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Abstract. This paper will start of with showing that transcendental numbers exist through
Cantor’s theorem as well as the origins of proving a number’s transcendence with Linde-
mann’s Theorem. Then, it will cover the transcendence of some well-known constants as
well as show a theorem that will generalize them, specifically Lindemann-Weierstrass Theo-
rem. It will also cover some of the implications of the transcendence of π in the solution to
the problem of squaring the circle. It will also discuss Gelfond-Schneider’s Theorem (which
solved Hilbert’s seventh problem) as well as a proof of Baker’s Theorem, which generalizes
this. This paper will then end off with a brief discussion of some of the more recent results
in the area as well as some prominent problems that remain open.

1. Introduction

The search for numbers has been a quest in mathematics that dates back to ancient
civilizations. We will go over a brief history here (see Cox [Cox04] for a more detailed history).
The most basic level of numbers were natural numbers. However, with the introduction of
addition and subtraction, it became necessary to expand this notion to integers. However,
with multiplication and division, the notion of numbers was once again extended to include
rational numbers. Multiplication and division also created the necessity for radicals, such
as

√
2, which is a solution to x2 = 2. This is an example of an irrational number (although

we will not prove this here), which made it necessary to expand the set to the set of all real
numbers.

However, there will still some equations which did not have any numeric solutions under
the set of real numbers, even with this expanded notion, such as x2+1 = 0, which prompted
the discovery of imaginary numbers, thus expanding our set of numbers to now include all
complex numbers. These types of numbers were found by finding solutions to these types of
polynomial equations, and such numbers are called algebraic numbers.

Definition 1.1. An algebraic number is a number that is a root of some polynomial with
integer coefficients.

However, mathematicians then began to wonder about the numbers that were not alge-
braic. In fact, it was not even known that they exist for a very long time. However, through a
series of theorems and corollaries we will prove why such non-algebraic numbers, also known
as transcendental numbers, exist.

Definition 1.2. A transcendental number is a number that is not a root of any polynomial
with integer coefficients.

Theorem 1.3 (Cantor). The set of real numbers is uncountable.

Proof. For the sake of contradiction, let’s assume that the set of real numbers is countable.
Then, we know there is some sequence of si such that
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s1 = 11100. . .
s2 = 11011. . .

. . .

where the subscript of the si are the natural numbers corresponding to some real number,
which are expressed in binary. However, we can construct some number s whose nth digit
is different than the nth digit of sn, which means s is not part of the sequence si. How-
ever, we know that s is still a real number, but is not part of the constructed one-to-one
correspondence, which is a contradiction to our assumption that the set of real numbers is
countable.

Thus, the set of real numbers must be uncountable. ■

From this theorem, we conclude the following relatively direct corollary.

Corollary 1.4 (Cantor). The set of all complex numbers is uncountable.

Proof. We know the set of real numbers is a subset of the set of complex numbers. By
Theorem 1.1, we know that this subset is uncountable, which means that the entire set of
complex numbers must also be uncountable. ■

Theorem 1.5 (Cantor). The set of algebraic numbers is countable.

Proof. Assume h = n+ |a1|+ |a2|+ |a3|+ · · ·+ |an+1| for some integer n and some sequence
of integers ai, where a1 ̸= 0. Given some arbitrary value of h, we can choose a finite number
of ordered partitions of positive integers. Then, we assign the first number of the partition
to be n, and for the mth number in the partition, we assign it to be |am−1|. We can then
construct a polynomial with degree n and coefficients in the a1. An example of one such
partition would be if we took h = 5 = 3 + 1 + 0 + 0 + 1, which would correspond to the 8
polynomials ±3x3 ± x2 ± 1.
We know that the first number in the partition limits the number of terms, and that that

there are only h + 1 possibilities for the value of n for any given h. Additionally, for any
of these partitions, there are a most of 2n+1 possible corresponding polynomials, with each
polynomial having at most n roots, all of which are algebraic by definition. Thus, for every
value of h, there are a finite number of corresponding algebraic numbers. Note that since we
are considering all possible polynomials with integer coefficients, we are also considering all
possible algebraic numbers.

Let’s define bh as the number of distinct algebraic numbers we can get from some given h
using the process above. Then, we can make each algebraic number that we get from h = 1
to correspond to a distinct number from 1 to b1 and in general, assign each algebraic number
from each height h to a distinct number from 1 + b1 + b2 + · · · bh−1 to b1 + b2 + · · · bh. Thus,
we have constructed a one-to-one correspondence between the algebraic numbers and the
natural numbers, meaning the set of all algebraic numbers is countable. ■

Corollary 1.6 (Cantor). The set of transcendental numbers is uncountable.

Proof. From 1.4 and 1.5, we know that the set of algebraic numbers is countable, which
means it is a very small subset of the set of all complex numbers, which is uncountable.
So, the remainder of the set of complex numbers must then be uncountable. However, since
every non-algebraic real number is defined as transcendental, this means that the set of all
transcendental numbers is uncountable. ■
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So, now we know that not only do transcendental numbers exist, but they in fact make up
the vast majority of all numbers, which further highlights their importance and makes them
more intriguing. While we now know that transcendental numbers exist, showing that any
given number is transcendental or algebraic is more difficult, and many techniques of doing
so will be explored throughout this paper. However, one of the earliest methods of doing
so was developed by Liouville from the definitions of algebraic and transcendental numbers.
However, before we prove his theorem, let us first introduce the notion of a degree of an
algebraic number.

Definition 1.7. The degree of α is the degree of the lowest degree polynomial with integer
coefficients that has α as a root.

Now that we are equipped with this, let us take a look at Liouville’s theorem.

Theorem 1.8 (Liouville). For every algebraic number α with degree n > 1, there exists some
c such that ∣∣∣α− p

q

∣∣∣ > c
qn

for all rationals p
q
.

Proof. Since α is algebraic, we know it must be the root of some polynomial with degree n
and integer coefficients p(x). Then, by the mean value theorem, we have

p(α)− p
(
p
q

)
=
(
α− p

q

)
p′(ξ)

for some ξ between α and p
q
. However, we know that p(α) = 0. Substituting this value and

taking the abolsute value of both sides gives us∣∣∣p(pq)∣∣∣ = ∣∣∣α− p
q

∣∣∣ |p′(ξ)|
Note that if

∣∣∣α− p
q

∣∣∣ > 1, showing the result becomes trivial, as any c < qn would be

sufficient. Thus, we can now consider the case where
∣∣∣α− p

q

∣∣∣ ≤ 1, which would mean that

|ξ| < 1 + |α| . Since this limits the range of ξ, we know that there exists some constant c
such that |p′(ξ)| < 1

d
for some positive d. Thus, using our previous equation, we know that∣∣∣p(pq)∣∣∣ < |α− p

q |
d

.

Multiplying both sides by d yields

d ·
∣∣∣p(pq)∣∣∣ < ∣∣∣α− p

q

∣∣∣ .
Since polynomial p(x) has integer coefficients, we know that p

(
a
q

)
is some rational number

with denominator qn, which means

d ·
∣∣∣mqn ∣∣∣ < ∣∣∣α− p

q

∣∣∣ .
Substituting in c = d|m| for some constant c gives

c
|qn| <

∣∣∣α− p
q

∣∣∣ ,
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which implies

c
qn
<
∣∣∣α− p

q

∣∣∣ ,
allowing us to obtain our desired result. ■

Using this theorem, Liouville was able to construct one of the first known transcendental
numbers, known as Liouville’s constant. This number is

L =
∞∑
n=1

10−n!.

Intuitively, we see that Liouville’s Theorem essentially states that any algebraic number can
not be estimated too well by rational numbers. So, if the estimate with a rational number
is too close, the number is transcendental. We see that with Liouville’s constant, the power
of 10 that we add becomes increasingly smaller, and it can not be approximated too well by
the rationals. The proof of this constant’s transcendence will not be concretely proven here,
but it is directly a result of Liouville’s theorem. However, we will now look at how the field
of transcendental number theory applies to more well known constants and other fields of
mathematics. Additionally, we will also look at a proof of Baker’s Theorem and also discuss
some of the more recent research done in the field as well as some unsolved problems in it.

2. Transcendence of e and π

While e was proven to be irrational by Euler, its transcendence remained a mystery until
it was proven by Hermite.

Theorem 2.1 (Hermite). e is transcendental.

Proof. To start, let’s take f(x) to be any polynomial with real coefficients and degree m.
Then, we can define some function I(t) as

I(t) =

∫ t

0

et−uf(u)du.

Using integration by parts, we get

I(t) =

∫ t

0

et−uf(u)du

= −et−uf(u)
∣∣∣t
0
−
∫ t

0

−et−uf ′(u)du

= −e0f(t) + etf(0) +

∫ t

0

et−uf ′(u)du

= −f(t) + etf(0) +

∫ t

0

et−uf ′(u)du.
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However, we see that the last term is much like our initial integral, but with the f(u) replaced
by f ′(u), which allows us to make a similar computation:

I(t) = −f(t) + etf(0) +

∫ t

0

et−uf ′(u)du

= −f(t) + etf(0)− f ′(t) + etf ′(0) +

∫ t

0

et−uf ′′(u)du

= −(f(t) + f ′(t)) + et(f(0) + f ′(0)) +

∫ t

0

et−uf ′′(u)du.

Continuing this process indefinitely, we get

I(t) = −(f(t) + f ′(t) + f ′′(t) + · · · ) + et(f(0) + f ′(0) + f ′′(0) + · · · ).

However, since f(x) has degree m, we know that every derivative after the mth derivative is
equal to 0. Thus, we can further simplify our expression of I(t) as

I(t) = −(f(t) + f ′(t) + f ′′(t) + · · ·+ f (m)(t)) + et(f(0) + f ′(0) + f ′′(0) + · · ·+ f (m)(0))

= −
m∑
i=0

f (i)(t) + et
m∑
k=0

f (k)(0),

where f (j)(x) denotes the jth derivative of f(x). Additionally, if f̄(x) denotes the polynomial
obtained by replacing all of the coefficients of f with their absolute values, then we have

|I(t)| ≤
∣∣∣∣∫ t

0

et−uf(u)du

∣∣∣∣ ≤ |t|e|t|f̄(|t|),

which can be derived by observing the integral geometrically.
Now, for the sake of contradiction, let’s assume that e is algebraic, in which case

q0 + q1e+ · · · qnen = 0

for some integers n > 0, q0 ̸= 0, q1, q2, ..., qn. Now, let’s define J as

J = q0I(0) + q1I(1) + · · · qnI(n),

where I(t) is defined as it previously was with

f(x) = xp−1(x− 1)p(x− 2)p · · · (x− n)p
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for some large prime p. Then, we have

J =
n∑
j=0

qjI(j)

=
n∑
j=0

qj

(
−

m∑
i=0

f (i)(j) + ej
m∑
k=0

f (k)(0)

)

= −

(
n∑
j=0

qj

)(
m∑
i=0

f (i)(j)

)
+

(
n∑
j=0

qje
j

)(
m∑
k=0

f (n)(0)

)

= −
n∑
j=0

m∑
i=0

qjf
(i)(j) + 0 ·

m∑
k=0

f (n)(0)

= −
n∑
j=0

m∑
i=0

qjf
(i)(j),

where m = (n + 1)p − 1. Now, let’s observe f (i)(j) more carefully. If we defined g(x) =
(x − 1)(x − 2) · · · (x − n) and h(x) = xp−1 we can rewrite f(x) = h(x)g(x)p. If we take the
derivative of this using the product rule, we have f ′(x) = h′(x)·g(x)p+h(x)·(pg(x)p−1 ·g′(x)).
If we continue this process, we see that all of the terms in f (i)(j) will always have g(j)p−i

as a factor. Then, for any i < p, all of the integers 1 through n will be a root of f (i)(j),
which means that for any j > 0 in this case, f (i)(j) = 0, since j can only go up to n in our
summation above.

We also observe that since the lowest degree term in f(x) has degree p− 1 and every time
we take the derivative, the exponent on this term decreases by 1, which means that for every
i < p− 1, f (i)(j) will have a factor of x, meaning for every i < p− 1 and j = 0, f (i)(j) = 0.
So, we know that f (i)(j) = 0 if i < p and j > 0 as well as if i < p − 1 and j = 0. Then,

all remaining terms in the expansion of J all have i ≥ p, except for when i = p − 1 and
j = 0. In order to address the former case, let’s once again consider what happens when we
repeatedly take the derivative of f(x). We notice that every nonzero term has p! as a factor.
However, for the remaining term, we notice that

f (p−1)(0) = (p− 1)!(−1)np(n!)p.

Since p! is a multiple of (p − 1)!, J must be an integer multiple of (p − 1)! but not of p!,
which means that we have |J | ≥ (p− 1)!. However, using our previous bound for |I(t)| and
our definition of J, we get that

|J | ≤
n∑
k=0

qk|k|e|k|f̄(|k|).

Now, looking at f(x), we see that the absolute value of each term in the expansion is at
most nm, and there are 2m terms in the expansion, meaning f̄(|k|) ≤ (2n)m. Now, let’s take
C to be a constant independent of p such that C is the maximum value of qk|k|e|k| when k
goes from 0 to n. Using this as well as the fact that m = (n+ 1)p− 1,

|J | ≤
n∑
k=0

qk|k|e|k|f̄(|k|) ≤ (n+ 1) · C · (2n)m.
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This is clearly an exponential function, which means we can crudely approximate it as

|J | ≤ cp

for some constant c independent of p. However, we also previously found the bound |J | ≥
(p− 1)!, which means that we must have cp ≤ (p− 1)!. However, we can choose a sufficiently
large p so that this is not true. This contradiction allows us to complete our proof that e is
transcendental. ■

Definition 2.2. A minimal polynomial of an algebraic number α is the irreducible poly-
nomial relatively prime integer coefficients, with the leading coefficient being positive, with
lowest degree that has α as a root. Its roots are called its conjugates of α.

Now, another natural constant to wonder about is π, which is what Lindemann decided
to do, as shown below.

Theorem 2.3 (Lindemann). π is transcendental.

Proof. For the sake of contradiction, let’s assume that π is algebraic. Then, this must mean
that θ = πi is also algebraic. Let θ have degree d, let the conjugates be θ1 (which we can
define as θ), θ2, θ3, . . . , θd, and let l be the leading coefficient of the minimal polynomial.
Then, since 1 + eθ1 = 1 + eπi = 0, we have that

(1 + eθ1)(1 + eθ2) · · · (1 + eθd) = 0

If we expand the product on the left, we get 2d terms of the form where eΘ where

Θ = ϵ1θ1 + ϵ2θ2 + · · ·+ ϵdθd

where all of the ϵj are either 0 or 1. Let’s suppose that exactly n of the Θ are non-zero,
which we can denote as α1, α2, . . . , αn. Then, since there are 2

d total terms, this means that
2d − n of them are 0. So, when we expand our previous product, we have

(2d − n)e0 + eα1 + eα2 + · · · eαn = 0.

Using the fact that e0 = 1 and substituting in q = 2d − n, we get

q + eα1 + eα2 + · · · eαn = 0,

from which we have

eα1 + eα2 + · · · eαn = −q.,

Now, let’s define

J = I(α1) + I(α2) + · · · I(αn),

where I(t) is defined as in Theorem 2.1 with

f(x) = lnpxp−1(x− α1)
p(x− α2)

p · · · (x− αn)
p,

where p is a large prime. Recall that our simplified version of I(t) was

I(t) = −
m∑
i=0

f (i)(t) + et
m∑
k=0

f (k)(0).
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So, we have that

J =
n∑
j=1

I(αj)

= −
n∑
j=1

m∑
i=0

f (i)(αj) +
n∑
j=1

(
eαj

m∑
k=0

f (k)(0)

)

= −
n∑
j=1

m∑
i=0

f (i)(αj) +

(
m∑
k=0

f (k)(0)

)
·

(
n∑
j=1

eαj

)

= −
m∑
i=0

n∑
j=1

f (i)(αj)− q

m∑
k=0

f (k)(0),

where m = (n+ 1)p− 1, since that’s the degree of the polynomial.
Let’s take a closer look at the term

n∑
j=1

f (i)(αj)

We know this sum is symmetric over the lαj and has integer coefficients. Then, using
the Fundamental Theorem on Symmetric Functions, we know that it can be expressed as
a polynomial with integer coefficients in the elementary symmetric functions of the lαj.
However, we know that any function symmetric over the lαj is also symmetric over all
of the θj, as the αj include all possible permutations of the summations of θj. Then, we
know that the sum above is symmetric over the θj as well and can thus be represented as
a polynomial over the elementary symmetric functions of the θj. We know that the θj are
roots of a polynomial with integer coefficients, by definition. So, by Vieta’s forumulas, all of
the elementary symmetric functions over the θj are integers. Thus, our summation above is
an integer.

Now, going back to our expression for J, we can use similar logic as we did in our proof
of Theorem 2.1 to determine that the first term is divisible by p! and thus (p− 1)!. We can
also use our logic from the same proof to determine that f (j)(0) is divisible by p!, and thus
(p− 1)! for all j ̸= p− 1. When j = p− 1, we know that

f (p−1)(0) = (p− 1)!(−l)np(α1α2 · · ·αn),

which is clearly divisible by (p− 1)!, just like all of the other terms. Thus, we know that J
is an integer divisible by (p − 1)! and thus |J | ≥ (p − 1)!. Additionally, we can use similar
reasoning as we did in our proof of Theorem 2.1 to show that |J | ≤ cp for some c independent
of p as well. This would imply that (p−1)! ≤ cp, but this statement is not true for sufficiently
large p. This creates a contradiction and thus proves our proof that π is transcendental. ■

This proof actually solved the very old problem of squaring the circle, which questioned
if it was possible to construct a square with the exact same area as a given circle. Since π is
transcendental and such a construction would require the construction of π, this was shown
to be impossible.

Later on, Lindemann generalized the proof of the transcendence of both of these numbers,
and this was later rigorously proved by Weirstrass, as shown below.
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Theorem 2.4 (Lindemann andWeierstrass). For any distinct algebraic numbers α1, α2, . . . , αn
and any non-zero algebraic numbers β1, β2, . . . , βn, we have

β1e
α1 + β2e

α2 + · · ·+ βne
αn ̸= 0.

Proof. For the sake of contradiction, let’s assume that this is not true and that

β1e
α1 + β2e

α2 + · · ·+ βne
αn = 0

Now, let’s take the conjugates of each βj to be βj,1(which we can set equal to βj), βj,2, . . . , βj,kj ,
where kj is the degree of the minimal polynomial of βj. Then, we consider terms of the fol-
lowing form:

β1,j1e
α1 + β2,j2e

α2 + · · ·+ βn,jne
αn

where each ji ≤ ki. Now, if we take the product of all possible permutations of this, we will
have a expression that’s symmetric over the βk,ji for each constant k from 1 to n. This means
that we can express our expression as a polynomial of elementary symmetric functions over
the βk,ji for each constant k. Using Vieta’s formulas and the fact that they are constants, we
know that the coefficients would be integers, and would be of the form

B1e
a1 +B2e

a2 + · · ·Bne
an

for all Bi being integers. Notice that this is in the same form as the expression β1e
α1+β2e

α2+
· · · + βne

αn . In fact, we know the expression is equal to 0, as β1e
α1 + β2e

α2 + · · · + βne
αn

is one of the factors. Thus, without loss of generality, we can assume that β1, β2, . . . βn are
integers. Note that one of these integers has to be non-zero by definition.

Now, we let l be some positive integer and we let

fi(x) = lnp ((x− α1)(x− α2) · · · (x− αn))
p / (x− αi) ,

where p is some large prime. The function fl(x) is defined in such a way that it involves the
algebraic integers corresponding to the numbers α1, α2, . . . , αn. It is crucial to note that the
behavior of this function as p increases gives rise to significant properties of the coefficients
in the original equation. We now examine how these terms behave as p increases.
We define the quantities Ji for each i as follows:

Ji = β1Li(α1) + β2Li(α2) + · · ·+ βnLi(αn) for each i (1 ≤ i ≤ n),

where Li(t) is the function defined in the proof of Theorem 1.2, with f = ft. These quantities
Ji play a pivotal role in our analysis.
We now arrive at the contradiction. From the properties of the function fl(x) and the

algebraic integers involved, we find that the quantities J1, J2, . . . , Jn are rational integers
that satisfy the following relationship:

|J1 . . . Jn| ≤
n∑
k=1

|αkβk|e|ak| ≤ cp,

where c is a constant independent of p. The key point here is that the inequalities are
inconsistent if p becomes large enough, as we can use similar techniques as we did above
to show that |J1 · · · Jn| > (p − 1)! by showing its divisibility. This inconsistency leads to a
contradiction, thereby proving that our original assumption was false. ■
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3. Baker’s Theorem

We begin with a theorem that solved Hilbert’s seventh problem:

Theorem 3.1 (Gelfond and Schneider). ab is transcendental for any algebraic number a that
is not 0 or 1 and for any irrational algebraic number b.

We will not prove this here (see Baker [Bak75] for a proof), but we will discuss a general-
ization of it, namely Baker’s Theorem, which is stated below.

Theorem 3.2 (Baker). Let α1, α2, . . . , αn be non-zero algebraic numbers such that their
natural logarithms are linearly independent over rational numbers. Then, for any non-zero
algebraic numbers β1, β2, . . . , βn,

β1 logα1 + β2 logα2 + · · ·+ βn logαn

is transcendental.

The rest of this section presents a detailed proof of Baker’s Theorem. We begin by
assuming, for contradiction, that the theorem is false. Under this assumption, there exist
algebraic numbers β0, β1, . . . , βn, not all zero, such that:

β0 + β1 logα1 + . . .+ βn logαn = 0,

where α1, . . . , αn are algebraic.
Since not all βi vanish, we may assume βn ̸= 0. Dividing by βn, we define β′

j = −βj/βn
for j = 0, . . . , n− 1, and rewrite the equation as:

β0 + β1 logα1 + . . .+ βn−1 logαn−1 = logαn,

which exponentiates to:

(1) eβ0αβ11 · · ·αβn−1

n−1 = αn.

This identity will be the basis for the argument to follow.
Throughout the discussion, constants c, c1, c2, . . . denote positive quantities depending only

on the αi, βj, and the branches of the logarithms. They are independent of any variable
parameters introduced later. We also fix a sufficiently large integer h, chosen to exceed such
constants when needed.

We record the following elementary fact. If α is algebraic and satisfies

A0α
d + A1α

d−1 + . . .+ Ad = 0,

with Ai ∈ Z and |Ai| ≤ A, then for any non-negative integer j, we can write:

(A0α)
j = A

(j)
0 + A

(j)
1 α + . . .+ A

(j)
d−1α

d−1,

with A
(j)
m ∈ Z and |A(j)

m | ≤ (2A)j. This follows by induction using recurrence:

A(j)
m = A0A

(j−1)
m − Ad ·m · A(j−1)

d , 0 ≤ m < d, j ≥ d,

initialized with A(j−1) = 0 where necessary.
Let d be the maximum degree of the minimal polynomials of α1, . . . , αn, β0, . . . , βn, and

let ai, bj be their leading coefficients. Then, for any integer j, we can write:

(2) (αrαs)
j =

d−1∑
s=0

a(j)s αrs, (brβr)
j =

d−1∑
t=0

b
(j)
t βrt ,
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with |a(j)s |, |b(j)t | ≤ cj1 for some constant c1.
To simplify multivariable differentiation, we use the notation:

fm0,...,mn−1(z0, . . . , zn−1) =

(
∂

∂z0

)m0
(
∂

∂z1

)m1

· · ·
(

∂

∂zn−1

)mn−1

f(z0, . . . , zn−1),

where f is a sufficiently differentiable function of n complex variables. This will streamline
later expressions involving partial derivatives.

Lemma 3.3. Let M and N be integers such that N > M > 0, and let

uij (1 ≤ i ≤M, 1 ≤ j ≤ N)

be a collection of integers with absolute values bounded by a fixed positive integer U > 1.
Then there exists a nonzero integer vector (x1, x2, . . . , xN), not all zero, such that each xj is
an integer with

|xj| ≤ (NU)M(N−M) for all j,

and this vector satisfies the system of linear homogeneous equations

(3)
N∑
j=1

uijxj = 0 for all 1 ≤ i ≤M.

Proof. The strategy is to show that by choosing bounded integer vectors (x1, . . . , xN), there
are more such vectors than there are possible outcomes for the left-hand side of the system
(3). Hence, by the pigeonhole principle, two distinct input vectors must yield the same
output vector, and their difference gives a nontrivial solution to the system.

We begin by defining a bound for the xj’s. Let

B =
⌊
(NU)M(N−M)

⌋
,

where ⌊x⌋ denotes the greatest integer less than or equal to x. We now consider all integer
vectors (x1, . . . , xN) such that each xj satisfies

0 ≤ xj ≤ B for all j = 1, 2, . . . , N.

There are exactly (B+1)N such vectors, since each of the N coordinates independently takes
one of B + 1 values.

For each such vector, compute the left-hand side of each equation in (3), that is,

yi =
N∑
j=1

uijxj for each i = 1, . . . ,M.

We now estimate the possible range of values each yi can take.
Let us define Vi to be the sum of the negative parts of the coefficients uij, and Wi to be

the sum of the positive parts. That is,

Vi =
∑

1≤j≤N
uij<0

|uij|, Wi =
∑

1≤j≤N
uij>0

uij.

Since |uij| ≤ U and there are N such terms per row, we have the bound:

Vi +Wi ≤ NU.
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For each xj in the range 0 ≤ xj ≤ B, the quantity yi =
∑

j uijxj satisfies:

−ViB ≤ yi ≤ WiB.

Therefore, for each i, the number of possible values of yi is at most ViB+WiB+1 ≤ NUB+1.
Since there areM such values y1, . . . , yM , the total number of distinctM -tuples (y1, . . . , yM)
that can be produced by these equations is at most:

(NUB + 1)M .

However, recall that we started with (B + 1)N possible choices for (x1, . . . , xN). We now
compare the number of input vectors to the number of output vectors. If

(B + 1)N > (NUB + 1)M ,

then by the pigeonhole principle, there must be at least two distinct vectors x ̸= x′ such
that they both produce the same vector y = (y1, . . . , yM) under the linear system (3). That
is, the difference x− x′ lies in the kernel of the matrix (uij).

Now observe that:

(B + 1)N−M > (NU)M ⇒ (B + 1)N > (NU(B + 1))M ≥ (NUB + 1)M ,

which shows the inequality above holds when B = ⌊(NU)M(N−M)⌋. Therefore, such a nonzero
integer solution must exist.

Taking the difference between the two distinct vectors that produce the same left-hand
side yields a nontrivial solution to the system (3). Moreover, since each of the original vectors
had entries in the range [0, B], their difference results in a vector with entries bounded in
absolute value by B ≤ (NU)M(N−M).

This completes the proof. ■

Lemma 3.4. There exist integers p(λ0, . . . , λn), not all zero, with absolute values bounded

above by eh
3
, such that the auxiliary function

Φ(z0, . . . , zn−1) =
L∑

λ0=0

. . .
L∑

λn=0

p(λ0, . . . , λn)z
λ0
0 e

λ0α0αλ11 · · ·αλn−1

n−1

satisfies the vanishing condition

(4) Φm0,...,mn−1,l = 0

for all integers l in the range 1 ≤ l ≤ h, and for all combinations of non-negative integers
m0, . . . ,mn−1 such that m0+ · · ·+mn−1 ≤ h2. Here, we define γr = λr+λnβr for 1 ≤ r < n,
and we set L = ⌊h2 − 1/(4dn)⌋.
Proof. In order to verify this lemma, it is sufficient—using relation (1) as a guiding princi-
ple—to construct the coefficients p(λ0, . . . , λn) in such a way that the following identity is
satisfied:

(5)
L∑

λ0=0

· · ·
L∑

λn=0

p(λ0, . . . , λn) · q(λ0, λn, l) · αλ11 · · ·αλnn · lλn · γm1
1 · · · γmn−1

n−1 = 0

for the specified ranges of l and mr. The function q(λ0, λn, z) appearing in this expression
is defined as

q(λ0, λn, z) =

m0∑
µ0=0

(
m0

µ0

)
λ0(λ0 − 1) · · · (λ0 − µ0 + 1)(λnβ0)

m0−µ0zλ0−µ0 .



TRANSCENDENTAL NUMBER THEORY 13

This function arises from differentiating monomials and accounts for contributions from
derivatives with respect to z0.
To facilitate bounding the size of the coefficients and to make the equations integer-valued,

we multiply both sides of (5) by a suitable integer factor:

P ′ = (a1 · · · an)L · bm0
0 · · · bmn−1

n−1 ,

which eliminates denominators resulting from powers of algebraic numbers when substitu-
tions are made.

Next, we express each power γmr
r , for 1 ≤ r < n, using the binomial expansion:

γmr
r =

mr∑
µr=0

(
mr

µr

)
λmr−µr
r (λnβr)

µr .

Substituting these into (5), and recalling that the powers of αr and βr can be rewritten using
identity (2), we arrive at a new expression involving only bounded powers of these algebraic
quantities:

d−1∑
s1=0

· · ·
d−1∑
sn=0

d−1∑
t0=0

· · ·
d−1∑

tn−1=0

A(s, t)αs11 · · ·αsnn β
t0
0 · · · βtn−1

n−1 = 0,

where each A(s, t) is a linear form in the p(λ0, . . . , λn).
The coefficients A(s, t) are explicitly given by:

A(s, t) =
L∑

λ0=0

· · ·
L∑

λn=0

m0∑
µ0=0

· · ·
mn−1∑
µn−1=0

p(λ0, . . . , λn) · q′ · q′′ · q′′′,

where we define:

• q′ =
∏n

r=1

{
aL−λrr α

(sr)
r

}
, which is clearly bounded by cLh2 ,

• q′′ =
∏n−1

r=1

(
mr

µr

)
(brλn)

mr−µrλ
(b

(tr)
r )

r ,

• q′′′ =
(
m0

µ0

)
λ0(λ0 − 1) · · · (λ0 − µ0 + 1)λm0−µ0

n bt00 h
λ0−µ0
0 .

The crux of the argument is now to bound the absolute value of the coefficients in each
A(s, t). We observe:

|q′| ≤ cLh2 ,

|q′′| ≤
n−1∏
r=1

(c3L)
mr ,

|q′′′| ≤ 2m0(λ0b0)
µ0(c1λn)

m0−µ0 ≤ (c3L)
m0hL,

using the facts that
(
mr

µr

)
≤ 2mr and l ≤ h.

Moreover, the total number of combinations of the mr is bounded. Since each mr ≥ 0 and
the sum of the mr is at most h2, we have:

(m0 + 1)(m1 + 1) · · · (mn−1 + 1) ≤ 2m0+···+mn−1 ≤ 2h
2

.

Therefore, the total contribution to each coefficient in the A(s, t) expressions is bounded by:

U = (2c3L)
h2ch4 .

Next, we count the number of linear equations and unknowns:

• The number of distinct sets (l,m0, . . . ,mn−1) is at most h(h2 + 1)n.
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• Each such tuple leads to d2n equations indexed by (s, t), so in total:

M ≤ d2nh(h2 + 1)n.

• On the other hand, the number of unknown coefficients is:

N = (L+ 1)n+1 > h2n+1 > 2M.

Because N > 2M , Lemma 3.3 ensures that the corresponding system of homogeneous
linear equations has a nontrivial integer solution. Furthermore, the bound on the size of
each coefficient of the system, along with the dimension count, allows us to conclude that
there exists such a non-zero solution with:

|p(λ0, . . . , λn)| ≤ NU ≤ h2n+2(2c3L)
hch4 .

Now observe that this upper bound is of the order eh
3
for sufficiently large h. Indeed,

since L = ⌊h2 − 1/(4dn)⌋, we have L = O(h2), and thus

NU ≤ h2n+2(2c3h
2)hch4 ≤ eh

3

as required.
This completes the proof of the lemma. ■

Lemma 3.5. Let m0,m1, . . . ,mn−1 be non-negative integers such that

m0 +m1 + · · ·+mn−1 ≤ h2,

and define the function

(7) f(z) = Φm0,...,mn−1(z, z, . . . , z).

Then, for any complex number z, the absolute value of f(z) is bounded above as follows:

|f(z)| ≤ ch
3+L logL

6 ,

where c6 is a positive constant, and L = ⌊h2 − 1/(4dn)⌋ as before.
Moreover, for any positive integer l, we have the dichotomy: either f(l) = 0, or

|f(l)| > c−h
3−L logL

6 .

Proof. To begin, recall that the function f(z) arises from evaluating the multivariate auxiliary
function Φ—as constructed in Lemma 3.4—at the point (z, . . . , z), and then differentiating
it appropriately with respect to its variables to the order prescribed by (m0, . . . ,mn−1).
By the construction from Lemma 3.4, the function f(z) is given explicitly by a finite sum

of the form

f(z) = P

L∑
λ0=0

L∑
λn=0

p(λ0, . . . , λn) q(λ0, λn, z)α
λ1
1 z

λ0 · · ·αλnn zλnγ
m1
1 · · · γmn−1

n−1 ,

where:

• p(λ0, . . . , λn) are the integer coefficients constructed in Lemma 3.4,
• q(λ0, λn, z) is a certain polynomial expression defined in that as well, capturing the
effect of differentiation,

• γr = λr + λnβr for 1 ≤ r < n,
• P is a normalizing factor arising from the differentiation process, given by

P = (logα1)
m1(logα2)

m2 · · · (logαn−1)
mn−1 .
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We now estimate the size of each factor appearing in this expression.
First, consider the bound for the function q(λ0, λn, z). By definition,

q(λ0, λn, z) =

m0∑
µ0=0

(
m0

µ0

)
λ0(λ0 − 1) · · · (λ0 − µ0 + 1)(λnβ0)

m0−µ0zλ0−µ0 .

Each term in this sum is bounded in absolute value, and since the binomial coefficient satisfies(
m0

µ0

)
≤ 2m0 , and λ0, λn ≤ L, we have:

|q(λ0, λn, z)| ≤ (c7L)
m0 |z|

m0∑
µ0=0

(
m0

µ0

)
≤ (2c7L)

m0 |z|,

for some constant c7 depending on β0.
Next, consider the product involving the algebraic numbers α1, . . . , αn:

|αλ11 · · ·αλnn zλ0+λn| ≤ cL logL
8 ,

for some constant c8, because each exponent λr is at most L, and there are at most n + 1
such terms. Since L ≤ h2, we use L logL = O(h2 log h).

Additionally, for the product γm1
1 · · · γmn−1

n−1 , note that each γr is a linear combination of
λr and λnβr, and both λr and λn are at most L. Therefore,

|γm1
1 · · · γmn−1

n−1 | ≤ (c9L)
m1+···+mn−1 ,

for some constant c9.
The number of terms in the sum is determined by how many multi-indices (λ0, . . . , λn)

exist with each λr ≤ L, so the total number of terms is at most (L + 1)n+1 = O(h2(n+1)),
which is less than h2n+2 for large h.

Now, using the bound from Lemma 3.4:

|p(λ0, . . . , λn)| ≤ eh
3

,

and putting all of the above estimates together, we conclude that each term in the sum is
bounded in absolute value by

eh
3 · (2c7L)m0|z| · cL logL

8 · (c9L)m1+···+mn−1 .

Multiplying by the number of terms and the constant P , which only depends on the logαr
and mr, we get:

|f(z)| ≤ h2n+2 · eh3 · (c10L)h
2|z| · cL logL

8 ,

which is ultimately bounded by:

|f(z)| ≤ ch
3+L logL

6 ,

for some sufficiently large constant c6.

We now address the second claim. Suppose l is a positive integer and f(l) ̸= 0. Define a
new quantity

f ′ =
P ′

P
f(l),

where P ′ is the normalizing factor introduced in the auxiliary function construction (see
equation (6)). The quantity f ′ is then an algebraic number obtained by scaling f(l) so that
all coefficients become algebraic integers. In fact, f ′ is itself an algebraic integer, since both
P ′ and P are constructed to clear denominators.
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By construction, the degree of f ′ over Q is at most d2n, since all the algebraic numbers
involved (i.e., the αr and βr) lie in a number field of bounded degree.
Furthermore, each conjugate of f ′ (obtained by applying a Galois automorphism to all the

αr, βr, and evaluating at the same integer l) has absolute value at most

|f ′| ≤ ch
3+L logL

10 ,

by the same bound as above applied to conjugates of f(l).
Now, if f ′ ̸= 0, then its algebraic norm (the product of all its Galois conjugates) is a

non-zero integer and hence has absolute value at least 1. It follows that the geometric mean
of the absolute values of its conjugates is also bounded below by 1, and hence the maximum
must be at least

|f ′| > c
−(h3+L logL)d2n

10 .

This lower bound transfers directly to |f(l)|, proving that

|f(l)| > c−h
3−L logL

6 ,

for another constant c6.
■

Lemma 3.6. Let J be any integer such that 0 ≤ J ≤ (8n)2. Then the conclusion of
equation (4) holds for all integers l satisfying 1 ≤ l ≤ h1+J/(8n) and all non-negative integers
m0, . . . ,mn−1 such that

m0 +m1 + · · ·+mn−1 ≤
h2

2J
.

Proof. We begin by establishing the base case for our induction. When J = 0, the conclusion
follows directly from Lemma 3.4, which provides the vanishing of the auxiliary function under
appropriate bounds.

Now suppose inductively that the lemma is valid for all integers up to some fixed K with
0 ≤ K < (8n)2. Our goal is to extend the result to J = K + 1, thereby completing the
inductive step.

Let us introduce notation to clarify the quantities involved in our bounds. Define

RJ :=
⌊
h1+

J
8n

⌋
and SJ :=

⌊
h2

2J

⌋
for J = 0, 1, 2, . . .

as sequences of bounds on l and the total order of differentiation, respectively.
We now aim to show that if l is an integer such that

RK < l ≤ RK+1,

and if m0, . . . ,mn−1 are non-negative integers such that

m0 +m1 + · · ·+mn−1 ≤ SK+1,

then the value of the auxiliary function f(l) must be zero.
Recall from earlier that f(z) = Φm0,...,mn−1(z, . . . , z) is the specialization of the multivariate

function Φ at the point (z, . . . , z), and that this function is analytic. The function f(z) can
be thought of as a linear combination of exponential and algebraic terms, structured so that
its derivatives vanish at many prescribed integer points.
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To proceed, we analyze the derivatives of f at points r < l. Specifically, we consider

f (r)
m :=

(
d

dz

)m
f(z)

∣∣∣∣
z=r

,

for all integers r such that 1 ≤ r ≤ RK , and for all integers m with 0 ≤ m ≤ SK+1. By the

inductive hypothesis, each such f
(r)
m vanishes.

Let us understand why this is the case. Since f(z) is a specialization of a multivariate
function Φ(z0, . . . , zn−1), itsm-th derivative at z = r corresponds to a totalm-th order mixed
partial derivative of Φ at the point (r, . . . , r). That is,

f (r)
m =

(
∂

∂z0
+ · · ·+ ∂

∂zn−1

)m
Φm0,...,mn−1(z0, . . . , zn−1)

∣∣∣
z0=···=zn−1=r

.

Expanding the differential operator via the multinomial theorem, this becomes∑
j0+···+jn−1=m

m!

j0! · · · jn−1!
Φm0+j0,...,mn−1+jn−1(r, . . . , r).

Each term in the sum involves evaluation of Φ with total order

m0 + j0 + · · ·+mn−1 + jn−1 = m0 + · · ·+mn−1 +m ≤ SK+1 +m ≤ 2SK+1 ≤ SK ,

so by the inductive assumption, every such term vanishes. Hence, we conclude that f (m)(r) =
0 for all r ≤ RK , and for all m ≤ SK+1.

Now define the function

F (z) = (z − 1)(z − 2) · · · (z −RK),

and raise it to the SK+1-th power to match the vanishing of derivatives up to order SK+1

at each r ≤ RK . Then, F (z) has a zero of multiplicity SK+1 at each such r, and hence the
function

f(z)

F (z)

is analytic in a disk of radius slightly larger than RK .
We now invoke the maximum modulus principle. Consider a closed disk C centered at the

origin of radius

R := RK + h1/(8n).

This disk contains all zeros of F (z), and hence f(z)/F (z) is analytic on and within C. Then,
for any point z on the boundary of C, we have

|f(l)| ≤ sup
|z|=R

|f(z)| · 1

|F (z)|
.

In other words, multiplying both sides by |F (z)|, we obtain the inequality

(8) |Θf(l)| ≤ Θ|f(z)|,
where θ and Θ denote the upper and lower bounds, respectively, of |f(z)| and |F (z)| on the
circle |z| = R.

By Lemma 3.5, we know that the upper bound on |f(z)| is at most

|f(z)| ≤ ch
3+L logR

6 ,

where L ≤ h2 and R ≤ 2h, and thus logR = O(log h).
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Also, since each root of F (z) lies at distance at least h1/(8n) from l > RK , we estimate

|F (l)| ≥
(
1
2
h1/(8n)

)RKSK+1
.

On the other hand, the lower bound on |f(l)| provided by Lemma 3.5 (under the assump-
tion that f(l) ̸= 0) is:

|f(l)| > c−h
3−L logR

6 .

Putting these into inequality (8), we obtain the contradiction

c−h
3−L logR

6 ≤ ch
3+L logR

6 ·
(
1
2
h1/(8n)

)−RKSK+1
.

Taking logarithms and rearranging gives an inequality that becomes false for sufficiently
large h, because the right-hand side grows faster than the left-hand side.
Therefore, the only consistent possibility is that f(l) = 0 for all l in the specified range.

This completes the inductive step and hence the proof.
■

Lemma 3.7. Define the function ϕ(z) = Φ(z, . . . , z), where Φ is as introduced previously.
Then, for all integers j satisfying 0 ≤ j ≤ h8n, we have the estimate

(9) |ϕj(0)| < exp(−h8n).

Proof. We begin by invoking the conclusion of Lemma 3.6, which asserts the vanishing of cer-
tain derivatives of the auxiliary function Φ when its arguments are evaluated at appropriate
integer points. In particular, Lemma 3.6 ensures that for all integers l in a specified range,
and all non-negative integers m0, . . . ,mn−1 with their total sum appropriately bounded, we
have

Φm0,...,mn−1(l, . . . , l) = 0.

Let us now define two auxiliary parameters that will help control the size of the derivatives
and the region over which we estimate the function. Set:

X := h8n, Y :=

⌊
h2

28n

⌋
.

These choices are made to ensure thatX is large (exponentially in h) and Y is a corresponding
bound on the order of differentiation.

With these definitions, Lemma 3.6 tells us that for all integers r in the interval 1 ≤ r ≤ X,
and for all integers m such that 0 ≤ m ≤ Y , the derivatives

ϕm(r) =

(
dm

dzm
ϕ(z)

) ∣∣∣∣
z=r

vanish. This means that the function ϕ(z) has a zero of multiplicity at least Y at each point
z = r for 1 ≤ r ≤ X.

To capture this structure algebraically, we define the function

E(z) :=
X∏
r=1

(z − r)Y = [(z − 1)(z − 2) · · · (z −X)]Y ,

which is a polynomial of degree XY , vanishing to order Y at each of the integers 1, 2, . . . , X.
Then the quotient ϕ(z)/E(z) is an entire function (i.e., analytic everywhere in the complex
plane), because all zeros of ϕ(z) at z = r are at least of multiplicity Y , and hence cancel
exactly with those of E(z).
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Now, consider the circle Γ centered at the origin with radius

R := Xh1/(8n).

Since R > X, the function ϕ(z)/E(z) is analytic inside and on the boundary of this circle.
Therefore, by the maximum modulus principle, we obtain a bound on |ϕ(w)| in terms of the
values of |E(w)| and the maximum and minimum of |ϕ(z)| and |E(z)| on Γ.

Specifically, we let ξ and Ξ denote an upper bound for |ϕ(z)| and a lower bound for |E(z)|,
respectively, for z on Γ. Then, for any point w inside the disk |w| < X, we have:

|ϕ(w)| ≤ ξ

Ξ
|E(w)|.

We now estimate these quantities. First, on the circle of radius R, the modulus of E(z)
satisfies:

|E(z)| ≤ (2X)Y for |z| ≤ R,

since |z − r| ≤ |z|+ |r| ≤ 2X for each root r = 1, . . . , X.
Next, for the lower bound, note that on Γ, the distance |z−r| ≥ 1

2
R for all r ∈ {1, . . . , X},

since the circle has radius R = Xh1/(8n), which is sufficiently large compared to the location
of the roots. Thus,

|E(z)| ≥
(
1
2
R
)XY

=: Ξ.

As for the upper bound ξ on |ϕ(z)|, we appeal to Lemma 3.5, which gives

|ϕ(z)| ≤ ch
3+LR

6 ,

where L is a bound on the degree in the exponential components, and R = Xh1/(8n) as above.
Putting these together, we find:

|ϕ(w)| ≤ ch
3+LR

6 ·
(
1

2
R

)−XY

.

Now observe that LR ≤ h2n+2, and since

XY = h8n ·
⌊
h2

28n

⌋
≫ h2n+2,

we see that the exponent h3+LR−XY logR is negative and of large magnitude. Therefore,
the right-hand side is smaller than exp(−XY ), and hence

|ϕ(w)| < e−XY .

Finally, we use Cauchy’s integral formula to estimate the coefficient ϕj(0). Since ϕ(z) is
analytic in the disk of radius R > 1, we have

ϕj(0) =
j!

2πi

∮
Λ

ϕ(w)

wj+1
dw,

where Λ is the circle |w| = 1, traversed positively. On this circle, we have |w| = 1, and since
|ϕ(w)| < e−XY , we deduce:

|ϕj(0)| ≤ j! · e−XY .
This final estimate implies that

|ϕj(0)| < exp(−h8n)
for all j ≤ h8n, completing the proof.

■
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Lemma 3.8. Consider any integers t1, t2, . . . , tn, not all simultaneously zero, with the prop-
erty that their absolute values are bounded above by some positive integer T . Then the linear
form in logarithms

|t1 logα1 + t2 logα2 + · · ·+ tn logαn|
is bounded below by an explicit positive quantity of the form

c−T11 ,

where c11 is a positive constant depending only on the algebraic numbers involved.

Proof. To begin, for each j with 1 ≤ j ≤ n, let us denote by aj the leading coefficient of
the minimal polynomial of αj if tj > 0, or the leading coefficient of the minimal polynomial
of α−1

j if tj < 0. This choice ensures that the algebraic integers constructed will properly
reflect the exponents tj appearing in the linear form.

We now define the algebraic integer

ω = a
|t1|
1 · · · a|tn|n

(
αt11 α

t2
2 · · ·αtnn − 1

)
.

By construction, ω lies in the ring of algebraic integers, and its degree over Q is at most dn,
where d is the degree of the number field generated by the αj.

Next, consider any conjugate of ω, which is obtained by applying an embedding of the
number field into C that replaces each αj by one of its conjugates. The absolute value of
any such conjugate is bounded above by a constant of the form cT12, where c12 depends on
the heights and absolute values of the conjugates of the αj. This follows from the fact that
raising αj to the power tj and multiplying by powers of the leading coefficients can only grow
the magnitude exponentially in T .

There are two cases to consider:

• If ω = 0, then by definition we have

αt11 α
t2
2 · · ·αtnn = 1,

which implies that the linear form in logarithms

Ω = t1 logα1 + t2 logα2 + · · ·+ tn logαn

is an integral multiple of 2πi. Since the logarithms logαj are assumed to be linearly
independent over the rationals, Ω must actually be zero only if all tj vanish, which
contradicts the hypothesis that not all tj are zero. Hence, in this scenario, the lemma
holds trivially.

• Otherwise, if ω ̸= 0, then its norm (the product of all conjugates) is a nonzero integer
and hence has absolute value at least 1. Consequently, the absolute value of ω itself
must satisfy the inequality

|ω| ≥ c−Tn12 ,

for some suitable constant c12.
On the other hand, using the well-known inequality for the exponential function,

|ez − 1| ≤ |z|e|z|,

valid for all complex z, we apply this to the expression inside ω:

|αt11 · · ·αtnn − 1| = |eΩ − 1| ≤ |Ω|e|Ω|.
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Assuming, without loss of generality, that |Ω| < 1 (otherwise the lower bound is
trivial), we then find a constant c13 such that

|ω| ≤ |Ω|cT13.

Combining this upper bound with the lower bound on |ω|, we deduce that

|Ω| ≥ c−T11 ,

for some positive constant c11 depending only on the algebraic numbers and the
degree d.

This completes the proof of the lemma, establishing a nontrivial explicit lower
bound on the absolute value of any nonzero linear form in logarithms of algebraic
numbers with bounded integer coefficients.

■

Lemma 3.9. Consider positive integers R and S, and let σ0, σ1, . . . , σR−1 be R distinct
complex numbers. We define two important parameters:

σ = max{1, |σ0|, |σ1|, . . . , |σR−1|},

which represents the maximum among 1 and the magnitudes of the σi, and

ρ = min{1, |σi − σj| : 0 ≤ i < j < R},

which is the minimum distance between any two distinct σi and σj, or 1, whichever is smaller.
This minimum separation ρ measures how close together the points σi are in the complex
plane, and ensures they are sufficiently apart for our construction.

Under these conditions, for any pair of integers r and s satisfying 0 ≤ r < R and 0 ≤ s <
S, there exist complex coefficients wj, for j = 0, 1, . . . , RS − 1, with absolute values bounded
above by (8ρ/σ)RS, such that the polynomial

W (z) =
RS−1∑
j=0

wjz
j

exhibits the following interpolation properties:

W (j)(σi) = 0 for all 0 ≤ i < R, 0 ≤ j < S except for (i, j) = (r, s),

and at the exceptional point,

W (s)(σr) = 1.

In other words, W (z) is a polynomial of degree at most RS − 1 that vanishes with mul-
tiplicity S at each σi except at σr, where the s-th derivative of W equals 1, and all lower
order derivatives vanish. This polynomial thus acts as a specialized interpolating polynomial
focused on the s-th derivative at σr.

Proof. To explicitly construct such a polynomial, we use an integral representation based on
Cauchy’s integral formula for derivatives. Define

U(z) = (z − σ0)(z − σ1) · · · (z − σR−1)
S,

which is a polynomial vanishing at each σi with multiplicity S. This polynomial U(z) encodes
the zeros and their multiplicities, serving as a foundational building block for W (z).
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The polynomial W (z) can then be written as

W (z) =
(−1)s

s!

1

2πi

∫
Cr

(ζ − σr)
sU(z)

(ζ − z)U(ζ)
dζ,

where Cr is a positively oriented (counterclockwise) circle centered at σr with sufficiently
small radius δ < ρ so that Cr encloses only σr and excludes the other σi. The choice of the
contour ensures the integrand is analytic on and inside Cr except at ζ = z and ζ = σr.
By Cauchy’s differentiation formula, this integral representation guarantees that W (z) is

a polynomial of degree at most RS − 1 with the desired vanishing conditions on derivatives.
To verify the interpolation properties, we use the residue theorem and properties of U(z).
Next, the proof leverages an alternative representation for W (z), obtained by considering

the behavior of the integral as |ζ| → ∞. Since U(ζ) grows like ζRS for large ζ, the integrand
multiplied by |ζ|ℓ tends to zero for sufficiently large ℓ. Applying Cauchy’s residue theorem at
infinity, we obtain an expression for W (z) as a sum of integrals over small circles Cj around
the other points σj (for j ̸= r):

W (z) =
(z − σr)

s

s!

1

2πi

R−1∑
j=0
j ̸=r

∫
Cj

(ζ − σr)
s

ζ − z

U(z)

U(ζ)
dζ.

This representation makes it clear that W (z) is a rational function, regular at each σj for
j ̸= r, since U(z) has zeros of order S at these points. Hence, W (j)(σi) = 0 for all i ̸= r and
j < S, establishing the required vanishing of derivatives at those points.

Furthermore, by examining the integrand near σr and using the integral representation,
it follows that W (s)(σr) = 1, and all lower order derivatives vanish there. This confirms the
interpolation condition at the point σr.

Finally, the lemma asserts that the coefficients wj of the polynomial W (z) are uniformly
bounded in magnitude by (8ρ/σ)RS. This bound is established by analyzing the size of the
terms in the integral and the sum over indices, noting the finite number of terms involved
and the size constraints on σi and their separations. In particular, the number of terms
in the sums is at most SR, and the magnitudes of the rational function components are
controlled by powers of σ and ρ. Combining these observations yields the stated bound on
the coefficients.

Thus, the lemma constructs a carefully controlled polynomial W (z) which serves as an
interpolating polynomial for derivatives at prescribed points, with explicit bounds on its
coefficients. This tool is fundamental in applications requiring precise polynomial approxi-
mations with derivative constraints at multiple points. ■

We now proceed to demonstrate that the inequalities labeled as (9) in Lemma 3.7 cannot
all hold simultaneously. Establishing this impossibility will lead directly to the proof of
Theorem 2.1 by contradiction.

To start, we introduce the notation S = L + 1 and R = Sn. Any integer i in the range
0 ≤ i < RS can be uniquely expressed in the base S expansion form:

i = λ0 + λ1S + · · ·+ λnS
n,

where each λj is an integer satisfying 0 ≤ λj ≤ L.
For each such integer i, we define the quantities

vi = λ0, pi = p(λ0, . . . , λn),
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and also set

ψi = λ1 logα1 + · · ·+ λn logαn.

With these definitions, the function ϕ(z) can be written explicitly as

(10) ϕ(z) =
RS−1∑
i=0

piz
vieψiz.

Using Lemma 3.8, we know that any two distinct values of ψi, corresponding to different
multi-indices λ1, . . . , λn, differ by at least a positive constant c−L11 . There are exactly R such
distinct values, which we denote by σ0, σ1, . . . , σR−1.
If we let ρ and σ be as defined in Lemma 3.9, then it follows that

σ ≤ cL14, ρ ≥ c−L15 .

Next, choose any suffix t such that the coefficient pt ̸= 0. Define s = vt, and let r be the
index for which ψt = σr. Denote by W (z) the polynomial constructed in Lemma 3.9. By
the properties given in that lemma, the following equality holds:

pt =
RS−1∑
i=0

piWi(ψi).

Applying Leibniz’s rule for differentiation, we have

Wr(ψi) =
RS−1∑
j=0

j(j − 1) · · · (j − vi + 1)wjψ
j−vi
i =

RS−1∑
j=0

wj

[
dr

dzr
(
zieψiz

)]
z=0

,

and substituting this into equation (10), we get

pt =
RS−1∑
j=0

wjϕj(0).

Since RS ≤ h2n+2, Lemma 3.7 guarantees that inequality (9) is valid for all indices i with
0 ≤ j ≤ RS. Moreover, by Lemma 3.9, the coefficients wj satisfy

|wj| ≤ (8σ/ρ)RS ≤ (8c14Lc
L
15)

RS ≤ ch
2n+4

16 .

Because |pt| ≥ 1, it follows that

0 ≤ logRS + c17h
2n+4 − h8n.

However, this inequality cannot hold if the parameter h is chosen sufficiently large, leading
to a contradiction. Therefore, the assumption that all inequalities (9) hold is false, which
completes the proof of the theorem.

4. Recent Research and Open Problems

While there are any newer results in this field, we will mention one of the most important,
namely Nesterenko’s.

Definition 4.1. A set of elements is algebraically independent over a field if there is no
nontrivial polynomial relation among them with coefficients in that field.

Theorem 4.2 (Nesterenko). π and eπ are algebraically independent over the rationals.
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We will not go too in depth into this theorem, but this is here merely to point out that even
some relatively simple-looking results are still being shown in recent times. In fact, some
other open problems in the field include the algebraic independence of e and π as well as the
transcendence of Euler’s constant γ. Both of these, along with many other open problems,
would greatly contribute to the field. To see more open problems, see Waldschmidt [Wal22].
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