## Transcendental Number Theory

Haridas Chowdhury

Euler Circle

July 7, 2025

### **Definitions**

#### Definition

An *algebraic number* is a number that is a root of some polynomial with integer coefficients.

### **Definitions**

#### Definition

An *algebraic number* is a number that is a root of some polynomial with integer coefficients.

#### Example

 $\sqrt{2}$  is an algebraic number, as it is a root of  $x^2 - 2 = 0$ .

### **Definitions**

#### Definition

An *algebraic number* is a number that is a root of some polynomial with integer coefficients.

#### Example

 $\sqrt{2}$  is an algebraic number, as it is a root of  $x^2 - 2 = 0$ .

#### **Definition**

A *transcendental number* is a number that is not a root of any polynomial with integer coefficients.

Theorem (Cantor)

The set of real numbers is uncountable.

### Theorem (Cantor)

The set of real numbers is uncountable.

Assume  $h = n + |a_1| + |a_2| + |a_3| + \cdots + |a_n|$  for some integer n and some sequence of integers  $a_i$ .

### Theorem (Cantor)

The set of real numbers is uncountable.

Assume  $h = n + |a_1| + |a_2| + |a_3| + \cdots + |a_n|$  for some integer n and some sequence of integers  $a_i$ .

For each h, a finite number of polynomials with degree n and coefficients  $a_i$  can be constructed and each polynomial has finite roots, which means that a one-to-one correspondence of algebraic numbers with natural numbers is possible.

Theorem (Cantor)

The set of real numbers is uncountable.

Theorem (Cantor)

The set of algebraic numbers is countable.

#### Theorem (Cantor)

The set of real numbers is uncountable.

### Theorem (Cantor)

The set of algebraic numbers is countable.

#### Corollary (Cantor)

The set of transcendental numbers is uncountable.

### Liouville's Theorem

#### Theorem (Liouville)

For every algebraic number  $\alpha$ , there exists some c such that

$$\left|\alpha - \frac{p}{q}\right| > \frac{c}{q^n}$$

for all rationals  $\frac{p}{q}$ .

#### Definition

The degree of  $\alpha$  is the degree of the lowest degree polynomial with integer coefficients that has  $\alpha$  as a root.

### Liouville's Theorem

#### Theorem (Liouville)

For every algebraic number  $\alpha$ , there exists some c such that

$$\left|\alpha - \frac{p}{q}\right| > \frac{c}{q^n}$$

for all rationals  $\frac{p}{q}$ .

#### Definition

The degree of  $\alpha$  is the degree of the lowest degree polynomial with integer coefficients that has  $\alpha$  as a root.

$$L = \sum_{n=1}^{\infty} 10^{-n!}$$



Theorem (Hermite)

e is transcendental.

Hermite's work was later generalized by Lindemann.

## Theorem (Hermite)

e is transcendental.

Hermite's work was later generalized by Lindemann.

#### Theorem (Lindemann)

For any distinct algebraic numbers  $\alpha_1, \alpha_2, \dots, \alpha_n$  and any non-zero algebraic numbers  $\beta_1, \beta_2, \dots, \beta_n$ , we have

$$\beta_1 e^{\alpha_1} + \beta_2 e^{\alpha_2} + \dots + \beta_n e^{\alpha_n} \neq 0.$$

### Theorem (Hermite)

e is transcendental.

Hermite's work was later generalized by Lindemann.

#### Theorem (Lindemann)

For any distinct algebraic numbers  $\alpha_1, \alpha_2, \dots, \alpha_n$  and any non-zero algebraic numbers  $\beta_1, \beta_2, \dots, \beta_n$ , we have

$$\beta_1 e^{\alpha_1} + \beta_2 e^{\alpha_2} + \cdots + \beta_n e^{\alpha_n} \neq 0.$$

This implies that  $e^{\alpha}$  is transcendental for any algebraic  $\alpha \neq 0$ .

#### Theorem (Hermite)

e is transcendental.

Hermite's work was later generalized by Lindemann.

#### Theorem (Lindemann)

For any distinct algebraic numbers  $\alpha_1, \alpha_2, \dots, \alpha_n$  and any non-zero algebraic numbers  $\beta_1, \beta_2, \dots, \beta_n$ , we have

$$\beta_1 e^{\alpha_1} + \beta_2 e^{\alpha_2} + \cdots + \beta_n e^{\alpha_n} \neq 0.$$

This implies that  $e^{\alpha}$  is transcendental for any algebraic  $\alpha \neq 0$ .

Since  $e^{i\pi}=-1$  is not transcendental,  $i\pi$  must not be algebraic, meaning  $\pi$  must also be transcendental.

# Squaring the Circle

Using only a compass and straight edge, is it possible to construct a square with the same area as a given circle?

## Squaring the Circle

Using only a compass and straight edge, is it possible to construct a square with the same area as a given circle?

This problem dates back to the ancient Greeks, but it was unsolved until Lindemann's theorem was developed.

# Squaring the Circle

Using only a compass and straight edge, is it possible to construct a square with the same area as a given circle?

This problem dates back to the ancient Greeks, but it was unsolved until Lindemann's theorem was developed.

It requires constructing  $\sqrt{\pi}.$  However, since  $\pi,$  and thus  $\sqrt{\pi},$  is transcendental, this is impossible.

#### Gelfond-Schneider Theorem

## Theorem (Gelfond and Schneider)

 $a^b$  is transcendental for any algebraic number a that is not 0 or 1 and for any irrational algebraic number b.

#### Gelfond-Schneider Theorem

## Theorem (Gelfond and Schneider)

 $a^b$  is transcendental for any algebraic number a that is not 0 or 1 and for any irrational algebraic number b.

This solved Hilbert's seventh problem.

### Gelfond-Schneider Theorem

## Theorem (Gelfond and Schneider)

 $a^b$  is transcendental for any algebraic number a that is not 0 or 1 and for any irrational algebraic number b.

This solved Hilbert's seventh problem.

It also further generalized previous work and laid the foundation for future theorems.

#### More Recent Results

### Theorem (Baker)

Let  $\alpha_1, \alpha_2, \ldots, \alpha_n$  be non-zero algebraic numbers such that their natural logarithms are linearly independent over rational numbers. Then, for any non-zero algebraic numbers  $\beta_1, \beta_2, \ldots, \beta_n$ ,

$$\beta_1 \log \alpha_1 + \beta_2 \log \alpha_2 + \dots + \beta_n \log \alpha_n$$

is transcendental.

#### More Recent Results

Nesterenko is also known for his work on specifically algebraic independence. He proved that  $\pi$  and  $e^{\pi}$  are algebraically independent over the rationals.

#### Definition

A set of elements is *algebraically independent* over a field if there is no nontrivial polynomial relation among them with coefficients in that field.

#### Example

The sets  $\{\pi\}$  and  $\{\sqrt{2\pi+1}\}$  are algebraically independent over the rationals while the set  $\{\pi,\sqrt{2\pi+1}\}$  is algebraically dependent over the rationals, as it is a solution to the equation  $2x-y^2+1=0$ .

# Open Problems

The algebraic independence of  $\emph{e}$  and  $\pi$  is currently unknown.

## **Open Problems**

The algebraic independence of e and  $\pi$  is currently unknown.

The transcendence of Euler's constant  $\gamma$  is also currently unknown.

# Open Problems

The algebraic independence of e and  $\pi$  is currently unknown.

The transcendence of Euler's constant  $\gamma$  is also currently unknown.

Both would contribute significantly to the field and there are also many other open problems in the area.

# Thank you!

Thank you so much for your attention!