Crystallographic Point Groups

H. Chan

July 16, 2025

Table Of Contents

- 1. Rationale
- 2. Groups
- 3. Transformation Groups
- 4. Point Groups
- 5. Crystallographic Point Groups
- 6. Questions and Thank You

Rationale

Crystals find countless uses in modern technology.

Groups

Definition (Group)

A group is a set X along with a binary operation * that adheres to the following properties:

- (i) There exists an element e in X such that $e \cdot x = x \cdot e = x$ for all $x \in X$
- (ii) For any $x \in X$, there exists another element $x^{-1} \in X$ such that $xx^{-1} = x^{-1}x = e$.
- (iii) For any $x, y, z \in X$, the equality (xy)z = x(yz) holds.
- (iv) For any $x, y \in X$, the product xy is also in X.

Lets look at a few examples:

Examples

The Integers $(\mathbb{Z}, +)$

General Linear Group GL(n, R).

Groups (cont.)

Definition (Cosets)

Given a subgroup K of G and $g \in G$, then we define the **left coset** gK to be

$$gK = \{gk : k \in K\}.$$

Theorem

Let G be a group of finite order and K be a subgroup. Then, the order of K is a factor of the order of G.

Corollary

If G is a group of finite order, and K is a subgroup then the following always holds:

$$[G:K] = \frac{|G|}{|K|}.$$

Transformation Groups

Definition (Transformation Group)

A **Transformation Group** G acting on X is a group that consists of permutations of X. For $x \in X$, we denote the element x gets permuted to by element $g \in G$ by $g \circ x$.

The **stabilizer subgroup** of an element x is the set of all $g \in G$ such that $g \circ x = x$. We denote the stabilizer by G_x .

The **orbit** \mathcal{O}_x of x are all elements $y \in X$ such that there exists a $g \in G$ such that $g \circ x = y$.

The Euclidean Group

Definition (Euclidean Group)

The Euclidean Group on three dimensions E(3) is the group of all rotations on \mathbb{R}^3 that preserve distance. These include both **translations** and **rotations**.

Theorem

Let S be a set of finite extent and G a discrete symmetry group on S. Then, there exists a point $y \in \mathbb{R}^3$ such that for all $g \in G$, $g \circ y = y$.

Theorem

If G is a discrete subgroup of E(3) with fixed point y, then G is a finite subgroup of O(3).

Computing Point Groups

Theorem

There exists a one to one correspondence between the left cosets of G_x and the elements in \mathcal{O}_x . Thus,

$$|\mathcal{O}_x| = \frac{|G|}{|G_x|}.$$

Proof Idea

- (i) Define a function $f: \mathcal{O}_x \to G/G_x$ by $f(y) = g_y G_x$, where $g_y \circ x = y$.
- (ii) Show that this function is a bijection, and is well-defined.

Computing Point Groups (cont.)

Let P denote the amount of orbits (of poles), n = |G|, and n_i and p_i denote the size and size of the stabilizer of the *i*th orbit respectively.

Then, the number of rotations that fix any pole in some orbit is exactly $n_i(p_i-1)$. We can then sum this over all of the orbits to get $\sum_{i=1}^{P} n_i(p_i-1)$.

On the other hand, every rotation fixes exactly two poles, so the sum must also be 2(n-1). Thus,

$$2(n-1) = \sum_{i=1}^{P} n_i(p_i - 1).$$

Reducing using previous theorems, we get

$$2\left(1 - \frac{1}{n}\right) = \sum_{i=1}^{P} \left(1 - \frac{1}{p_i}\right)$$

Computing Point Groups (cont.)

There are only solutions to the previous equations when P=2,3. We get the following symmetries.

 C_n : This family is given by $(n_1, n_2) = n, n = 2, 3, \dots$

 D_n : This family is given by $(n_1, n_2, n_3) = (2, 2, m), m = 2, 3, ...$

T: This is the symmetry group of the Tetrahedron. $(n_1, n_2, n_3) = (2, 3, 3)$.

O: Symmetry group of the Octahedron/Cube, $(n_1, n_2, n_3) = (2, 3, 4)$.

I: Symmetry group of the Icosahedron, $(n_1, n_2, n_3) = (2, 3, 5)$.

A Different type of Point Group

Theorem

Let G be a finite subgroup of O(3) and let K be a subset of G containing only proper rotations. Then, one of the following is true:

- (i) G = K,
- (ii) $G = K \cup IK$,
- (iii) $G \cong K \cup I\overline{K}$, $G \neq K$, and $\overline{K} = \{g \in G : g \notin K\}$.

Some new Groups!

 C_{nv} , D_{nh} , T_h , S_{2m} , O_h , I_h

Lattices

Crystallographic Point Groups are Point groups that act on Lattices.

Definition (Lattice)

A 3 dimensional lattice is defined as a set L such that

$$L = \{\alpha_1 \hat{v}_1 + \alpha_2 \hat{v}_2 + \alpha_3 \hat{v}_3 : \alpha_i \in \mathbb{Z}\}.$$

where $\{\hat{v}_i\}$ is linearly independent. We define the **unit cell** to be the parallelepiped with minimal area with edges of length $|\hat{v}_i|$.

Figure: Basis Vectors and a unit cell.

Crystallographic Point Groups

Theorem (The Crystallographic Restriction)

Let G be a crystallographic point group. Then, all rotations and rotation-inversions in G are of order 2, 3, 4 or 6.

Proof Idea

- (i) Show that the **Trace** of any element $g \in G$ must be integral.
- (ii) Use change of basis to map the rotation axis k to a basis vector, and find the resulting rotation matrix.
- (iii) Show that the only values of θ that result in integral trace are 2, 3, 4 and 6.

Holohedries and Bravais Lattices

Definition (Holohedry)

For some lattice L, the **Holohedry** of L is the *maximal* crystallographic group on L.

There are exactly 7 Holohedries, and they are the following

$$S_2$$
, C_{2h} , D_{2h} , D_{4h} , D_{3h} , D_{6h} , O_h .

Bravais Lattices are the 7 families of lattices that the Holohedries above.

Questions?

Any Questions?

Thanks to Simon Rubinstein and Lucy Vuong for all the help!