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Abstract

Symmetry Groups are transformation groups acting on subsets of R3. We study in particular
two specific types of symmetry groups, namely point groups and crystallographic point groups.
These groups are named so since they always keep some point x ∈ R3 fixed, under any
transformation in the group! The main focus of this paper is to find and classify these point
groups and crystallographic point groups.

1 Introduction

The study of crystals and crystalline structures is critical due to their significant use in mod-
ern technology. Crystals find find use in microprocessors, oscillators, screens and displays,
optics, and countless more. Surprisingly, mathematics (and more specifically group the-
ory) can greatly aid in the characterization and study of crystals.

We can find a rationale for this connection by imagining a crystal lattice as not a physical
collection of atoms and molecules but instead as mathematical lattice. More specifically, a
subset of T (3) (the translation group in R3) defined by

G = {α1b̂1 + α2b̂2 + α3b̂3 : α1 ∈ Z; b̂i ∈ T (3)}

As it turns out, the symmetries and structures of these resulting lattices give key physical
characteristics of the physical crystals they represent. It is even possible to compute and
categorize all possible crystallographic structures with three dimensions (we have even found
all groups up to dimension 6!).

2 Preliminaries

In this section, we cover some introductory ideas and topics in Group Theory that will allow
us to construct and characterize the crystallographic groups.

Definition (Group). A group G is a collection of objects {g1, g2, · · · } (not necessarily finite)
in combination with a binary operation ·, which represents group multiplication. This
related some pair of objects gi, gk with their product, gigk. The group must meet the following
properties.
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1. Identity. There exists an element e ∈ G such that for any element g ∈ G, the product
eg = ge = g.

2. Closure. For any g, h ∈ G, the product gh is also in G.

3. Associativity. The equality (ab)c = a(bc) is satisfied for any a, b, c ∈ G.

4. Inverses. For any element g ∈ G, there also exists an inverse g−1 in G such that
gg−1 = g−1g = e.

Additionally, the amount of elements in a group G is called the order of G and is denoted
by |G|. Note. Notice that these groups are not necessarily commutative. That is, it is
not always the case that ab = ba for all elements a, b in some group. However, if a group
is commutative, we call it abelian. If a group is abelian, its binary operation is usually
denoted by + instead of · .

Definition (Subgroup). A group K is a subgroup of a group G if the set of elements of
K is a subset of the elements of G, and they use the same binary operation. A group G
always contains the subgroups G and {e}. These groups are called improper subgroups.
All other subgroups are called proper subgroups.

Consider the following examples of groups and subgroups.

Example 1. The Integers Z. The integers are a group under addition (this is our binary
operation). We can show it meets the properties of a group:

1. The identity of Z is 0. We have 0 + n = n for any integer n.

2. The integers are closed under addition, since the sum of two integers is always an
integer.

3. Addition is certainly associative over the Integers.

Note. We also know that addition is also commutative over the integers, so our groups
is actually Abelian!

4. The inverse of any integer n is simply −n (which we know is an integer), since n +
(−n) = 0.

One can construct infinitely many subgroups of Z by considering the multiples of some
integer! We denote this group by

nZ = {ni : i ∈ Z} = {. . . ,−2n, n, 0, n, . . .}.

Note. If we tried to make the integers a group under multiplication instead of addition, it
would fail to be a group. It fails to meet the criteria of inverses! Certainly there does not
exist an integer k such that 2 · k = 1!
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Example 2. Integers Modulo n. We can denote this group by Zn. This group consists of
the elements {0, 1, . . . , n− 1}. The binary operation, addition, outputs the sum modulus n
(in other words, the remainder when the sum is divided by n). For example, (n−1)+1 = 0.
One could prove this is a group by a similar proof to the integers. Contrary to Z, this group
has finite order, which is exactly n.
There is not always a proper subgroup of Zn. If p is prime, there cannot exist a proper
subgroup of Zp. However, if n = ad, with d ̸= 0 then we can find subgroup of Zn by

dZn = {0, d, 2d, . . . , (a− 1)d}.

Example 3. General Linear Group of degree 2. Despite the fancy name, this group simply
consists of all invertible matrices (non-zero determinant) under group multiplication. We
can quickly show it meets the properties of a group:

1. The identity of this group is (
1 0
0 1

)
.

2. We know this group is closed because of determinant multiplication. We have det(A) det(B) =
det(AB), so the product of two matrices in this group will always have non-zero de-
terminant, and thus must be in the group.

3. Group multiplication is associative.

4. We can construct inverses as shown below.(
a b
c d

)(
1

ad− bc

(
d −b
−c a

))
=

1

ad− bc

(
ad− bc −ab+ ab
cd− cd −bc+ ad

)
=

(
1 0
0 1

)
.

Like the integers, this group is infinite. However, it it not commutative:(
a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg ce+ dh

)
while (

e f
g h

)(
a b
c d

)
=

(
ae+ fc be+ df
ag + ch bg + dh

)
.

Since determinant multiplication works just like multiplication over the reals, we can use that
for inspiration. One example pops up: the subgroup with of all matrices with determinant
1! This group is called the Special Linear Group.

Example 4. Permutation Groups. Permutation groups are denoted by Sn, and its elements
are the permutations some set X with n objects. Here is an example of an element in S7:(

1 2 3 4 5 6 7
6 2 4 5 3 7 1

)
This notation means the 1st element maps to the 6th element, the 2nd element maps to the
second element, the third element maps to the 4th element, etc. We can then see the order
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of Sn is n!: there are exactly n! ways to permute n objects! Unfortunately, these groups are
non-abelian. Here is an example to prove it (in S4):(

1 2 3 4
1 3 4 2

)(
1 2 3 4
2 3 4 1

)
=

(
1 2 3 4
3 4 2 1

)
meanwhile (

1 2 3 4
2 3 4 1

)(
1 2 3 4
1 3 4 2

)
=

(
1 2 3 4
2 4 1 3

)
2.1 Normal Subgroups and Cosets

Definition (Coset). Let K be a subgroup of group G (denoted by K < G), and g ∈ G.
Then, the set

gK = {gk : k ∈ K}
is called the left coset of K. We construct the right coset similarly.

Note. For the rest of the paper, we shorten left coset to simply “coset” Lets prove a few
facts about cosets.

1. For every g ∈ G there exists a coset g′K such that g ∈ g′K. Since K is a subgroup, it
contains e and thus g′ = g creates such a coset.

2. Cosets are either identical or disjoint. Consider two cosets gK and hK. Suppose they
have a common element. Without loss of generality (WLOG), let gk1 = hk2. Then,
g = h(k2k

−1
1 ). We can then see the two cosets are identical, since for any k ∈ K there

exists k′ = k2k
−1
1 k such that gk = gk′.

This second fact is very useful. Consider some finite group G with n elements, with subgroup
K. Since cosets are either identical or disjoint, we know there are some collection of cosets
that cover G, {g1K, g2K, . . . , gRK} (the amount of distinct cosets of K is called its index
and is denoted by [G : K]). Notice that the amount of elements in each coset is exactly |K|.
If gk1, gk2 ∈ gK were equal, then we must have g−1gk1 = g−1gk2 so k1 = k2. Thus, we get

# of cosets =
|G|
|K|

.

Theorem 2.1. Let G be a group of finite order, and K be a subgroup of G. Then,

[G : K] =
|G|
|K|

.

Note. This explains why there are no subgroups of groups Zp from example 2!

The notation of cosets almost makes us want to make a group out of them, where g1K = g2K!
Unfortunately, this is not always well defined. Suppose aK = bK and cK = dK. Then, in
our group, we must have (aK)(cK) = (bK)(dK), or (ac)K = (bd)K. We have that ak1 = bk′

1

and ck2 = dk′
2 for any choice of k1, k2 ∈ K. However, in trying to prove this, we can only

get to ack = adk′, since there is no ak to turn into bk′. However, we can fix this with a new
kind of subgroup!
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Definition (Normal Subgroup). A subgroup K is normal if for any g ∈ G (where G is the
parent group), the cosets gK and Kg are equal. An equivalent condition is that gKg−1 = K.

This fixes all our problems! We now have ack = adk′ = ak′′d = bk′′′d = bdk(4). Thus,
another definition.

Definition (Factor Group). Let G be a group and K a normal subgroup. Then, the group
of cosets of K is called a factor group and is denoted by G/K.

Lets go over an example of normal subgroups and factor groups.

Example 5. Lets return to Z and its subgroups nZ. Since this group is abelian, all of
subgroups are necessarily normal subgroups. Now, lets compute Z/nZ. There are exactly n
cosets: {nZ, 1+nZ, . . . , n− 1+nZ}. We can see that n+nZ = nZ since n+na = n(a− 1).
This group then must be Zn!

3 Transformation groups

One special type of group we will study are Transformation Groups. They are defined as
followed.

Definition (Transformation Group). The Transformation Group G acting on a set X
consists of elements such that any g ∈ G is a one to one mapping from X to itself. The
binary operation on G is function composition (denoted by multiplication), and it must
comply with the following conditions:

1. g ◦ x ∈ X

2. g1 ◦ (g2 ◦ x) = (g1g2) ◦ x

3. e ◦ x = x.

Something interesting we can note is that if X contains n elements, then any transformation
group G acting on X must be a subset of Sn: certainly a one to one mapping on finite
elements can be seen as a permutation.

Definition (Stabilizer). Let G be a transformation group acting on X, and let x ∈ X.
Then, the stabilizer of x (denoted by Gx) is the set of all elements in G that map x to X.
More explicitly, we can write

Gx = {g ∈ G : g ◦ x = x}.

This group can also be called the isotropy subgroup at X. If a transformation g is in Gx,
we say it leaves x invariant.

We can also define something quite similar to the stabilizer, but instead of ”stabilizing” a
single element, they keep some subset of X the same.

Definition (G-Symmetry). Let G be a Transformation Group on X and let Y ⊆ X. Then,
the G-Symmetry on Y is all elements g ∈ G such that g(Y ) = Y .
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Definition (G-Equivalent). Two elements x, y ∈ X are G-equivalent if there exists some
g ∈ G such that g ◦ x = y. We denote two elements are G-equivalent by x ∼ y.

In fact, this relation is an equivalence relation! Lets quickly prove it.

Proof.

1. Transitive. Suppose a ∼ b and b ∼ c. Then, by definition, there exists g1, g2 ∈ G such
that g1 ◦ a = b and g2 ◦ b = c. Then, we have g2 ◦ (g1 ◦ a) = c, but this is equivalent to
(g2g1) ◦ a = c. Since G is a group we have g2g1 ∈ G, and a ∼ c.

2. Reflexive. Since e ∈ G, and e ◦ x = x, then for any x ∈ X we have x ∼ x.

3. Symmetric. Suppose x ∼ y. Then, there exists a g ∈ G such that g ◦ x = y. Since G
is a group, g−1 ∈ G, which certainly maps y to x, and such y ∼ x.

Since this is an equivalence relation, we can find the equivalence classes of X.

Definition (Orbit). Let G be a transformation group acting on X, and let x ∈ X. The
orbit of x (denoted by Ox) is the equivalence class of x.

Now, we prove our second theorem.

Theorem 3.1. Let G be a finite transformation group on X, and let x ∈ X. Then, the
following equality always holds.

|Ox| =
|G|
|Gx|

Proof. We can prove this by creating a bijection between the left cosets of Gx and the
elements in the orbit of x. Let f be a function from Ox to the left cosets of Gx. Lets define
f(y). Let g ∈ G be such that g ◦x = y. Then, we have f(y) = gGx. We can see any element
in gGx must map x to y. Suppose we also have h ∈ G such that h◦x = y. Then, g◦x = h◦x
and thus x = (g−1h) ◦ x and g−1h ∈ Gx and h ∈ gGx.

It is easier to see this function is onto. Suppose we have some left coset kGx. Let k ◦ x = y.
Then, y ∈ Ox, and thus f(y) = kGx.

Note. We needed finiteness because the dividing orders of infinite sets doesn’t make sense
here

Example 6. Symmetries of the Square.
In this case, our set X is the points {(1, 1), (−1, 1), (−1,−1), (1,−1)} ⊆ R2, and our trans-
formation group G is the identity, the reflections across the lines x = 0, y = 0, y = x, and
y = −x. In the group is also the 3 non-trivial rotations, 90◦, 180◦, and 270◦.
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Figure 1: Square with reflections.

The stabilizer subgroup of any point x ∈ X is exactly {e, fid}, where e is the identity element
and fid is the ith diagonal flip (f1d is reflection across y = −x, f2d is the other flip). One
can check no other elements in g fix x.

Next, we look for all G-symmetries on Y ⊆ X. We will only consider Y where |Y | = 2,
Y = {x, y}. The |Y | = 3 case is the same as the earlier stabilizer subgroup case, since if
permutation g satisfies g ◦ Y = Y , then g also satisfies g ◦ Y c = Y c and vice versa, where Y c

is the complement of Y . We have two cases: x, y are adjacent and x, y are opposite. Note.
Notice how for our subgroup Y the reflections/rotations in the G-symmetry must either map
x onto y and vice versa or leave both points invariant.

1. x and y are adjacent. In this case, there is no rotation (other than the trivial rotation)
that leaves both points invariant, and there is no rotation in general that maps x to
y and vice versa. However, the reflection across the perpendicular bisector of xy does
swap the two points. Thus, the G-symmetry is {e, fim}, where f1m is the flip across
y = 0 and f2m is the flip across x = 0, and i ∈ {1, 2}.

2. x and y are opposite. The rotation and reflection that map x and y to themselves are
e and fim. Here, i is chosen such that the reflection line is coincident with x and y.
There are also reflections and rotations that swap x and y, namely r180 (rotation by
180) and fi′m, which is the other diagonal reflection.

There is only one orbit, since all elements can be mapped to each other via the rotations.
This is expected, because of Theorem 3.1. Note. If we decided to include the point O = (0, 0)
in our set X, we would then have two orbits, since g ◦ O = O for all g ∈ G! This is one
example of a fixed point, which we will define later.

4 The Orthogonal & Euclidean Groups

Our current objective in studying crystallography using group theory is to find various sym-
metries of objects in 3d space. In other words, we are looking at transformation groups
acting on subsets of 3d space. We also want all of these transformations to preserve dis-
tances between objects: it would be inaccurate for a real solid, physical object to suddenly
change size and shape upon a rotation. We can try constructing one such group ourselves.
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One way to make creating such a group easier is to make it consist of only linear transforma-
tions, since we can then represent each element as a matrix. We can let v1, v2, v3 represent
the unit vectors along our coordinate axes, and we can thus represent any point x ∈ R3 by
x = α1v1 + α2v2 + α3v3.

We then want to find all 3x3 matrices O such that they preserve distance, or ||x|| = ||Ox|| for
x ∈ R. Since magnitude is simply the square root of the dot product (x.x), we can instead
assume (Ox.Ox) = (x.x). By the equality

4(x.y) = (x+ y.x+ y)− (x− y.x− y)

we know that (x.y) = (Ox.Oy). This is the case since the right hand side consists of dot
products of the form (a.a), and so we can act on the points using O. The elements O also
preserve angle, proven by the law of cosines. We can then try to represent this equality using
component form, given the fact that Ox =

∑
i vi
∑

j Oijxj.

3∑
i=1

xiyi =
3∑

i=1

(
3∑

j=1

Oijxj

)(
3∑

k=1

Oikyk

)

=
3∑

i=1

3∑
j=1

3∑
k=1

OijOikxjyk

=
3∑

j=1

3∑
k=1

3∑
i=1

OijOikxjyk

→
3∑

i=1

OijOik = δjk

where δjk is the Kronecker delta. We get the implication → since the sum must be equal to
the original sum representing (x.y), and thus no products xiyk, i ̸= k can appear in the sum.

We can then see that OtO = E3, where Ot is the transpose of O and E3 is the identity
element. In other words, Ot = O−1. Now, lets show the the set of all O such that Ot = O−1

is actually a group.

1. Identity. We certainly have Et
3E3 = E3, the identity.

2. Inverses. We have OtOtt = OtO = E3, so inverses are certainly part of the group.

3. Associativity. Matrix Multiplication is associative.

4. Closure. Consider some O1, O2. Then, we must show the inverse of O1O2 is also its
transpose. But, (O1O2)

t = Ot
2O

t
1 so and Ot

2O
t
1O1O2 = E3 and we are done.

This group is called the Orthogonal Group of degree three, or O(3).

There are two types of rotations in this group: proper rotations and improper rotations.
Improper rotations are the combination of the inversion I3 = −E3 and and some proper
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rotation O3. Since det(AB) = det(A) det(B), we can see that all proper rotations have
determinant 1 and all improper rotations have determinant −1. Note. You can also find a
homomorphism ϕ : O(3) → {1,−1}, and see that the proper rotations are a normal sub-
group. We call the this group the Special Orthogonal group, or SO(3).

One other thing to note is that for any proper rotation O, there exists a line k through the
origin called the axis of rotation that remains invariant under O. More specifically, for
any point x ∈ l, Ox = x. Note. The proof of this can be seen in [WM72].

Definition (Euclidean Group). The Euclidean group of degree three E(3) is the transfor-
mation group acting on R3 that consists of all permutations that preserve distance. To be
more precise, given any g ∈ E(3) and points p1, p2 ∈ R3, the following holds:

|| p1 − p2 || = || g ◦ p1 − g ◦ p2 ||.

where || · || outputs the magnitude of the vector.

As it turns out, E(3) contains only translations, rotations, and products of the two. Lets
prove E(3) actually is a group.

Theorem 4.1. The set E(3) under composition is actually a group.

Proof.

1. Identity. The identity is simply the trivial rotation, a rotation by 0 degrees!

2. Inverses. Suppose we have some element g ∈ E(3). Then, ||g ◦ x− g ◦ y|| = ||x− y||.
Therefore, g must have an inverse, since we have a mapping from g ◦x to x (remember,
g itself is a bijection from R3 to itself) and distance is preserved.

3. Associativity.It is proven that function composition is always associative.

4. Closure. If g, h ∈ E(3), then

||gh ◦ x− gh ◦ y|| = ||g(h ◦ x)− g(h ◦ y)|| = ||h ◦ x− h ◦ y|| = ||x− y||.

Two basic subgroups of E(3) are T (3) and O(3), with T (3) being the group of transla-
tions. We represent elements of T (3) by Ta, the translation along vector a. In other words,
Tx = x + a. In fact, the elements of T (3) commute, as TaTb = Ta+b, so T (3) is abelian and
is thus a normal subgroup.

In order to find the rest of the elements in E(3), we actually only need to find the elements
that fix the origin Θ, since if TΘ = a for T ∈ E(3), then T−aT leaves the origin invariant.
We can see that O(3) is certainly a subgroup of all such transformations, but it is actually
group of all elements that fix the origin (see [Yal68]. Thus, we can represent any element T
as a rotation followed by a reflection:

T ∈ E(3), T = TaO = {a,O} O ∈ O(3).
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We have that
{a,O}x = Ox+ a

and
{a1, O1}{a2, O2} = {a1 +O1a2, O1O2}.

Note. This actually means the Euclidean group is the semidirect product of the groups T (3)
and O(3)!

We can see that there are also rotations and inversions that don’t fix Θ and instead fix some
other line or point. Let such a transformation be called T . Now, consider T−aTTa. This fixes
Θ and thus T = TaOT−a for some O ∈ O(3). This means for any group of transformations
G that fix some point a, we can find a conjugate (and isomorphic) copy of this group that
fixes Θ.

Example 7. Let a be some vector. Then, we can find the Orthogonal Group at a by
conjugating O(3) by Ta.

Oa(3) = TaO(3)T−a = {TaOT−a : O ∈ O(3)}

Lets go over all the types of elements in E(3). You can find pictures of these transformations
in [Tha22].

1. Translations. Denoted by Ta.

2. Rotations. Rk(θ) denotes the proper around axis k by θ radians. We can then denote
any other rotation using {a,Rk(θ)} where a is perpendicular to k.
Note. The axis of rotation of {a,Rk(θ)} is parallel to k and contains the points b such
that Rk(θ)b+ a = b.

3. Inversions. The inversion around point a is denoted by Ia. If a = Θ, then we denote
the inversion simply by I.

4. Reflection. Reflections are combinations of inversions and 180◦ rotations. For ex-
ample, we can represent the reflection across the xy-plane by Rz(180

◦)I. We denote
reflection by Fp, where p is the plane of reflection.

5. Screw Rotation. This is an of the form {a,Rk(θ)} where a is not parallel to k. Then,
a = x+ y, where x is parallel to k and y is perpendicular. We then have Tx{y,Rk(θ)}.
In other words, this is a rotation followed by a translation parallel to k.

6. Glide Reflection. Glide reflections are reflections along with a translation parallel
to that plane. The order does not matter here.

Note. We can find another normal subgroup of E(3) by taking the kernel of the homomor-
phism {a,O} → det(O). This is called the Proper Euclidean Group of degree three.
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5 Symmetry Groups

Given any set S ⊆ R3, we can find the G-symmetry that acts on it! In our specific case
with subsets of R3, we simply call such a group a Symmetry on S. In addition, the largest
symmetry group on S is called the Complete Symmetry Group on S.

Example 8. One example is the triangular pyramid, as shown in Figure 2 (Note. The
complete symmetry group is different if the pryamid is also a tetrahedron). One simple
symmetry group is {e, Rv3(120

◦), Rv3(240
◦)}, where the center of the base of the pyramid is

Θ and the altitude is along v3.

Figure 2: Triangular Pyramid

However, this is not the compete symmetry group. Notice there are 3 reflections that map
the pyramid back to itself! They are the vertical planes containing one of the altitudes on
the base (one pictured above). Thus, the complete symmetry group is

{e, Rv3(120
◦), Rv3(240

◦), Fi, Fj, Fk}

where i, i, k are the vertical planes mentioned previously.

The problem of finding all symmetry groups is very difficult, since it involves finding all
subsets of E(3)! However, there are some families of these subgroups that are much easier
to find. We look at one such of these families.

Definition (Discrete Symmetry Group). A discrete symmetry group G acting on S ⊆ R3

is a subgroup of E(3) such that any for any element x ∈ S, and any open ball Br(a) (radius
r, center a), the intersection Ox ∩Br(a) is finite.

We can see that any finite symmetry group on S is always a discrete symmetry group, since
all orbits must be finite. However, it is not the case that a discrete symmetry group be finite:
consider the group of translations {. . . , T−2a, T−a, e, Ta, T2a, . . .}.

Another helpful restriction for finding some subgroups is to require S to be of finite extent.

Definition (Finite Extent). A subset S ⊆ R3 is of finite extent if there exists a ball Br(a)
such that S ⊆ Br(a).



Haydn Chan Finding Crystallographic Point Groups Page: 12

With this restriction, we can see that the possible discrete symmetry groups cannot include
translations, screw rotations, or glide reflections, since repeating these transformations re-
peatedly would eventually map S outside of Br(a). Therefore, the only possible elements
in the symmetry group are rotations and rotation inversions. The following two theorems
further simplifies our search.

Theorem 5.1. If G is a discrete symmetry group on S ⊆ R3, a nonempty set of finite extent,
then there exists a point x ∈ R3 such that g ◦ x = x for all g ∈ G.

Proof. Consider some point s ∈ S. Since S is of finite extent, and G is discrete, the orbit
Os is finite. Let its order be n. Now, consider the point

x =
1

n

n∑
i=1

si,

where si is the ith element in Os. We can now act on x by some arbitrary element g = {a,O}
in G get

gx = O
1

n

n∑
i=1

si + an/n =
1

n

n∑
i=1

Osi + a =
1

n

n∑
i=1

gsi.

However, the set {xi} = g{xi} since g is a permutation, and thus the two sums above are
equal (just re-ordered). Therefore, gx = x for all g ∈ G.

This kind of point that is invariant under all transformations is called a fixed point. In fact,
the type of group we just outlined here (finite extent + discrete) are called point groups,
since (as we just proved), they all have some fixed point!

In addition, these point groups are also helpful since we can assume (WLOG) that the
fixed point is Θ. As mentioned previously, for any point group G with fixed point Θ, we
can transform it into Ga (the same group but with fixed point a) by taking the conjugate
TaGT−a. The second of these two theorems narrows our search to finite groups.

Theorem 5.2. Let G be a discrete subgroup of E(3) that has fixed point x. Then, G is a
finite subgroup of Ox(3).

Proof. First, we note that G cannot contain translations since they leave no point fixed.
We can construct a unit sphere around x, and 4 non-coplanar points {p1, p2, p3, p4} on the
sphere (see Note. ). We can then see that all elements in the orbits of the pi are also on the
sphere, as ||gpi − y|| = ||gpi − gy|| = ||pi − y||. Then, each transformation g ∈ G is uniquely
described by their action on the pi. If gxi = g′xi, then the xi are fixed by g−1g, this product
must then be the identity.

Note. We need at minimum 4 non-coplanar points. We can leave 2 points invariant with a
rotation, 3 invariant with a plane reflection. With 4 points no transformation leaves all 4
invariant.

All that remains now to find all point groups is to find all finite subgroups of O(3)! We split
these points into two families: point groups of the first kind, which contain only rotations,
and point groups of the second kind, which also contain rotation-inversions!
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6 Point Groups of the First Kind

In order to find all point groups of the first kind, we first have to define something called a
pole.

Definition (Pole). Let G be a point group with fixed point x. We can make G act on a
ball B with center x. Then, a pole on B is some point that is fixed under some non-trivial
rotation g ∈ G. We can also define it as an element of the intersection of the axis k of g and
B.

Then, for any point group G we can instead have it act on the set S of poles of G. We can
see it is G is a symmetry group on S since if g1p = p, then g2p is a pole of g2g1g

−1
2 .

We can get a restriction on the # of orbits of poles as well as find exact values for the size
of stabilizers by summing the amount of transformations that fix a pole (over all poles, will
overcount).

Theorem 6.1. Let G be a point group, and P be the set of poles of G. Then, the amount
of distinct orbits in P is either 2 or 3.

Proof. Let P be the amount of orbits in P , and |G| = n. Let Oi be the ith orbit. Then,
let ni and pi denote the order of the stabilizer of some element x ∈ Oi and |Oi| respectively
(see Note.). Thus, the amount of (non trivial) rotations that fix any pole in Oi is exactly
pi(ni − 1). From here, we can sum over all the orbits to get

∑P
i=1 pi(ni − 1), the amount of

rotations that leave some pole fixed.

On the other hand, all rotations leave exactly two poles fixed, so the sum must be equal to
2(n− 1) (again, subtract 1 to remove the trivial rotation E3). Thus,

2(n− 1) =
P∑
i=1

pi(ni − 1).

Using Theorem 3.1, (pi = n/ni), we can further reduce:

2

(
1− 1

n

)
=

P∑
i=1

(
1− 1

ni

)
.

There are no solutions for P = 1, since n ≥ ni. Also, there are no solutions for P ≥ 4, as
ni ≥ 2, meaning

2− 4

n
< 2 ≤ 4− 1

n1

− 1

n2

− 1

n3

− 1

n4

(remember, a pole is an element fixed by a non-trivial rotation).

Note. The order of the stabilizers of elements in the same orbit are all the same by Theorem
3.1
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We now list the all possible configurations orders (n1, n2) and (n1, n2, n3). WLOG we can
let n1 ≤ n2 ≤ n3.

P = 2 :
There is only one infinite family of point groups that have two orbits. Solving the equation
2− 2/n = 2− 1/n1 − 1/n2 tells us that n = n1 = n2. There is then only one axis of rotation
since there are two poles by pi = n/ni. There are n rotations around this axis, denote them
R(θ1), R(θ2), . . . , R(θn) (we can omit the axis of rotation since there is only one). We can
prove that θi = 2πi/n:

WLOG we can say that θ1 < θ2 < · · · < θn. We can then represent any R(θj), 2 ≤ j ≤ n by
R(θ1)

k + R(ϕ), where ϕ < θ1. The rotation R(ϕ) must then be in the group, so ϕ = 0 and
R(ϕ) = E3. We call such an axis with m rotations a m-fold axis.

We call this family of groups a cyclic group with n elements, or Cn. The physical object
with complete symmetry group Cn is a pyramid with base n-gon

P = 3 :
There are more cases if P = 3. We can first start by assuming n1 = n2. Then,

2− 2/n = 3− 1/2− 1/2− 1/n3.

and we get the following solution set

(a) (n1, n2, n3) = (2, 2,m) for m ≥ 2, with n = 2m.

There are no other point groups with n2 = 2, so we try the next case, n2 = 3. We get the
following solutions:

(b) (n1, n2, n3) = (2, 3, 3), with n = 12

(c) (n1, n2, n3) = (2, 3, 4) with n = 24

(d) (n1, n2, n3) = (2, 3, 5) with n = 60

There are no more solutions of this form (try to solve the equation for n3 = 6). If we try
n2 = 4, then we get 2−2/n < 2 ≤ 3−1/2−1/4−1/ni. If we try n1 = 3, we run into a similar
issue. So, these represent all possible point groups of type one. We now must calculate them.

(a). We can see there exists an m-fold axis l since n3 = m. We also know there are m 2 fold
axis (see Note.). Since the poles of the l are in the same orbit, we know all of the two fold
axis {τi} are perpendicular l. A rotation by 2π/m maps the τi to themselves, and the angle
difference between two adjacent τi is π/m (since a rotation about some two fold axis must
also map the τi to themselves).

We call this family of groups Dm, the dihedral group of order 2m. The corresponding object
is a prism with base n-gon.
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Note. We get the number of axis of m-fold by counting the number of poles in the corre-
sponding orbit and dividing by two.

(b). There are 3 3 fold axis and 4 three fold axis. Consider the poles {p1, p2, p3, p4} in
one of the orbits with 4 elements. Now, consider the stabilizer C3 of p1. A non-trivial
element g in this stabilizer must permute all pj, 2 ≤ j ≤ 4 to a different pole, since other-
wise g2 = E a contradiction (proper rotations fix at most 2 poles). So, the distance from
p1 to any of the other poles is equal. We can repeat this for the rest of the pi. Thus,
the poles are spread evenly on the sphere, and the symmetry group is a subgroup the sym-
metries of the tetrahedron. However, the two groups have the same order and are thus equal!

We call this group the tetrahedral group and denote it by T .

(c). There are 3 four fold axis, 6 two fold axis, and 4 three fold axis. We can repeat a
similar process as in (b) on the poles of the four fold axis to show that the for poles not
lying on the same axis, the distance between them is always equal. Thus, the 3 four fold
axis are orthogonal. We can then see these 6 poles form an octahedron, and thus our group
is a subset of the symmetry group on the octahedron. But once again, the order of these
two groups is equal! This group is represented by O.
Note. The symmetries of the octahedron are also the symmetries of the cube.

(d). We know there are 10 three fold axis, 15 two fold axis, and 6 five fold axis. We
can take inspiration from previous examples here. These last 2 examples were symmetries of
a platonic solid, so lets try checking those to see if they fit our description. The icosahedron
also has 10 three fold axis (about centers of faces), 6 five fold axis (through opposite vertices)
and 15 two fold axis (through midpoints of opposite edges). This is decent evidence that our
symmetry group is exactly that of the icosahedron, and it is! We denote it by Y .
Note. One can prove this more rigorously by considering the set of poles of the five fold axis,
dividing them up into hemispheres. From here, we can show each pole has 5 close neighbors
of at equal distance. We can then construct an icosahedron using these poles are vertices.

7 Point Groups of the Second Kind

Fortunately, we did most of the heavy lifting finding all of the point groups of type one due
to the following theorem.

Theorem 7.1. Let G be a point group and K be a subgroup consisting of only proper
rotations. Then, G is exactly one of the following:

1. G = K

2. G = K ∪ IK

3. G ∼= K ∪ IKc
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Proof. Lets consider a point group of the second kind. Suppose that I ∈ G We know that
|K| = |Kc| and I /∈ K, so it must be the case that G = IK.

Now, suppose I /∈ G. Then, we can letK+ = IKc. We can see this is a set of proper rotations,
and is disjoint from K. Now, we want to show an isomorphism from G to G+ = K ∪K+.
We have

ϕ(g) =

{
g g ∈ SO(3)

Ig g /∈ SO(3).

This is clearly a homomorphism since I commutes with all elements. It also must be an
isomorphism since if Ig = Ig′ then g = g′ and any element in G+ can be mapped to.

We can now find the rest of the point groups!

1. Cn ∪ ICn

2. Dn ∪ IDn

3. T ∪ IT = Td

4. O ∪ IO = Od

5. Y ∪ IY = Yh

We can find the groups from case 3 by looking at point groups of type one that have a normal
subgroup with half the total order.

6. G+ = C2n and K = Cn

7. G+ = Dn and K = Cn

8. G+ = D2n and K = Dn

9. G+ = O and K = T

We can use Schonflies Notation to classify these groups.

9. This is the complete symmetry group of the tetrahedron, denoted by Td.

7. This is the symmetry group Cn with vertical reflections through two fold axis added,
denoted by Cnv.

1 + 6. We take the odd n case from 1. and the even n case from 6. This is the symmetry group
generated by the rotation reflection FKR(π/m), where K is the plane perpendicular
to the vertical axis. This set of group is denoted by S2n.

6 + 1. We take odd n from case 6 and even n from case 1. Then, the resulting group is simply
Cn in addition to a horizontal reflection perpendicular to the rotation axis. This group
is called Cnh.
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2 + 8. We take even/odd parity in the same order as the previous examples. This is actually
the complete symmetry group on the prism. We denote it by Dnh. It contains Cnh as
a subgroup.

8 + 2. These groups are the complete symmetry groups on twisted prisms, where the top base
of a prism is rotated π/m radians from the bottom. We call these Dnd

8 Crystallographic Point Groups

In order to define a crystallographic point group, we must first define what the act on:
lattices in R3.

Definition (Lattice). A lattice L ⊆ R3 is a collection of points of the form

{α1v1 + α2v2 + α3v3 : α1 ∈ Z; vi ∈ T (3)},

where vi is linearly independent.

Note. This set can also be seen as the orbit of some point x under the translation group
generated by Tvi .

Definition (Crystallographic Point Group). A subgroup of E(3) with fixed point x acting
on a lattice L is called a Crystallographic Point Group. The largest such group on L at
x is called the Holohedry of L at x.

WLOG we can let the origin Θ be the fixed point going forwards. While we did find all
possible crystallographic point groups (must be a subset of the point groups by Theorem
5.2), it is not the case that there exists a corresponding lattice for every point group. We
know this because of the following theorem.

Theorem 8.1 (The Crystallographic Restriction). If G is a crystallographic point group
acting on lattice L, then its rotations and rotation inversions are all of order 2, 3, 4 or 6.

Proof. Let the basic vectors of L be v1, v2, v3. Then, for g ∈ G, we have

gbi =
3∑

j=1

Ojibj.

Since the bi are basic vectors, all the Oji are must be integers. Importantly, the trace of C
must be an integer. However, the trace is also independent of basis. So, we can use change
of basis on O to transform the rotation matrix O into

O′ = Ik

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 .

where k ∈ {1,−1} and θ is the size of the rotation. Then, the trace of O′ is ±(2 cos(θ) + 1).
Since this is integral, the only possible values for θ are 0, π/3, π/2, 2π/3, π corresponding to
rotations with degree 2, 3, 4, and 6 (along with the inversion around the fixed point.
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We than have all possible crystallographic point groups:

C1, C2, C3, C4, C6, C1h, C2h, C3h, C4h, C6h, C2v, C3v, C4v, C6v,

D2, D3, D4, D6, D2h, D3h, D4h, D6h, S2, S4, S6, D2d, D3d, T, Td, Th, O,Oh.

These then must be the 32 possible crystallographic point groups. We can show all of
these are actually crystallographic point groups by constructing the holohedries and their
corresponding lattices, called bravais lattices. The following theorems show us there are
only 7 possible lattices.

Theorem 8.2. If L is a lattice, the holohedry F on L must include the inversion I.

Proof. Let vi be the basis vectors. Then, consider arbitrary point x ∈ L. Thus, x =
x1v1 + x2v2 + x3v3, where xi ∈ Z. Then Ix = −x1v1 − x2v2 − x3v3. Negating an integer
results in an integer, so Ix ∈ L.

We can now limit our search to point groups of type 2, corresponding to option 2. in theorem
7.1.

Theorem 8.3. If holohedry F contains subgroup Cn, for n ∈ {3, 4, 6}, it also contains
subgroup Cnv.

Proof. Let l be the n-fold axis. Then, we simply must show there exists a reflection plane
through l, since the rotations will generate Cnv. Let C be a rotation through axis l by angle
2π/n. We can see that for any lattice point y ∈ L, the point Cy − y ∈ P where P is the
plane perpendicular to l through the origin. Then, there must exist a vector in L ∩ Q of
minimal length, call it b1.

We can then create a new basis for our lattice with b1, b2, b3 where b2 = Cb1. We know this
is the case since b1 and b2 are linearly independent and there is no smaller vector a in the
parallelogram made by b1, b2 (if there was, you could find a vector smaller than b1).

For our third basis vector b3, we can define it as b3 = p+ t, where p is a vector in Q and t is
a vector parallel to l (p, t not necessarily lattice points). When we act on b3 with C we get

Cb3 = C(p+ t) = Cp+ Ct = Cp+ t = α1b1 + α2b2 + t

subtracting b3 from both sides and rewriting b2 yields

Cb3 − b3 = Cp− p = a1b1 + a2Cb1

We can then multiply this equation by C−1 and subtract to get

Cp+ C−1p− 2p = (a1 − a2)b1 + a2Cb1 − a1C
−1b1

We can prove via trigonometry that Cp+C−1p = 2 cos(2π/n)p (any the same for any point
in Q. Therefore,

(2 cos(2π/n)− 2)p = (a1 + a2)b2 + (a1 − a2 − 2a1 cos(2π/n))b1 (1)
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Now, let K be the plane through l and perpendicular to b1. The flip is then FK . We can see
that FKb1 = −b1. If n = 3, then FKb2 = b2 + b1, if n = 4 then FK = b2 and if n = 6 then
FK = b2 − b1.

To show FKb3 ∈ L is harder. First, remember that b3 = p + t, and FKt = t since t ∈ K.
Then, FKb3 = t+ Fkp. We now split into our three cases.

n = 6 We use equation (1) to help all cases. The left hand side becomes −p, and we get the
following equations.

p = −(a1 + a2)b2 + a2b1

FKp = −(a1 + a2)(b2 − b1)− a2b1 = −(a1 + a2)b2 + a1b1

We can then combine to get FKp = v + (a1 − a2)b1 and thus

FKb3 = u+ v + (a1 − a2)b1 = b3 + (a1 − a2)b1 ∈ L.

n = 4 The left hand side of (1) becomes −2p in this case. Thus,

p = −1
2
(a1 + a2)b2 − 1

2
(a1 − a2)b1

FKp = −1
2
(a1 + a2)b2 +

1
2
(a1 − a2)b1.

Once again, we get FKp = v + (a1 − a2)b1 and FKb3 = b3 + (a1 − a2)b1 ∈ L.

n = 3 The left hand side of (1) is now −3p. Then,

p = −1
3
(a1 + a2)b2 − 1

3
(2a1 − a2)b1

FKp = −1
3
(a1 + a2)(b2 + b1) +

1
3
(2a1 − a2)b1 = −1

3
(a1 + a2)b2 +

1
3
(a1 − 2a2)b2.

We again get reach the same formula for FKb3.

This finally narrows the crystallographic point groups to exactly the 7 holohedries:

S2, C2h, D2h, D3d, D6h, D4h, Oh.

9 Bravais Lattices

We conclude with finding the 7 corresponding families of lattices. These are called the
Bravias Lattices.
To find the Bravias Lattices, we can take a look at some of the specific elements they contain.
Other than S2, all of these groups have an n-fold axis l where n ∈ {2, 4, 6} and a reflection
FK where K is perpendicular to l. We now find the possible basis vectors for every option
of n.
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n = 2 For each of these cases, we can employ similar strategies as we did to prove theorem
8.3. We retrace our steps, but we call the planeK instead of Q. In this case we can’t let
b2 = Cb1, since Cb1 = −b1 (the rotation C is the rotation on the 2 fold axis). However,
we can find two linearly two linearly independent vectors in K by taking a + FKa on
some vectors. Thus, we have b1, b2 ∈ K.

Again, we can find b3 by splitting it into p and t (defined as before). Then, Cb3 −
b3 = Cp − p = a1b1 + a2b2. Since Cp = −p we have p = 1

2
a1b1 + 1

2
a2b2. Thus,

b3 = t + 1
2
a1b1 +

1
2
a2b2, with a1, a2 ∈ {0, 1} since we can add or subtract multiples of

b1 and b2.

n = 4 This follows exactly from Theorem 8.3. We have b3 = t− 1
2
(a1 − a2)b1 − 1

2
(a1 + a2)b2.

a1 + a2 and a1 − a2 are either both even or both odd, so we have either

b3 = t or b3 = t+ 1
2
b1 +

1
2
b2

n = 6 This also follows from Theorem 8.3. We instead get b3 = t+ a2b1 − (a1 + a2)b2. These
are both integral, and as such we can repeatedly add or subtract b1 and b2, so b3 = t.
This is the only case where b3 must be orthogonal to b1 and b2.

Now we can make the holohedries.

1. Cubic Holohedry Oh. Our axis l is one of the three 4 axis. We will only case (1).
Thus, we have b1, b2 have equal length, b3 is on l, and they are all orthogonal to each
other. Oh has 4 axis of rotations on the plane K, so one must be between vectors b1
and b2. Let this be called l1. It is not a rotation by π/2 radians since this would map
b1 and b2 onto points not in L. Thus, l1 is a rotation by π. We also need l1 to make
an angle of π/4 with b1 and b2, since otherwise they would map to elements not in L.

From here, it must be the case that there is an axis of rotation on b1 and b2, and they
must be of order 4. A rotation by π/4 around axis b2 must map b3 to either b1 or b2,
and thus all basis vectors have the same magnitude. We can see that the resulting
lattice has a cube as a primitive cell.

The other possible lattices are the body centered or face centered variations, which
include lattice points in the center of the cube or on all the faces of the cube. In these
cases, the primitive cell is not the cube. For the rest of the computations for other
cases, or visualizations of these lattices see [WM72] and [Tha22] respectively. Refer to
these for diagrams and calculations of non-basic variations.

2. Hexagonal Holohedry D6h From our previous theorems, we know that b1, b2 are in
the reflection plane K and are the same length and have angle π/3. We also know
that b3 is on l, and is thus perpendicular to b1, b2. With our basis vectors found, it is
simple to see that D6h is actually a symmetry group on it. There are no variations. It
is uniquely determined by ||b1|| and ||b3||.



Haydn Chan Finding Crystallographic Point Groups Page: 21

3. Rhombohedral D3d. Using the same process as we did to prove Theorem 8.3, we
can find b3 in terms of b1, b2, and some vector perpendicular to them both, t. We get
b3 = t + 1

3
(b1 − b2) (the case where b3 = t results in the Hexagonal Holohedry). We

know that the 3 twofold rotations must be in K. Again, they are evenly spaced. There
must exist a reflection between b1 and b3 (inclusive). If it was between the b1 and b2
(or b2 and b3), then the axis must be halfway between the two vectors. However, this
would map b3 = t+ 1

3
(b1−b2) to −t+ 1

3
(b2−b1), which is impossible. Therefore, all two

fold axis must be on basis vectors. Using similar reasoning, the reflection planes must
bisect the angles between the two fold axis. These lattices are uniquely determined by
||b1|| and ||t||.

4. Tetragonal Holohedry D4h. Let l be the 4 fold axis. We once again establish basis
vectors b1 and b2 (of equal length) and get possible values of b3 from our above case-
work. So, we assume b3 = t. We can then see that D4h is indeed a symmetry group
on this lattice: two fold rotations (and their corresponding reflections) are through b1
and b2 as well as through the angle bisector of (b1, b2) and (b2,−b1). However, in order
for D4h to be the holohedry, we must have ||b1|| ≠ ||b3||, since otherwise, it would have
the hexagonal holohedry.

There is one variation, the body centered variation.

5. Orthorhombic Holohedry D2h We have 3 2 fold axis (all orthogonal), as well as the
vertical reflection through them. We must have one two fold rotation through t, and it
is thus orthogonal to both b1 and b2. So, the other 2 two fold axis are in the plane K.
There are two cases here: either the two fold axis are on b1 and b2 or they are between
b1 and b2. Case two is handled in [WM72]. In the first case, it must be true that the
bi are mutually orthogonal since the two fold axis of D2h are orthogonal. Thus, these
are uniquely determined by ||b1||, ||b2||, ||b3||.

They have 3 variations stemming from case (2), body and face centered but also base
centered, where there are lattice points on the centers of the bottom and top face of
the cell.

6. Monoclinic Holohedry C2h We again have basis vectors b1 and b2. We consider the
case b = p. We can see that C2h is definitely a symmetry group on this lattice: a
rotation around l maps b1 → −b1 and b2 → −b2. The reflection maps b3 → −b3. This
is only a holohedry if the angle between b1 and b2 and the lengths ||b1||, ||b2|, ||b3|| don’t
overlap with a previously seen lattice.

There is one variation, the base centered variation.

7. Triclinic Holohedry S2 We have S2 = {E3, I3}, so every lattice not in an above
classification must be a Triclinic Holohedry.
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