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Abstract

This paper will cover PDEs extensively and delve into physical applications and
representations of PDEs, such as transport, waves, vibration, and diffusion. We walk
through and derive the underlying theorems that govern PDEs, and we give special
focus to the physical applications in things like the heat and wave equations. We will
also talk about boundary problems and how they tie the Green’s function and PDEs
together. All information, images, ideas, proofs, structure, and so on come directly
from the sources cited below, especially Strauss. The whole paper is based completely
on these textbooks, with additional commentary and analysis provided by the author.

1 Notation

Let us go over some commonly used notation in this paper. We will cover this extensively
later on, but it is still important to define it up top for consistency. This is all notation in
three dimensions, but similar notation will be used for two dimensions and one dimension:

gradf = ∇f = vector(fx, fy, fz)

div F = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
,

∆u = div grad u = ∇ · ∇u = uxx + uyy + uzz,

|∇u|2 = |grad u|2 = u2x + u2y + u2z,

where F = (F1, F2, F3) is a vector field. In this paper, we rely completely on Strauss’s
notation and ideas, so we write the Laplacian ∇ · ∇ as ∆, not ∇2. Also, we write the
derivatives by subscripts, so

∂u

∂x
= ux,

∂u

∂y
= uy, ...

2 PDEs: General

[1] [4] In ordinary differential equations (ODEs), the function depends on a single vari-
able, but in PDEs we focus on multiple independent variables x, y, z, .... PDEs also have
a dependent variable (which is the unknown function of the aforementioned independent
variables) that we write as u(x, y, z, ...).
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Definition 2.1. In a PDE, the independent variables, the dependent variable, and the
partial derivatives are all related. Using the variables we listed above, a PDE can be written
as:

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = 0

PDE solutions are usually written as a function u(x, y, z, ...) such that it satisfies the
equation above, or at least in some region of the x, y, z, ... variables. ”Solving” a PDE is not
isolating u on one side of the equation, but rather it is about finding a function that makes
the PDE valid across some domain, because locality does matter since some solutions may
not exist globally.

There are many different types of PDEs, such as linear and non-linear. We define linearity
as the following:

Definition 2.2. For an equation like L u = 0, we call L the operator. This means that if
we have some function v, L v is a new function. An example of this is L = ∂

∂x
where L

is an operator that takes v into vx. Another example is the PDE ux + yuy = 0, where the
operator L is L = ∂

∂x
+ y∂

∂y
. We can therefore define linearity as:

L (u+ v) = L u+ L v,L (cu) = cL u

for any function u and v and any constant c. Whenever the above equations are true, L is
called a linear operator.

Example. The equation L u = 0 is linear if L is a linear operator.

There are also other types of linearity, like homogeneous and inhomogeneous linear equa-
tions.

Example. L u = 0 is a homogenous linear equation if L is a linear operator. L u = g is an
inhomogeneous linear equation when g ̸= 0.

This is important because a homogeneous equation L (u) = 0 has the property that the
set of all solutions forms a vector space, meaning that all linear combinations of solutions are
solutions. For inhomogeneous equations L u = g, the solution space contains a particular
solution along with the general solution to the homogeneous equation. This decomposition
is important to solving boundary value problems and using Green’s functions.

In linear PDEs, if we have some equation L u = 0 where u and v are solutions, u + v
is also a solution. If u1, u2, u3, ..., un are all solutions for the equation, then so is any linear
combination

c1u1(x) + c2u2(x) + c3u3(x) + ...+ cnun(x) =
n∑

j=1

cjuj(x) where cj are constants.

This makes sense when we look at the definition of a linear operator, since if L is linear,
then L (u + v) = L u + L v and L (cu) = cL u. So, if each uj satisfies L uj = 0, then
L (

∑
cjuj) =

∑
cjL uj = 0. This is also known as the superposition principle.

Linearity also tells us that the sum of an inhomogeneous and homogeneous solution results
in an inhomogeneous function. Suppose that up solves L u = g and uh solves L u = 0. Then,
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L (up + uh) = L up + L uh = g + 0 = g, meaning that the sum is still a solution to the
inhomogeneous equation. This shows why we only need to find one particular solution and
add the general homogeneous solution to it so that we can get all possible solutions.

Before we continue and explore the more physical aspects of PDEs, we have to spend
more time with linear equations, starting with first-order linear equations. The simplest
solution to a PDE is ∂u

∂x
= 0 where u = u(x, y) and the general solution is u = f(y) where y

is any one-variable function. This is because the equation says that u does not vary with x,
which means that all variation has to be in the y-direction. This means that u is constant
along horizontal lines in the xy-plane. Any function f(y) fits because ∂f(y)∂x = 0 regardless
of f ’s form. This is why u = f(y) gives us the general solution.

u = y2 − y and u = ey cos(y) are examples of possible solutions. The solutions don’t
depend on x which means that they are constant on the lines where y is constant on the xy
plane. Let us also explore various solving methods for these type of equations.

Example. Solve aux + buy = 0 where a, b are constants where both are not 0.

Geometric Method The left side of the equation in the example is a directional deriva-
tive of u in the direction of the vector V = (a, b) = ai + bj, which always has to be 0.
The directional derivative in direction V is defined as DV u = aux + buy. This means that
the PDE states that Dvu = 0 so u does not change when we move alone the V direction.
Therefore, the level sets of u have to be orthogonal to V , so we now want to describe these
level sets explicitly.

From this, we can determine the following: We can also say that:

1. u(x, y) has to be constant in the direction of V

2. The vector (b,−a) is orthogonal to V .

3. The lines that are parallel to V have the equations bx−ay = constant, which are called
characteristic lines.

Given this, we can say that the solution is a constant on a characteristic line, which means
that u(x, y) depends on bx − ay alone, so the solution is u(x, y) = f(bx − ay) where f is
any function of one variable. This is the general solution. Any differentiable function f of
bx − ay will satisfy the PDE because ux = f ′(bx − ay) · b and uy = f ′(bx − ay) · (−a) so
aux + buy = abf ′ − abf ′ = 0. This shows that any such f satisfies the equation.

Coordinate Method Let us change the variables to x′ = ax+by and y′ = bx−ay. This
change of variables is important because it aligns one of the new axes with vector V = (a, b)
which is the direction where the directional derivative vanishes. More specifically, we choose
x′ because moving along it corresponds to moving along the V direction, while y′ is chosen
to be orthogonal to x′, which shows the invariant direction. This makes the PDE simpler
because we expect the solution to be constant along x′, making the directional derivative
easier to express these coordinates.

Then, we can replace the x and y derivatives by x′ and y′ derivatives. Using chain rule,
we can say the following:

ux =
∂u

∂x
=
∂u

∂x′
∂x′

∂x
+
∂u

∂y′
∂y′

∂x
= aux′ + buy′
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Here, we apply the multivariable chain rule. We compute how u changes with respect to x
with the intermediate variables x′ and y′. Since x′ = ax+by, we have ∂x′

∂x
= a and something

similar for y′. This step changes the original derivatives into the rotated coordinate frame.

uy =
∂u

∂y
=
∂u

∂y′
∂y′

∂y
+
∂u

∂x′
∂x′

∂y
= bux′ − auy′

As before, the partial derivatives of x′ and y′ with respect to y give us

∂x′

∂y
= b and

∂y′

∂y
= −a

which tell us the coefficients in the chain rule. By doing this, we express the original gradient
in terms of the new rotated coordinates.

Therefore

aux + buy = a(aux′ + buy′) + b(bux′ − auy′) = ux′(a2 + b2).

By substituting the expressions for ux and uy and grouping the terms, we see that the
combination aux+buy becomes a scalar multiple of ux′ . The cross-terms that have uy′ cancel
out perfectly because of our choices of x′ and y′. This is why we are doing the coordinate
change, to diagonalize the operator into a simple derivative with respect to one variable.

Since a2 + b2 ̸= 0, the equation becomes ux′ = 0 in the new variables. The nonzero
condition is necessary because it makes sure that (a, b) ̸= (0, 0) which in turn makes sure
that this is true change of coordinates. Since ux′ = 0 we can see that u is constant in the
x′−direction which is what we could expect from the geometric method. We have rotated
the coordinate system so that the direction of constancy aligns with one axis.

This means that the solution is u = f(y′) = f(bx− ay) where f is an arbitrary function
of one variable, so we got the same answer as before.

3 Waves and Diffusion

[1] [3] Now, we will explore the basics of flows, vibrations, and diffusion. For context,
PDEs have historically been very closely tied with physics and because of this a lot of PDE
problems are fundamentally physical problems. Let us explore these types of problems.

3.1 Simple Transport

Say that there is water flowing at a constant rate c in a pipe with a fixed cross section in
the positive x direction, and there is a pollutant in the water. Let u(x, t) be the concentration
in grams/centimeter at time t. This means that ut + cux = 0.

We can derive this equation by recognizing that the amount of pollutant (in grams) in
the interval [0, b] at time t is

M =

ˆ b

0

u(x, t) dx.

This integral defines the total mass of pollutant in the interval at a given time. Since
the concentration is in grams per centimeter, integrating over a length gives total grams.

4



This mass should be conserved as the pollutant moves, assuming there’s no source, sink, or
diffusion.

At some later time t+h the same pollutant molecules have moved right by c·h centimeters,
which means that

M =

ˆ b

0

u(x, t) dx =

ˆ b+ch

ch

u(x, t+ h) dx.

Instead of computing the mass at time t+h in [0, b] we calculate the mass in [ch, b+ ch]. We
do this because the fluid shifts each pollutant particle to the right by ch. The conservation
of mass means that the content that was originally in [0, b] is now exactly in [ch, b+ ch].

When we differential with respect to b, we get

u(b, t) = u(b+ ch, t+ h).

By differentiating both sides with respect to b, we treat the integral’s upper limit as variable,
which means that the concentration at position b and time t is equal to the concentration at
position b+ ch and a later time t+ h.

We then differentiate with respect to h and by setting h = 0 we get

0 = cux(b, t) + ut(b, t).

The right-hand side, u(b+ch, t+h) is a function of h and we differentiate it using multivariable
chain rule. By evaluating at h = 0, we return the instantaneous rate of change at position
b, and the resulting PDE is ut + cux = 0.

The equation means that the rate of change ut of concentration is proportional to the
gradient ux, and we assume diffusion to be negligible. When we solve the equation, we
find the concentration is a function of (x− ct) only. This is because the general solution of
ut + cux = 0 is any function in the form u(x, t) = f(x − ct). This can easily be seen using
the characteristic methods where each characteristic curve satisfies dx

dt
= c and along these

curves u remains constant.
This means that the substance moves right at a fixed speed c, which means that each

individual particle moves right at that same speed c. The solution is constant along lines
x = ct+ constant, so the pollutant shifts to the right with velocity c.

3.2 Vibrating String

Say that we have a string, like a guitar or violin string, that is either a flexible, elastic
homogenous string or a string that undergoes small transverse vibrations. At some time t,
the string may look like the one in Figure 1.

Say that u(x, t) is the displacement from the equilibrium at time t and position x. The
tension is directed tangentially along the string since the tension is tangentially directed along
the string, as seen in Figure 2. Let us call T (x, t) the magnitude of the tension vector and
let ρ be the density of the string (the density being constant since the string is homogenous).
We will use Newton’s law on the part of the string between two arbitrary points x0 and x1.
The slope at x1 is ux(x1, t), and Newton’s law F = ma in its longitudinal (x) and transverse
(u) components is

Longitudinal:
T√
1 + u2x

|x1
x0

= 0
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Transverse:
Tux√
1 + u2x

|x1
x0

=

ˆ x1

x0

ρuttdx

The right hand sides of the above equations are the product of the mass components that
are integrated over the string. Since we are assuming that there is no longitudinal motion,
the motion here is entirely transverse.

Now, let us assume that |ux| is very small. If we look at the Taylor expansion of
√
1 + u2x,

we get √
1 + u2x = 1 +

1

2
u2x + · · ·

where the dots are the higher powers of ux. We can drop u2x and all higher powers because
if ux is very small, then these higher powers must be even smaller. This means that we can
replace

√
1 + u2x with 1.

After replacing the value with 1, the first equation tells us that T is constant along the
string. If we differentiate the transverse equation above (assuming that T is independent of

both t and x), then we get (Tux)x = ρutt. Rewritten, that is utt = c2uxx where c =
√

T
ρ
,

where c is the wave speed, and the speed depends on the tension T and the mass density ρ.
This is also known as the wave equation.

Now, it is important to note that this is not an extremely rigorous derivation, but our
goal here is to understand why this equation works and it’s many, many useful applications.
There are at least three variations to the wave equation we found above that help us in
different conditions.

If there is a significant air resistance factor r, then there is an extra proportional term
to the speed ut, so we can rewrite the equation as

utt − c2uxx+ rut = 0 where r > 0.

This is because the term rut represents a resistive force, like air drag, which lessens kinetic
energy. This equation is a damped wave equation which shows decaying oscillations rather
than constant waves.

If there is a transverse elastic force (like in a coiled spring), there is an extra proportional
term to the displacement u, resulting in the equation

utt − c2uxx + ku = 0 where k¿0.

This is because the term ku is a Hookean restoring force which leads to solutions that have
standing waves or harmonic motion.

If there is an external force applied, there is an extra term which results in the equation:

utt − c2uxx = f(x, t)

, making the equation inhomogeneous. This is because f(x, t) introduces energy into a
system and affects nonhomogeneous behavior.
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Figure 1. Example: vibrating string

Figure 2. Force of tension directed tangentially along the string

3.3 Vibrating Drumhead

A drumhead is an elastic, flexible, homogenous two-dimensional string. It appears as a
membrane stretched across a frame, as seen in Figure 3.

Say that this membrane lies in the xy plane where u(x, y, t) is the vertical displacement
and there is no horizontal movement. The horizontal components of Newton’s law gives us
the constant tension T . Say that D is any domain in the xy plane, like a circle or rectangle.
Using reasoning similar to the vibrating string, and defining the boundary curve as ∂D, we
can say that the vertical component approximately gives:

F =

ˆ
∂D

T
∂u

∂n
ds =

ˆ ˆ
D

ρutt dx dy = ma.

In the above equation, the left side is net vertical force on the boundary ∂D integrated
using the tension T and the normal derivative ∂u

∂n
. The normal derivative ∂d

∂n
= n · ∇u is the

directional derivative in the outward normal direction where n is the unit outward normal
vector on ∂D. Using Green’s theorem, we can rewrite this asˆ ˆ

D

∇ · (T∇u) dx dy =

ˆ ˆ
D

ρutt dx dy.

Using the divergence theorem changes the boundary integral into an area integral over D by
converting the tension forces into Laplacian expressions.

SinceD is arbitrary, we can use the second vanishing theorem to see that ρutt = ∇·(T∇u)
and since T is constant, we get:

utt = c2∇ · (∇u) ≡ c2(uxx + uyy)

. The reasoning behind these steps is that if two integrands agree over all regions D, the
functions have to be equal almost everywhere. Since T is constant and pulls out of divergence,
we know that ∇ · (T∇u) = T (∆u).

In the above equation, which we call the two-dimensional wave equation, c =
√

T
ρ
like

in the wave equation before and ∇ · (∇u) = div grad u = uxx + uyy is the two-dimensional
Laplacian.
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Figure 3. The two-dimensional string: a ”drumhead”

Looking at both the one-dimensional and two-dimensional wave equations, the pattern
seems clear enough for us to write a three-dimensional wave equation:

utt = c2(uxx + uyy + uzz).

The operator

L =
∂2

∂x2
+

∂2

∂y2
+

∂

∂z2

is the three-dimensions nsional Laplacian operator which we typically write as ∆.

3.4 Diffusion

Given a motionless liquid filling a straight pipe and some chemical like a dye, diffusing
through the liquid, we can define simple diffusion using the following logic:

The dye moves from regions of high concentration to low concentration, and the rate of
this motion is proportional to the concentration gradient; this is known as the Fick’s law of
diffusion. If u(x, t) is the concentration of the dye at position x and time t, then in the part
of the pipe that spans from x0 to x1, the mass of the dye is written as:

M(t) =

ˆ x1

x0

u(x, t) dx→ dM

dt
=

ˆ x1

x0

ut(x, t) dx.

This integral sets up the conservation law because the total amount of dye in a specific part
of the pipe is the integral of concentration. By taking the time derivative of the integral this
allows us to find the local rate of change ut.

The mass in this part of the pipe doesn’t change unless the liquid flows in and out of the
ends. Using Fick’s law:

dM

dt
= flows into−flows out = kux(x1, t)−kux(x0, t) where k is the constant of proportionality.

Fick’s law tells us that the diffusive flux at any point is −kux, but since we are calculating
the net flux into the interval, we write it as a difference of flux terms at the boundaries.
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We equate the two expressions for dM
dt
, one from conservation of mass and the other from

Fick’s Law: ˆ x1

x0

ut(x, t) dx = kux(x1, t)− kux(x0, t).

We differentiate both sides with respect to the upper endpoint x1, changing the integral
equation into a local pointwise differential equation. We assume that the interval [x0, x1] is
arbitrary which allows the differentiation to be valid everywhere. Using the Fundamental
Theorem of Calculus, we get ut = kuxx.

This is known as the diffusion equation. The equation ut = kuxx tells us how concen-
tration changes under pure diffusion. The second derivative uxx represents the curvature of
the concentration graph where positive curvature means the function is concave up. In three
dimensions, we write

ˆ ˆ ˆ
D

ut dx dy dz =

ˆ ˆ
∂D

k(n · ∇u) dS,

where D is any solid domain and ∂D is its bounding surface.
The left-hand side of this equation is the total rate of change of dye in the volume D. The

right hand-side of the equation is the total net flux into D which we calculate by integrating
the normal component of −k∇u over the boundary.

Using the divergence theorem and the arbitrary nature of D we can write the three-
dimensional diffusion equation as

ut = k(uxx + uyy + uzz = k∆u.

The divergence theorem changes the boundary integral into a volume integral ∇ · (k∇u).
Since D is arbitrary, the equality has to hold pointwise, which yields the PDE. The term
∆u is the Laplacian which tells us about the spatial curvature of u in all directions.

If there is an external source of the dye or if k can change and is not constant, we get
the inhomogeneous equation

ut = ∇ · (k∇u) + f(x, t).

This generalized e uation is very useful because it lets us describe many physical concepts
like heat, brownian motion, and more.

3.5 Heat Flow

Say that u(x, y, z, t) is the temperature and say that H(t) is the amount of heat contained
in a region D. We can say that

H(t) =

ˆ ˆ ˆ
D

cρu dx dy dz

where c is the specific heat of the material and ρ is the density. As aforementioned, u(x, y, z, t)
is the scalar temperature field, and we also know that cρu is the heat per unit volume for
each point. Multiplying by cρ converts temperature to energy, and the integral gives the
total thermal energy stored in D.
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The change in heat is
dH

dt
=

ˆ ˆ ˆ
D

cρut dx dy dz.

We get this by applying Leibniz’s rule to the integral with respect to time. Since c and ρ
are constant, the derivative goes inside the integral and acts solely on u, giving ut.

Fourier’s law tells us that the heat flux vector −→q = −κ∇u where κ > 0 is thermal conduc-
tivity. The negative sign makes sure that the heat flows from higher to lower temperatures,
and since there are no internal sources/sinks, heat can only leave D through its boundary.

This means that the change of heat energy in D corresponds to a heat flux across the
boundary, meaning that

dH

dt
=

ˆ ˆ
∂D

κ(n · ∇u) dS,

where κ is the heat conductivity (a proportionality constant). The boundary integra; repre-
sents the total heat flux leaving D. The term n · ∇u is the normal derivative of temperature
across the surface, and κ(n · ∇u) is the flux magnitude per unit area.

Using the divergence theorem, we have

ˆ ˆ ˆ
D

cρ
∂u

∂t
dx dy dz =

ˆ ˆ ˆ
D

∇ · (κ∇u) dx dy dz.

The divergence theorem changes the surface integral; of the normal component into a volume
integral of the divergence. As we have said before, D is arbitrary and the integrals over the
same volume are equal, and this implies that the integrands must be equal pointwise.

From the above equation, we have the heat equation:

cρ
∂u

∂t
= ∇ · (κ∇u).

This is the general form of the heat equation, and it states that the rate of change in
temperature at any point is equal to the divergence of the heat flux vector. If κ is constant,
this becomes ut =

κ
cρ
∆u which is the standard diffusion equation.

3.6 Stationary Waves and Diffusion

In the four previous examples, the physical state is not affected by time, so ut = utt = 0.
This means that both the wave and diffusion equations reduce to

∆u = uxx + uyy + uzz = 0.

We call this the Laplace equation, and its solutions are called harmonic functions. This
happens when the system has reached equilibrium, meaning that no energy/heat is entering
or leaving, and nothing changes with time. The wave and diffusion equations simplify into
Laplace’s equation when the time derivatives are gone, as seen above.

Consider a constantly heated object that was heated in an oven. The heat is likely not
evenly spaced out throughout the object, but the object will eventually reach an equilibrium.
This is a harmonic function u(x, y, z).
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3.7 Hydrogen Atom

Suppose that we have an electron moving around a proton, where the electron has a mass
of m, a charge of e, and h is Plank’s constant divided by 2π. Say that the coordinate origins
(x, y, z) be at the proton and say that r = (x2 + y2 + z2)1/2 is the spherical coordinate.
The motion of the electron is given by a wave function u(x, y, z, t) that satisfies Schrödinger
equation:

ihut =
h2

2m
∆u+

e2

r
u

in −∞ < x, y, z < ∞. Note that u is complex-valued. The left-hand side of the above
equation represents the Hamiltonian acting on the wave function U . The Laplacian tells
us about the kinetic energy and the e2

r
term represents the Coulomb potential due to the

proton.
We are also supposed to have

ˆ ˆ ˆ
|u|2 dx dy dz = 1 the integral over all space.

This is a normalization that makes sure that the total probability of finding an electron
somewhere in space is 1. In quantum mechanics, |u|2 is a representation of the probability
density function.

We call the coefficient function e2

r
the potential; for any single electron atom, like a helium

ion, e2 is replaced with Ze2 where Z is the atomic number. The potential represents the
attractive force between the negatively charged electron and the positively charged nucleus
and the term Z scales the nuclear charge, strengthening the attractive potential for heavier
atoms.

Quantum mechanics tells us that a wave function u(x, y, z, t) is a possible state of an
electron because we cannot measure quantities. If D is any region in the xyz space:

ˆ ˆ ˆ
D

|u|2 dx dy dz.

This expression represents the probability of finding an electron in region D at some time
t. Note that the integrand |u|2 must be real and nonnegative. This integral tells us the
likelihood that a measurement of the particle’s position at time t lies in D.

We can calculate the expected z coordinate of the electron’s position at time t with the
integral ˆ ˆ ˆ

z|u(x, y, z, t)|2 dx dy dz.

This is the mean of the z position with respect to the probability distribution |u|2 and similar
formulas exist for the x and y coordinates.

The expected z coordinate of the electron’s momentum, where u is the complex conjugate
of u, is ˆ ˆ ˆ

−ih∂u
∂z

(x, y, z, t) · u(x, y, z, t) dx dy dz.

This expression comes from the momentum operator p̂z = −ih ∂
∂z
.
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The other observable values can be found by operators A that act on functions. We can
calculate the expected value of the observable A as

ˆ ˆ ˆ
Au(x, y, z, t) · u(x, y, z, t) dx dy dz.

This is the general formula for the expected observable and it is represented by the operator
A. The inner product ⟨Au, u⟩ represents the mean of the measurement outcome of A when
the system is in the state u.

The position is given by the operator Au = xu where x = xi+yj+zk and the momentum
is given by the operator Au = −ih∇u. In many types of particles, the wave function u
depends on time t and the coordinates of all the particles, meaning that the wave function
is a function of many variables. Therefore, the Schrödinger equation becomes

ihut =
n∑

i=1

h2

2mi

(uxixi
+ uyiyi + uzizi) + V (x1, ..., zn)u

for n particles where the potential function V depends on all 3n coordinates.
The above equation is known as the many-body Schrödinger equation. Every particle

has a Laplacian scaled by its mass, known as the kinetic term, and all the particles interact
through the potential V .

4 Boundary Problems

[1] PDEs usually have many solutions, and we try to find out a single solution by using
additional conditions to narrow down the possible solutions. These conditions are usually
either initial or boundary conditions. An initial condition tells us about the physical state
at some time t0.

For the diffusion equation, for some given function ϕ(x) = ϕ(x, y, z), an initial condition
is

u(x, t0) = ϕ(x).

ϕ(x) is the initial concentration for the diffusing substance, the initial temperature for heat
flow, and the initial condition for the Schrödinger equation.

For the wave equation, there are two initial conditions where ϕ(x) is the initial position
and ψ(x) is the initial velocity:

u(x, t0) = ϕ(x),
∂u

∂t
(x, t0) = ψ(x).

In every problem we looked at in the previous subsection, there is a domain D where the
PDE is valid. In the vibrating string, D is the interval 0 < x < 1 so D’s boundary has only
the two points x = 0 and x = l. In the drumhead, the domain is a plane and its boundary is
a closed curve. For a diffusing substance, D is a container holding the liquid meaning that
its boundary is a surface such that S = ∂D. For the hydrogen atom the domain is all space
so there is not any boundary.

There are three major boundary condition types, where a is a function of x, y, z, and t:

12



Figure 4. The unit normal vector pointing outward from D.

1. (D) u is specified, known as the Dirichlet condition.

2. (N) ∂u
∂n

is specified, known as the Neumann condition.

3. (R) ∂u
∂n

+ au is specified, known as the Robin condition.

Each of these conditions hold for all t and for x = (x, y, z) in ∂D. We write (D), (N), (R)
as equations, like when we write (N) as ∂u

∂n
= g(x, t) where g is a function that is called the

boundary datum.
These boundary conditions are called homogeneous if the function g(x, t) equals 0, and

if not, they are called inhomogeneous. As we have been doing, we call n = (n1, n2, n3) the
unit normal vector on ∂D which point outward from D, as seen in Figure 4. ∂u

∂n
≡ n · ∇u is

the directional derivative of u in the outward normal direction.
In one-dimensional problems where D is an interval 0 < x < 1 then the boundary has

just two endpoints, and these boundary conditions appear as:

(D) u(0, t) = g(t) and u(l, t) = h(t)

(N)
∂u

∂x
(0, t) = g(t) and

∂u

∂x
(1, t) = h(t)

There are similar conditions for the Robin condition. Now, let us explore some examples of
these boundary conditions.

The Vibrating String: If a string is held steady at both ends, we have homogeneous
Dirichlet conditions u(0, t) = u(l, t) = 0. If the string were free and could move transversely
with no resistance, then there would be no tension T at the end, so ux = 0; this is known
as the Neumann condition. If the end of the string was free to move along a tack but was
attached to a coiled spring that pulls its back to equilibrium, then the Robin condition
would be correct. If the string’s end was moved in a particular way, there would be an
inhomogeneous Dirichlet condition at the end.

Diffusion: If there is a diffusing substance in a container D so that nothing can escape
or enter, then we know that the concentration gradient in the normal direction disappears
by Fick’s law. This means that ∂u

∂n
= 0 on S = ∂D; this is the Neumann condition. If we

make the container porous so that any escaped substance immediately vanishes, then we
write u = 0 on S.

Heat: We describe heat conduction with the diffusion equation u(x, t). If we have an
insulated object D and heat is flowing through D, then no heat crosses the boundary and

13



we have the Neumann condition ∂u
∂n

= 0. If D is immersed in a large pool of a specified
temperature g(t) and there is perfect thermal conduction, then we would have the Dirichlet
condition u = g(t) on ∂D.

Say that we have a uniform rod that is insulated along the length 0 ≤ x ≤ 1 where
the end at x = l is submerged in g(t). If heat exchanges at the end and in the pool of
temperature in accordance with Newton’s Law of Cooling, then

∂u

∂x
(l, t) = −a[u(l, t)− g(t)], a > 0.

This is an inhomogeneous Robin condition.
Sound: Small disturbances in the air can be described by linearized equations, which

are
∂v

∂t
+
c20
ρ0

grad ρ = 0

∂ρ

∂t
+ ρ0 div v = 0

where ρ0 is density and c0 is speed of sound in still air.
Say that the curl of v is 0, meaning that there are no eddies in sound and v is irrotational.

From this, we can conclude that ρ and and all components of v satisfy the wave equation

∂2v

∂t2
= c20∆v and

∂2ρ

∂t2
= c20∆ρ.

In a different system, like some room D with sound-insulated walls, the air molecules
can only move parallel to the boundary, so no sound can travel in a normal direction to the
boundary. This means that v · n = 0 on ∂D. We know that there is a function ψ such that
v = grad ψ. The function also satisfies the wave equation

∂2ψ

∂t2
= c20∆ψ

where the boundary condition is −v · n = n · grad ψ = 0.
When we have an open window in room D, the atmospheric pressure is constant. The

pressure, which we call P , is proportional to the density ρ, so ρ is constant at the window,
which in turn means that ρ satisfies the Dirichlet boundary condition ρ = ρ0.

When we have a soft wall, like a membrane stretched across an open window, the pressure
difference P −P0 across the membrane is proportional to the normal velocity v ·n. We write
this as P − P0 = Zv · n where Z is the acoustic impedance of the wall.

P−P0 is therefore proportional to ρ−ρ0 for small disturbances, so the linearized equations
that we listed at the beginning of the ”Sound” subsection satisfy the boundary condition
v · n = a(ρ− ρ0).

5 Green’s Functions

[1] [2] Now that we have covered PDEs and the mathematical basis that we need to
properly understand Green’s functions

14



5.1 Green’s Identities

To understand Green’s functions, we need to consider Green’s identities and their ap-
plications. Let us start with Green’s first identity, which we can derive by applying the
one-dimensional product rule in all three directions to get

(vux)x = vxux + vuxx, (vuy)y = vyuy + vuyy, (vuz)z = vzuz + vuzz.

By summing everything up, we get

∇ · (v∇u) = ∇v · ∇u+ v∇u.

We now use the identity for the divergence of the product of a scalar and a vector field:

∇ · (v∇u) = (∇v) · (∇u) + v(∇ · ∇u) = ∇v · ∇u+ v∆u,

where ∆u = ∇ · ∇u = uxx + uyy + uzz is the Laplacian. This holds pointwise for any scalar
functions u and v that have continuous derivatives.

By integrating both sides of the identity above over a domain D ⊂ R3, we get

ˆ
D

∇ · (v∇x)dx =

ˆ
∂D

v(∇u · n)dS =

ˆ
∂D

v
∂u

∂n
dS,

where n is the outward unit normal to the boundary surface ∂D and dS is the surface
element. We can plug this back into the earlier equation to get:

Theorem 5.1. ˆ
∂D

v
∂u

∂n
dS =

ˆ
D

∇v · ∇udx+

ˆ
D

v∆udx.

We call this Green’s first identity, and it is valid across any function pair u and v and across
any solid region D.

We can derive Green’s second identity by applying the first identity to (u, v) and (v, u).
From the first identity, we know two things:

ˆ
∂D

v
∂u

∂n
dS =

ˆ
D

∇u · ∇vdx+

ˆ
D

v∆udx.

ˆ
∂D

u
∂v

∂n
dS =

ˆ
D

∇u · ∇vdx+

ˆ
D

u∆vdx.

Theorem 5.2. Green’s second identity is

ˆ ˆ ˆ
D

(u∆v − v∆u)dx =

ˆ ˆ
∂D

(u
∂v

∂n
− v

∂u

∂n
)dS.

By subtracting the two equations above, the
´
D
∇u · ∇v terms cancel out, so we now

have ˆ
∂D

u
∂v

∂n
dS −

ˆ
∂D

v
∂u

∂n
dS =

ˆ
D

u∆vdx−
ˆ
D

v∆udx.
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Figure 5. Region Dϵ with the sphere cut out of it

We can rewrite this as ˆ
D

(u∆v − v∆u)dx =

ˆ
∂D

(u
∂v

∂n
− v

∂u

∂n
)dS.

We call this Green’s second identity.
Now that we know Green’s two identities, we also need to understand Green’s Represen-

tation Theorem to be able to properly define what a Green’s function is.

Theorem 5.3. The representation theorem formula can represent any harmonic function as
an integral over the boundary. If ∆u = 0 in D, then

u(x0) =

ˆ ˆ
∂D

[−u(x) ∂
∂n

(
1

|x− x0|
∂u

∂n
)]
dS

4π
.

Proof: The representation formula we see above is a specific case of Green’s second
identity where v(x) = (−4π|x − x0|)−1. When we do this, we can see that the right side
of this specific case of the second identity lines up with the right side of the representation
theorem, but the left side clearly does not.

To fix this, we use the fact that the function v(x) us infinite at point x0. This means
that we cannot use Green’s second identity on the whole domain D, so imagine we cut out
a small ball around x0. Say that Dϵ, the region D, has a sphere with center x0 and radius
ϵ cut out of it, as seen in Figure 5. Say that x0 is the origin, which in turn means that
v(x) = − 1

4πr
where r =

√
x2 + y2 + z2 = |x|. When we write Green’s second identity with

the v(x) we specified earlier combined with the fact that ∆u = 0 = ∆v in Dϵ, we have

−
ˆ ˆ

∂Dϵ

[u · ∂
∂n

(
1

r
)− ∂u

∂n
· 1
r
]dS = 0.

However, ∂Dϵ has two parts, the boundary ∂D and the sphere r = ϵ. On the sphere,
∂
∂n

= − ∂
∂r
, meaning that the integral splits into two:

−
ˆ ˆ

∂D

[u · ∂
∂n

(
1

r
)− ∂u

∂n
· 1
r
]dS = −

ˆ ˆ
r=ϵ

[u · ∂
∂r

(
1

r
)− ∂u

∂r
· 1
r
]dS.

The equation above works for any small ϵ > 0. We can use Green’s representation theorem
if the right side of the above equation approaches 4πu(0) as ϵ→ 0. On the sphere’s surface,
we have

∂

∂r
(
1

r
) = − 1

r2
= − 1

ϵ2
.
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This means that
1

ϵ2

ˆ ˆ
r=ϵ

udS +
1

ϵ

ˆ ˆ
r=ϵ

∂u

∂r
dS = 4πu+ 4πϵ

∂u

∂r
,

where u is the average value of u(x) on the sphere |x| = r = ϵ and ∂u
∂r

is the average value
of ∂u

∂n
on this sphere.

As ϵ approaches 0, the equation above becomes

4πu(0) + 4π · 0 · ∂u
∂r

(0) = 4πu(0).

This is because u is continuous and ∂u
∂r

is bounded, so the equation where we split the
integral into two pieces now is the same formula as the representation theorem, on both
sides,therefore completing the proof. □

5.2 Theorems and Exploration

Now that we have the basis to fully understand and explore Greens’ functions, let us look
at how we can use Green’s functions to analyze the Dirichlet problem. When we looked at
the representation theorem, we used the function v(x) = (−4π|x−x0|)−1. This function has
two important properties, the fact that it is harmonic except at x0 and the fact that it has
a singularity there. We will try to get rid of one of the terms in the representation theorem
formula because the resulting function is the Green’s function for D.

Definition 5.4. Green’s function G(x) for the operator −∆ and the domain D at point
x0 ∈ D is a function for x ∈ D such that it satisfies the following conditions:

• G(x) has continuous second derivatives and ∆G = 0 in D except when x = x0

• G(x) = 0 for x ∈ ∂D

•
G(x) +

1

4π|x− x0|
is finite at x0 and it is harmonic at x0 there are continuous second derivatives every-
where.

We write the Green’s function as G(x,x0).

With this definition, here is an important theorem that we can prove using our new
knowledge.

Theorem 5.5. Given some G(x,x0), the solution for the Dirichlet problem is

u(x0) =

ˆ ˆ
∂D

u(x)
∂G(x,x0)

∂n
dS.
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Proof: We can write the representation formula as

u(x0) =

ˆ ˆ
∂D

(u
∂v

∂n
− ∂u

∂n
v)dS,

where v(x = −(4π|x−x0|)−1. By writing G(x,x0) = v(x)+H(x), we can see that H(x) is a
harmonic function across D using the conditions from the definition of the Green’s function.

By applying Green’s second identity to u(x) and H(x), we get

ˆ ˆ
∂D

(u
∂H

∂n
− ∂u

∂n
H)dS = 0.

Adding the two equations of our proof from above, we get

u(x0) =

ˆ ˆ
D

(u
∂G

∂n
− ∂u

∂n
G)dS.

But according to the second condition in the definition of the Green’s function, G disappears
on ∂D, so the last term is gone and we are left with

u(x0) =

ˆ ˆ
∂D

u(x)
∂G(x,x0)

∂n
dS.

□

6 Conclusion and Acknowledgements

There are obviously many, many more applications of the Green’s function and PDEs
both in mathematics and in real life. We have explored how PDEs affect physical phenomena
like waves and diffusion, and we have also seen how they can be used to model mathematical
spaces as well. Green’s function alone has innumerable uses that are essential to our under-
standing of physics and many other fields. I would like to thank Simon Rubinstein-Salzedo
and Serkan Salik for all the advice they have given me, without which I could not have
written this paper.
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