the permutohedron’s geometry encodes combinatorial structures
such as trees. This volume is computed in the (n — 1)-dimensional affine subspace containing
P,.



1.3.1 More Advanced Considerations

The permutohedron is an example of a generalized permutohedron, a class of polytopes whose
volumes and face structures encode rich combinatorial information. Volumes of generalized
permutohedra can often be expressed in terms of mixed volumes, Stanley’s volume polyno-
maials, or valuations related to matroids. Connections to tropical geometry and submodular
functions also arise in the study of these volumes. Computing volumes explicitly for certain
deformations or Minkowski sums of permutohedra remains an active area of research.

1.4 Permutohedron and Weak Orders

A partial order (poset) on a set X is a binary relation < that is reflexive, antisymmetric,
and transitive. The permutohedron can be related to posets via weak orders, which are
special types of partial orders that correspond to ways of arranging elements with possible
ties.

A weak order on a set X is a total preorder: it is transitive and total but allows
equivalences. Formally, for x,y € X, either x < y or y =< z holds, and x ~ y means x and y
are equivalent (tie). Weak orders can be viewed as equivalence classes of linear orders.

The faces of the permutohedron P, correspond bijectively to weak orders on [n| :=
{1,2,...,n}. The vertices correspond to total orders (i.e., permutations), and higher-
dimensional faces correspond to coarser weak orders. The left weak order and right
weak order are partial orders defined on the symmetric group .S, based on covering rela-
tions induced by simple transpositions.

o Left weak order: For 0,7 € §,, we say 0 <; 7 if 7 can be obtained from o by
multiplying by a sequence of simple transpositions s; on the left, increasing the length
(number of inversions). Equivalently, it orders permutations by inclusion of their in-
version sets considering left multiplication.

e Right weak order: Similarly, 0 <g 7 if 7 can be obtained from ¢ by multiplying on
the right by simple transpositions increasing length.

These orders make S,, into graded posets, with the rank given by the number of inversions
in the permutation. To illustrate, consider P3, the permutohedron for n = 3. Each vertex
corresponds to a permutation of (1,2, 3):

(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).
Edges correspond to adjacent transpositions, representing covering relations in the weak
orders.

This graph corresponds to the Hasse diagram of the weak order on S3. The poset structure
encodes the covering relations where one permutation can be transformed into another by
swapping adjacent elements. In higher dimensions, P, generalizes to an (n — 1)-dimensional
polytope, and the combinatorial structure of weak orders and posets becomes richer, encoding
subtle order relations between permutations.
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Figure 4: The left and right weak orders on S3 with s; in red and s, in blue, by [9].

1.5 Connection to the Associahedron

While it is not strictly true that deleting a vertex of the permutohedron directly yields an
associahedron, there is a deep and elegant connection between these two objects. Specif-
ically, the associahedron (also known as the Stasheff polytope) can be obtained from the
permutohedron through certain geometric operations such as:

e Taking specific subdivisions of the permutohedron,
e Projecting the permutohedron along certain directions,

e Or truncating the permutohedron in a way that retains only part of its face structure.

Permutohedron P; Associahedron K,
213 231 a(b(ed)) a((be)d)
Projection
123 321 (ab) (e (be))d
132 312 ((ab)e)d

Figure 5: A projection from the permutohedron P5 to the associahedron Ky.

Figure 5 illustrates a conceptual projection from the permutohedron Pj to the associahe-
dron K3. In this projection, certain permutations that correspond to the same associativity
structure are identified and merged. For example, permutations that maintain the relative



order of a, b, and ¢ but differ by adjacent swaps map to the same associativity class. The re-
sult is a collapse of the six permutation vertices into five associativity classes, demonstrating
how the associahedron can be seen as a simplified, structured ”shadow” of the permutohe-
dron. This projection captures the essence of associativity by ignoring symmetric reorderings
that do not change the bracketing structure.

A particularly striking connection appears in the work of Loday and others, who construct
the associahedron as a certain quotient or face of the permutohedron by collapsing together
permutations that correspond to the same parenthesization structure [8].

In this sense, the associahedron can be viewed as a combinatorially simpler shadow of
the permutohedron, encoding associativity relations (instead of adjacent transpositions) in
a lower-dimensional but still highly structured way.

This relationship plays a key role in areas like category theory, operads, and homotopy
theory, where both polytopes serve as models for associativity and symmetry.

2 Associahedra

The associahedron, also known as the Stasheff polytope, is a convex polytope whose vertices
correspond to the different ways of inserting parentheses in a product of n terms. It arises
naturally in algebraic topology, combinatorics, and category theory, particularly in the study
of As-spaces and homotopy associativity. Let K, denote the n — 2-dimensional associahe-
dron. Then, the vertices of K,, correspond to the n-fold parenthesizations of n symbols (i.e.,
all ways of fully parenthesizing n variables using binary operations); the edges correspond
to single applications of the associativity rule; and the face poset of K, is isomorphic to the
poset of partial bracketings under refinement.
The number of vertices of K, is given by the (n — 1)-th Catalan number:

c - 1 <2n)
n+1\n

Theorem 2.0 The n-dimensional associahedron K, can be realized as a convex polytope
in R"~2 whose face lattice is isomorphic to the poset of planar rooted trees with n + 2 leaves
ordered by edge contractions.

Proof 2.0 Consider the set of all rooted planar binary trees with n+ 2 leaves. Each such
tree corresponds to a fully parenthesized expression of n + 2 variables, since each internal
node represents a binary operation. The covering relations in the poset are given by local
associativity moves — i.e., replacing a subtree (a(bc)) with ((ab)c).

There exists an explicit construction of K, as a convex polytope in R"~2, due to Loday
and others, using Minkowski sums of simplices or tropical geometry. The resulting polytope
has faces corresponding to partially parenthesized products, and its face lattice matches the
refinement poset of binary trees under edge contractions. Since every such poset is known
to be graded and bounded with unique minimal and maximal elements, and the polytope
realization preserves these relations, the face lattice of K,, matches that of the desired poset.
Faces of K, correspond to partial parenthesizations, where some operations remain grouped,
and others are left flexible. The face lattice is the Tamari lattice, a partially ordered set
that organizes all parenthesizations by associativity rotations.




Computing the volume of associahedra is more complex than for permutohedra, as as-
sociahedra are not zonotopes. They can be realized as Minkowski sums of simplices or as
secondary polytopes associated to polygon triangulations.

Exact volume formulas are known only for small n, but the volume relates closely to
Catalan combinatorics and polygon dissections.

2.1 The Tamari Lattice and Associahedra

The Tamari lattice is a foundational structure in algebraic and combinatorial contexts that
captures the partial order on parenthesizations (or equivalently, binary trees) of a sequence
of elements. It plays a critical role in the combinatorial and geometric understanding of the
associahedron.Let us consider all full parenthesizations of a product of n elements. These can
be naturally represented by binary trees with n leaves and n — 1 internal nodes. The Tamari
lattice 7, is a partially ordered set (poset) whose elements are these parenthesizations (or
trees), with the order defined by a sequence of right rotations on binary trees. Equivalently,
a cover relation in the Tamari lattice corresponds to replacing a subexpression of the form
(A-(B-C)) with ((A- B) - C), moving parentheses to the left (called an associativity move
or rotation).

a(b(e(de)))

P )

al((be)(de)) /\rz((b(cd))e)
//
/ ]

—

a(((be)d)e) (ab)(c(de))

(a(be))(de) \
\ (ab)((ed)e)

a(b(ed)) ((ab)c)(de)

a((bc)g) \ / (a(b(ed)))e
] /

(ab)(ed) ]

(a((be)d))e ((ab)(ed))e
(a(be))d / Ta(be))d)e
5 (apepde |~

((ab)e)d (((ab)c)d)e

Figure 6: Tamari lattice by [9]

The 1-skeleton (the graph formed by the vertices and edges) of the associahedron encodes
the Tamari lattice: two vertices are connected by an edge if and only if they are related by
a single rotation, and the direction of the rotation gives the orientation in the Tamari poset.
More generally, the face poset of the associahedron is isomorphic to the poset of partial
bracketings or planar trees with fewer internal edges, ordered by refinement. The Hasse
diagram of this poset visually represents the Tamari lattice when restricted to its 1-skeleton
and oriented appropriately.
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Figure 7: Tamari lattice on Dyck paths by [9]

Consider the case n = 3, where we are parenthesizing three elements a, b, c. There are
two full binary trees or parenthesizations:

(@-b)-c and a-(b-c)

There is a single associativity move (rotation) that transforms one into the other. Hence,
the Tamari lattice 73 is a chain of length one, and the associahedron K3 is a 1-dimensional
edge reflecting this relation.

2.2 Dyck Paths and Tamari Intervals

There exists a well-known bijection between Dyck paths of length 2n and binary trees with
n+ 1 leaves. Under this correspondence, the Tamari order can be interpreted geometrically:
one Dyck path is below another in the Tamari lattice if it never goes above the other path
when both are plotted in the plane from left to right. These so-called Tamari intervals
correspond to intervals in the Tamari lattice and reveal deep structural properties. This
viewpoint is particularly useful in higher algebra and operad theory, where Dyck paths and
Tamari intervals form the basis for understanding cluster complexes, Stasheff polytopes, and
higher associativity.

The Tamari lattice provides a rich combinatorial structure that is deeply intertwined with
the geometry of the associahedron. Through binary trees, Dyck paths, and bracketings, it
serves as both a combinatorial and topological guide to the internal organization of asso-
ciativity spaces. Its order-theoretic and algebraic features make it indispensable in modern
applications spanning algebraic topology, category theory, and mathematical physics.

3 Real-life Applications

This section aims to explore how permutohedra and associahedra are used beyond pure
theory. While these polytopes are often studied in abstract algebra, combinatorics, and
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geometry, they also appear in a wide range of applied fields, including data analysis, computer
science, optimization, and mathematical physics. Here, by reviewing several research articles,
we will highlight concrete examples of how permutohedra and associahedra are used for real-
world mathematical applications.

e Projection Geometry and Angle Analysis [4]

This article focuses on how permutohedra behave under generic linear projections from
high-dimensional space into lower-dimensional subspaces. The authors prove that the
number of faces of each dimension in the image of a permutohedron remains invariant
under almost all such projections. This result is significant in the study of dimensional-
ity reduction, where high-dimensional geometric objects are simplified while retaining
structural information. In particular, this property makes permutohedra useful in con-
texts such as compressed sensing and data visualization, where geometric projections
play a central role.

In addition to projection properties, the article also examines the so-called “angle
sums” of permutohedra, which refer to the total measure of angles around the faces
of the polytope. The authors derive exact formulas and asymptotic estimates for
these sums, showing how they relate to the characteristic polynomial of the hyper-
plane arrangement associated with the permutohedron. These results provide tools
for quantifying the curvature and complexity of the polytope’s geometry, especially in
high dimensions.

By studying both the projection-invariant face counts and the geometric angle be-
havior, the paper highlights how permutohedra can model real-world systems where
both combinatorial ordering and spatial constraints are important. Applications in-
clude areas such as high-dimensional data analysis, optimization over ordered struc-
tures, and geometric probability, where understanding how a structure changes—or
doesn’t—under projection is critical.

e Enumeration of Max-Pooling Responses|3]

This work examines the combinatorial complexity of max-pooling layers—common
components in convolutional neural networks—by analyzing how they partition in-
put space into linear regions. The key observation is that the Newton polytope of a
max-pooling layer is a Minkowski sum of standard simplices, a structure that places
it within the class of generalized permutohedra. By characterizing these polytopes
in terms of acyclic directed graphs and walks in graphs, the authors derive exact
generating functions and closed formulas for the number of vertices and facets in
one-dimensional max-pooling scenarios, with explicit results for window size and stride.
They extend the enumeration of vertices to certain two-dimensional cases and identify
a recurrence relation for face numbers, corroborated by computational data. These re-
sults link the geometry of generalized permutohedra directly to the behavior of neural
network modules, providing precise counts of piecewise-linear regions—a useful mea-
sure for understanding expressivity and complexity in deep learning architectures.

e Color-Kinematics Duality [1]
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This paper investigates the algebraic and combinatorial structure of BCJ numerators
in tree-level scattering amplitudes, and connects them to permutohedra. The authors
show that the complete formula for each BCJ numerator can be understood as a sum
over all faces—of every dimension—of a permutohedron: for instance, the numerator
involving two scalars and n—2 gluons corresponds precisely to the faces of a (n—3)-
dimensional permutohedron. Each term in this sum is associated with a distinct bound-
ary of the polytope, and comes with its own gauge-invariant form and spurious-pole
structure. Moreover, they demonstrate that the Hopf-algebraic coproduct operation
naturally mirrors the decomposition of the permutohedron into its sub-faces, leading
to new recursion relations and factorization identities when the numerator is evaluated
on a facet. These observations are extended to pure Yang—Mills amplitudes and to
a heavy-mass effective field theory for two massive particles. By revealing that BCJ
numerators literally “live” on the combinatorial skeleton of permutohedra, the article
establishes a deep geometric foundation for color-kinematics duality and provides pow-
erful new tools—recursion, factorization, and Hopf-structure—that simplify amplitude
computations in both massless and heavy-particle contexts.

Stringy Canonical Forms [6]

This paper constructs a broad family of integrals—called “stringy canonical forms” —for
generalized permutohedra, which encompasses both associahedra and cyclohedra. The
authors show that any generalized permutohedron formed as a Minkowski sum of co-
ordinate simplices admits a “rigid” stringy integral. These integrals exhibit two key
features:

First, their configuration spaces are proven to be binary geometries: whenever one
coordinate variable tends to zero, all variables incompatible with that facet converge
to one. This property ensures that the integrals factorize cleanly along the faces of the
polytope, mirroring the combinatorial structure given by its Minkowski decomposition,
and generalizing known behavior for associahedra.

Second, the authors derive explicit formulas (and asymptotics) for these integrals,
including their “u-equations,” and show that, in the limit of vanishing deformation
parameter o/, the integrals factor into products over lower-dimensional permutohedra
or associahedra. In type-A and type-B cases (classical associahedra and cyclohedra),
these formulas reduce to the well-known cluster-string integrals; in the more general
setting, they extend this structure systematically. Through this construction, the paper
highlights a deep link between the combinatorial geometry of these polytopes and the
algebraic structure of string-like integrals, offering a unified framework that applies
across a spectrum of polytopal types.

Irreducibility of Generalized Permutohedra [5]

The structure of generalized permutohedra is analyzed by studying how these polytopes
can—or cannot—be expressed as Minkowski sums of simpler polytopes. They define
an element to be irreducible if it cannot be non-trivially decomposed via Minkowski
sums aside from trivial scaling or translation, and prove that every generalized permu-
tohedron has a unique decomposition into irreducible building blocks.
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The authors provide both upper and lower bounds on the number of these irreducible
cases: they explicitly enumerate small-dimensional instances (e.g., for n < 4), and
derive asymptotic estimates showing that their count grows doubly exponentially. In
parallel, they analyze an equivalent problem on balanced multisets. These results
enrich our understanding of the combinatorial geometry of generalized permutohedra,
showing that their complexity stems fundamentally from these atomic, indecomposable
elements. Such decomposition results are vital in applications where geometric objects
are built from simpler ones—such as optimization, matroid theory, and polyhedral
combinatorics—because they identify the essential “prime factors” underlying complex
structures.

Quivers and Knots [2]

This doctoral thesis investigates deep connections between knot theory, supersym-
metric gauge theories, and the combinatorial geometry of permutohedra through the
framework known as the knots-quivers correspondence. The correspondence associates
to each knot a quiver—a directed graph encoding interactions—and relates knot in-
variants to algebraic and geometric properties of the quiver. Central to this approach
is the appearance of permutohedral graphs, which reflect the combinatorial structure of
the symmetric group and serve as geometric tools to analyze the symmetry properties
of knots and gauge theories.

A key contribution of the thesis is the introduction and detailed study of quiver A-
polynomials, an extension of the classical A-polynomial invariant from knot theory
to the setting of quivers. These polynomials capture essential data about the moduli
spaces of representations of the quivers, and their structure is intimately linked to
permutohedral combinatorics. The work demonstrates that permutohedra arise nat-
urally as polytopal objects encoding the symmetries and factorization properties of
these A-polynomials.

Furthermore, the thesis explores the role of permutohedra in understanding dualities
and wall-crossing phenomena in supersymmetric gauge theories, where the geometry
of the permutohedron governs transitions between different physical phases. The ge-
ometric realization of permutation symmetries via permutohedra also facilitates com-
putations of knot invariants and offers new algebraic tools for studying their categori-
fications.

Overall, this thesis exemplifies how advanced combinatorial and geometric concepts,
such as permutohedra and their associated graphs, can illuminate intricate structures
in mathematical physics and knot theory, bridging discrete geometry with continuous
physical phenomena.

Associahedra via Spines [7]

This article develops a new combinatorial and geometric framework for understanding
associahedra through the concept of spines, which are oriented and labeled dual trees
associated with triangulations of polygons. By considering the spine as the dual graph
of a triangulation enriched with additional structure, the authors create a link between
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the classical description of associahedra—often expressed in terms of binary trees or
bracketings—and a more geometric viewpoint inspired by J.-L. Loday’s construction.

The spine-based perspective offers several advantages: it provides clearer combina-
torial descriptions of the faces of the associahedron and allows the authors to give
streamlined, concise proofs of key properties such as the realization of associahedra
as convex polytopes. This method simplifies previous approaches by making the re-
lationship between triangulations and their corresponding associahedra more explicit
and tangible.

Moreover, the paper explores how this viewpoint generalizes to related polytopes, giv-
ing insight into the structure of cluster algebras and other combinatorial geometries
connected to associahedra. By grounding associahedra in the language of spines, the
authors open pathways to better understand the rich combinatorial and geometric
interplay underlying these fundamental objects, which have applications in algebraic
geometry, mathematical physics, and beyond.
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