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Partial Differential Equations (PDEs)

What is a PDE?

In ODEs (ordinary differential equations), the function depends on a single
variable, whereas in PDEs we focus on multiple independent variables. We call
these multiple independent variables x, y, z, ..., and there is a dependent variable
that we write as u(x, y, z, ...). Here, the dependent variable u represents a scalar
field like temperature or potential.

Definition
A PDE is an identity where the independent variables, the dependent variable, and
the partial derivatives are all related. Using the variables we listed above, the PDE
can be written as:

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = 0

We can write the solution to a PDE as a function u(x, y, z, ...) such that it satisfies
the equation identically, or at least in some region of the x, y, z, ... variables.
”Solving” a PDE is not isolating u on one side of the equation, but rather it is
about finding a function that makes the PDE valid across some domain.
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Waves and Diffusion

Simple Transport

Say that there is water flowing at a constant rate c in a pipe with a fixed cross
section in the positive x direction, and there is a pollutant in the water. Let
u(x, t) be the concentration in grams/centimeter at time t.
We can recognize that the amount of pollutant (in grams) in the interval [0, b] at
time t is

M =

ˆ b

0

u(x, t) dx.

This integral defines the total mass of pollutant in the interval at a given time.
Since the concentration is in grams per centimeter, integrating over a length gives
total grams. This mass should be conserved as the pollutant moves, assuming
there’s no source, sink, or diffusion.
At some later time t+ h the same pollutant molecules have moved right by c · h
centimeters, which means that

M =

ˆ b

0

u(x, t) dx =

ˆ b+ch

ch

u(x, t+ h) dx.
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Waves and Diffusion

Simple Transport (Cont.)

Theorem
After more calculations and manipulations, the resulting PDE is ut + cux = 0.
The equation means that the rate of change ut of concentration is proportional to
the gradient ux, and we assume diffusion to be negligible. When we solve the
equation, we find the concentration is a function of (x− ct) only. This is because
the general solution of ut + cux = 0 is any function in the form
u(x, t) = f(x− ct).
This means that the substance moves right at a fixed speed c, which means that
each individual particle moves right at that same speed c. The solution is constant
along lines x = ct+ constant, so the pollutant shifts to the right with velocity c.
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Waves and Diffusion

Vibrating String

Say that we have a string, like a guitar or violin string, that is either a flexible,
elastic homogenous string or a string that undergoes small transverse vibrations.
At some time t, the string may look like the one in Figure 1.
Say that u(x, t) is the displacement from the equilibrium at time t and position x.
The tension is directed tangentially along the string, as seen in Figure 2.
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Waves and Diffusion

Vibrating String (Cont.)

Let us call T (x, t) the magnitude of the tension vector and let ρ be the density of
the string (the density being constant since the string is homogenous). We will
use Newton’s law on part of the string between two arbitrary points x0 and x1.

Definition

Longitudinal: T√
1 + u2x

|x1
x0

= 0

Transverse: Tux√
1 + u2x

|x1
x0

=

ˆ x1

x0

ρuttdx

Theorem
Using the definitions above along with the functions we used to model the
vibrating string, we end up with utt = c2uxx where c =

√
T
ρ , where c is the wave

speed, and the speed depends on the tension T and the mass density ρ.
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Waves and Diffusion

Vibrating String (Cont.)
If there is a significant air resistance factor r, then there is an extra proportional
term to the speed ut, so we can rewrite the equation as

utt − c2uxx+ rut = 0 where r > 0.

This is because the term rut represents a resistive force, like air drag, which
lessens kinetic energy. This equation is a damped wave equation which shows
decaying oscillations rather than constant waves.
If there is a transverse elastic force (like in a coiled spring), there is an extra
proportional term to the displacement u, resulting in the equation

utt − c2uxx + ku = 0 where k>0.
This is because the term ku is a Hookean restoring force which leads to solutions
that have standing waves or harmonic motion.
If there is an external force applied, there is an extra term which results in in the
equation:

utt − c2uxx = f(x, t)

making the equation inhomogeneous. This is because f(x, t) introduces energy
into a system and affects nonhomogeneous behavior.
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Waves and Diffusion

Vibrating Drumhead

A drumhead is an elastic, flexible, homogenous two-dimensional string, which is to
say a membrane/blob like in Figure 3. The drumhead lies in the xy plane where
u(x, y, t) has vertical displacement and there is no horizontal movement.
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Waves and Diffusion

Vibrating Drumhead (Cont.)

Say that D is any domain in the xy plane. We define the boundary curve as
bdy D, we can say that the vertical component approximately gives:

F =

ˆ
bdy D

T
∂u

∂n
ds =

ˆ ˆ
D

ρutt dx dy = ma.

Using Green’s theorem, we can rewrite this as
ˆ ˆ

D

∇ · (T∇u) dx dy =

ˆ ˆ
D

ρutt dx dy.
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Waves and Diffusion

Vibrating Drumhead (Cont.)

Theorem
After the application of Green’s theorem and the divergence theorem, we are left
with

utt = c2∇ · (∇u) ≡ c2(uxx + uyy),

where c =
√

T
ρ . This is the two-dimensional wave equation, like in the wave

equation before and ∇ · (∇u) = div grad u = uxx + uyy is the two-dimensional
Laplacian.
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Waves and Diffusion

Diffusion

Given a motionless liquid filling a straight pipe and some chemical like a dye,
diffusing through the liquid, we can define simple diffusion using the following
logic:
The dye moves from regions of high concentration to low concentration, and the
rate of this motion is proportional to the concentration gradient; this is known as
the Fick’s law of diffusion. If u(x, t) is the concentration of the dye at position x
and time t, then in the part of the pipe that spans from x0 to x1, the mass of the
dye is written as:

M(t) =

ˆ x1

x0

u(x, t) dx→ dM

dt
=

ˆ x1

x0

ut(x, t) dx.
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Waves and Diffusion

Diffusion (Cont.)

Using Fick’s law:

dM

dt
= flows into−flows out = kux(x1, t)−kux(x0, t) where k is the proportionality constant.

Fick’s law tells us that the diffusive flux at any point is −kux, but since we are
calculating the net flux into the interval, we write it as a difference of flux terms
at the boundaries.
Theorem
After more manipulation, we are left with ut = kuxx; this is known as the
diffusion equation. In three dimensions, we write

ˆ ˆ ˆ
D

ut dx dy dz =

ˆ ˆ
bdy D

k(n · ∇u) dS,

where D is any solid domain and bdy D is its bounding surface.
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Waves and Diffusion

Heat Flow

Say that u(x, y, z, t) is the temperature and say that H(t) is the amount of heat
contained in a region D. We can say that

H(t) =

ˆ ˆ ˆ
D

cρu dx dy dz

where c is the specific heat of the material and ρ is the density.
The change in heat is

dH

dt
=

ˆ ˆ ˆ
D

cρut dx dy dz.

Fourier’s law tells us that the heat flux vector −→q = −κ∇u where κ > 0 is thermal
conductivity. The negative sign makes sure that the heat flows from higher to
lower temperatures, and since there are no internal sources/sinks, heat can only
leave D through its boundary.
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Waves and Diffusion

Heat Flow (Cont.)

Theorem
After the application of more theorems and some manipulation, we get

cρ
∂u

∂t
= ∇ · (κ∇u).

This is the general form of the heat equation, and it states that the rate of change
in temperature at any point is equal to the divergence of the heat flux vector. If κ
is constant, this becomes ut = κ

cρ∆u which is the standard diffusion equation.
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Quick Exposition to Boundary Conditions

Boundary Conditions

PDEs usually have many solutions, and we try to find out a single solution by
using additional conditions to narrow down the possible solutions. These
conditions are usually either initial or boundary conditions. An initial condition
tells us about the physical state at some time t0.
For the diffusion equation, for some given function ϕ(x) = ϕ(x, y, z), an initial
condition is

u(x, t0) = ϕ(x).

ϕ(x) is the initial concentration for the diffusing substance, the initial temperature
for heat flow, and the initial condition for the Schrödinger equation.
For the wave equation, there are two initial conditions where ϕ(x) is the initial
position and ψ(x) is the initial velocity:

u(x, t0) = ϕ(x),
∂u

∂t
(x, t0) = ψ(x).
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Quick Exposition to Boundary Conditions

Boundary Conditions (Cont.)

In every problem we looked at in the previous section, there is a domain D where
the PDE is valid. In the vibrating string, D is the interval 0 < x < l so D’s
boundary has only the two points x = 0 and x = l. In the drumhead, the domain
is a plane and its boundary is a closed curve. For a diffusing substance, D is a
container holding the liquid meaning that its boundary is a surface such that
S = bdy D.
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Quick Exposition to Boundary Conditions

Boundary Conditions (Cont.)

There are three major boundary condition types, where a is a function of x, y, z,
and t:

1 (D) u is specified, known as the Dirichlet condition.
2 (N) ∂u

∂n is specified, known as the Neumann condition.
3 (R) ∂u

∂n + au is specified, known as the Robin condition.
Each of these conditions hold for all t and for x = (x, y, z) in bdy D. We write
(D), (N), (R) as equations, like when we write (N) as ∂u

∂n = g(x, t) where g is a
function that we call the boundary datum.
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Green’s Functions
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Green’s Functions

The Formulas

To understand Green’s functions, we need to consider Green’s formulas and their
applications.

Theorem

Green’s First Formula:
ˆ
∂D

v
∂u

∂n
dS =

ˆ
D

∇v · ∇udx+

ˆ
D

v∆udx,

Green’s Second Formula:
ˆ ˆ ˆ

D

(u∆v − v∆u)dx =

ˆ ˆ
∂D

(u
∂v

∂n
− v

∂u

∂n
)dS,

valid across any function pair u and v and across any solid region D.
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Green’s Functions

Green’s Representation Theorem

Theorem
Using the two formulas in the previous slides, along with a LOT of mathematical
manipulation, we get this equation that is known as Green’s Representation
Theorem: The representation theorem formula can represent any harmonic
function as an integral over the boundary. If ∆u = 0 in D, then

u(x0) =

ˆ ˆ
∂D

[−u(x) ∂
∂n

(
1

|x− x0|
∂u

∂n
)]
dS

4π
.

Now, even though we did not directly use Green’s formulas or theorems in the
Waves and Diffusion section, many of the calculations we did not have time to go
over featured the use of Green’s theorems, and we explored the applications of
these functions while talking about the examples throughout the slides.
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