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ABSTRACT. We study the pricing of foreign exchange (FX) barrier options using stochastic
simulation techniques, with a focus on improving estimator efficiency and accuracy. Barrier
options are path-dependent derivatives whose valuation is highly sensitive to the monitor-
ing frequency and volatility structure of the underlying asset. We begin by modeling the
FX spot rate using a geometric Brownian motion (GBM) under the risk-neutral measure
and simulate option payoffs using Monte Carlo methods. To address the high variance and
discretization bias inherent in barrier options, we implement antithetic variates and control
variates, which are two classical variance reduction techniques, alongside Brownian bridge
interpolation to correct for missed barrier crossings. We then extend our analysis to the
Heston stochastic volatility model, which introduces volatility clustering and leverage effects
that better capture real-world FX dynamics. Empirical evaluations compare estimator per-
formance under both GBM and Heston settings, highlighting tradeoffs between accuracy,
computational cost, and model realism.

1. INTRODUCTION

Financial derivatives are contracts whose value depends on the behavior of an underlying
asset, such as a stock price, interest rate, or foreign exchange (FX) rate. Among the many
types of derivatives, options are some of the most widely traded and studied. An option
gives its holder the right, but not the obligation, to buy or sell an asset at a specified price
before or at a predetermined date. While some options depend only on the asset’s value at
expiration, others are path-dependent, meaning their payoff depends on the entire trajectory
of the asset price over time.

Barrier options are a class of path-dependent options whose existence or value is contingent
on whether the asset breaches a preset barrier level during its lifetime. These products are
especially prevalent in FX markets, where they are often used by institutions seeking cost-
effective ways to hedge currency exposure. A common example is a down-and-out call option,
which gives the right to buy a currency at maturity only if the exchange rate has not fallen
below a certain threshold during the option’s term. Although these structures are useful,
their path dependence makes pricing them far more challenging than vanilla options.

Unlike vanilla options, barrier options do not always admit closed-form pricing formulas,
particularly when the barrier is monitored at discrete intervals or when the underlying asset
follows a complex stochastic process. As a result, practitioners often turn to numerical
methods such as Monte Carlo simulation, which estimates expected payoffs by generating
many synthetic price paths and averaging over them. While flexible, this approach can be
computationally expensive and statistically inefficient. This is the case especially for barrier
options, where many paths may knock out early and contribute zero payoff, inflating the
variance of the estimator.

This paper explores the use of Monte Carlo methods to price down-and-out FX barrier

options, with a focus on improving simulation accuracy and efficiency. We begin by modeling
1
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the FX spot rate using geometric Brownian motion (GBM) under a risk-neutral framework.
To address high variance and discretization bias, we implement two classical variance reduc-
tion techniques: antithetic variates, which reduce noise by averaging over symmetric paths,
and control variates, which use analytically-priced options to adjust the estimate. We also
apply Brownian bridge interpolation, a probabilistic correction that reduces bias from missed
barrier crossings between discrete monitoring dates.

Recognizing that real-world FX dynamics often exhibit features not captured by constant
volatility models, such as volatility clustering and leverage effects, we extend our analysis to
the Heston stochastic volatility model, which treats volatility as a random process coupled
to the underlying asset. While computationally more complex, this model better reflects
market behavior and leads to more realistic pricing outcomes.

Our empirical evaluation compares Monte Carlo estimators across both models, high-
lighting how simulation accuracy and variance reduction effectiveness change under different
assumptions. These results illustrate the tradeoffs between model realism, computational
cost, and statistical efficiency in the valuation of exotic options, and provide guidance for
practitioners and researchers interested in accurate simulation-based pricing of complex fi-
nancial derivatives.

While the paper explains key financial structures and modeling choices in detail, it assumes
a foundational background in probability theory. In particular, the reader is expected to be
familiar with rudimentary concepts such as random variables and statistical terminology.

2. FINANCIAL FRAMEWORK

We define foundational concepts from financial mathematics that will be used throughout
the paper.

Definition 2.1 (Financial Asset). A financial asset is a tradable instrument representing
either ownership of a real or financial claim. In our setting, the underlying asset is the FX
spot rate S;, representing the domestic currency price of one unit of foreign currency.

Definition 2.2 (Risk-Free Asset). A risk-free asset is one whose return is known with
certainty. In this paper, we assume the existence of two risk-free assets: one denominated
in the domestic currency with rate r4, and another in the foreign currency with rate r;.

Definition 2.3 (Market). A market is a system or venue through which assets are ex-
changed. We assume an idealized setting with continuous trading, no transaction costs, and
no arbitrage opportunities.

Definition 2.4 (Arbitrage). An arbitrage opportunity is a self-financing trading strategy
that requires zero initial capital, incurs no risk, and yields a strictly positive profit with
positive probability. A financial market is said to be arbitrage-free if no such opportunities
exist.

Definition 2.5 (Option). An option is a financial derivative contract that gives the holder
the right, but not the obligation, to buy (call) or sell (put) an underlying asset at a specified
price (the strike) at or before a specified expiration date.

Definition 2.6 (Barrier Option). A barrier option is a path-dependent derivative that is
activated (knock-in) or extinguished (knock-out) if the underlying asset breaches a specified
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barrier level during the option’s life. This paper focuses on down-and-out call options, which
cease to exist if the asset falls below a lower barrier.

Definition 2.7 (Foreign Exchange (FX) Spot Rate). The FX spot rate S; denotes the price,
in domestic currency, of one unit of foreign currency at time ¢. It is the underlying asset for
the barrier options considered in this study.

3. PRELIMINARIES

We work on a filtered probability space (2, F, {F;}i>0, P), where:

e () is the sample space of possible outcomes,

e F is a sigma-algebra of events,

o {F;}i>0 is a filtration representing the evolution of information over time,
e P is the real-world (physical) probability measure.

We assume all stochastic processes are adapted to this filtration, and the usual regularity
conditions (completeness and right-continuity) hold under this filtration.

Definition 3.1 (Filtration). A filtration {F;}+>0 is a non-decreasing family of sigma-algebras
such that F;, C F, C F for all 0 < s < t. It represents the evolution of information over
time and formalizes the notion that future events cannot influence present decisions.

Definition 3.2 (Adapted Process). Let {F;}+>0 be a filtration. A stochastic process {X;}i>o
is said to be adapted to {F;} if X, is F;-measurable for all ¢ > 0. This formalizes the idea
that X, only depends on information available up to time ¢.

Definition 3.3 (Standard Brownian Motion). A stochastic process {W;};>¢ is called a stan-
dard Brownian motion (or Wiener process) with respect to the filtration {F;} and probability
measure P if:

® W() = 0,

e IV, has independent increments,

o W, — W, ~N(0,t—s) for 0 <s<t,

e The paths of W, are continuous.

Definition 3.4 (Martingale). Let {X;};>0 be an adapted stochastic process. It is a martin-
gale with respect to {F;} and measure P if:

E[X, | F =Xs as. forall 0 <s <t,
and E[|X;|] < oo for all £ > 0.

Intuitively, a martingale represents a “fair game” where the expected future value, condi-
tional on current information, equals the present value.

In the context of option pricing, we replace the physical measure P with a new proba-
bility measure Q under which all tradable asset prices become martingales when properly
discounted with respect to a risk-free rate. This leads to the following key concept:

Definition 3.5 (Equivalent Martingale Measure). A probability measure Q ~ P is called an
equivalent martingale measure (EMM) if the discounted price process {e™"S,} is a martingale
under Q, i.e.,

EQ [e_rTST | .7-}] =e ™S, forall0<t<T.
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Remark 3.1. The real-world probability measure P reflects observed outcomes and investor
preferences, whereas the risk-neutral measure QQ is a mathematical construct used for pric-
ing. Under Q, all tradable assets earn the risk-free rate, and arbitrage opportunities are
eliminated. This shift is central to modern asset pricing theory and underpins the use of
Monte Carlo simulation in this paper.

4. IT0’S LEMMA

To model asset prices governed by randomness, we must extend traditional calculus to
stochastic processes such as Brownian motion, whose paths are continuous but nowhere
differentiable. Stochastic calculus provides the framework to define and manipulate such
processes. Central to this theory is the concept of a stochastic differential equation (SDE),
which describes the evolution of a process in the form

dXt = /L(t, Xt) dt + O'(t, Xt) dVVt,

where W, is standard Brownian motion, and p and o describe the drift and volatility of the
process. A process that satisfies such an equation is called an Ité process.

[t6’s Lemma is the stochastic analog of the chain rule from classical calculus and is used to
compute differentials of functions of Ito processes. This result is foundational to continuous-
time finance and the derivation of option pricing models.

Definition 4.1 (It6 Process). A stochastic process X; is called an It process if it satisfies:
dXt = /,L(t, Xt) dt + U(t, Xt) th,
where i and ¢ are measurable functions and W, is a standard Brownian motion.

Lemma 4.1 (It6’s Lemma in One Dimension). Let X; be an Ité process and let f(t,x) €
C12([0,T] x R). ThenY; = f(t, X;) satisfies:

_(9f 8f L f ) f
Proof. We expand f(t, X;) using a stochastic Taylor expansion:
of of 10°f
df— dt+ 5 —dX; + % 2(dXt) :

Substitute dX; = udt + odW,, and use the identities (dW;)? = dt, dt* = dW,dt = 0 [Shr04].
With this, we get
(dXt>2 = O'2dt.

Hence: ,
f of 10°f ,
df = dt+ o ——(pdt + odWy) + 5 922 o=dt,
which simplifies to
af af 1 ,0°f of
df = ( Ho + (’)az>dt+08 dWy.
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5. GEOMETRIC BROWNIAN MOTION

Geometric Brownian Motion (GBM) is one of the most widely used models for asset prices
in quantitative finance. It captures the essential features of asset dynamics; namely, con-
tinuous paths, proportional returns, and randomness driven by Brownian motion, all while
remaining mathematically tractable. In this section, we define GBM, solve its stochastic
differential equation, and explain its behavior under both the real-world and risk-neutral
measures.

Definition 5.1 (Geometric Brownian Motion (GBM)). A process S; follows geometric Brow-
nian motion under measure P if it satisfies the stochastic differential equation

dSt = ,U/St dt -+ O'St dVVt,
with initial condition Sy > 0, where p € R and ¢ > 0 are constants.

Proposition 5.1 (Solution under Physical Measure). The explicit solution to the GBM SDE
18:

Sy = Sy exp [(u - %02> t+ O'Wt:| )

L

Proof. Define X; = log S;, so dX; = SitdSt - %SQ (dS;)?. Applying It6’s Lemma:

1
Integrating:
1
X; =logS; =log Sy + (,u — 502) t+ oW,

Exponentiate both sides:

1
Sy = Sy exp [(u — 502) t+ JWt] )
[ |

Proposition 5.2 (Solution under Risk-Neutral Measure). Under the risk-neutral measure
Q, the SDE becomes:

dS; = (14— r)S;dt + oS, dW,2,

and the solution 1s:

1
Sy = Spexp [(rd —Trf— §a2> t+ O’WtQ} .

Proof. Same proof as above with drift ; replaced by rq4—r; and Brownian motion W, replaced
by W2 u
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Sample FX Spot Rate Paths under GBM
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Figure 1. Sample FX spot rate paths simulated under geometric Brownian
motion (GBM). Each line represents a possible trajectory of the exchange
rate over a one-year horizon.

6. INTRODUCTION TO MONTE CARLO METHODS

Monte Carlo simulation is a powerful numerical technique for approximating expectations
by repeated random sampling [Gla04]. In financial engineering, it is commonly used to
estimate the value of derivatives when analytical pricing formulas are unavailable or difficult
to apply.

The central idea is to simulate a large number of possible future paths for an underlying
asset, compute the payoff of a derivative along each path, and take the discounted average
to approximate the expected value under a risk-neutral measure. Formally, for a contingent
claim with payoff ®(ST') at maturity 7', the arbitrage-free price is given by:

Vo =E® [e7"®(ST)],
where Q is an equivalent martingale measure and r is the domestic risk-free rate.

Remark 6.1. We price under Q rather than the real-world measure P because, under Q,
the discounted prices of tradable assets are martingales. Because of this, all assets earn the
risk-free rate in expectation, which eliminates arbitrage and lets us compute fair prices as
risk-neutral expectations.

Monte Carlo methods are particularly attractive in high-dimensional or path-dependent
settings, such as barrier options or Asian options, where closed-form solutions are rare.
Unlike tree-based methods or finite difference schemes, Monte Carlo simulation can handle
arbitrary payoff structures and stochastic processes with relative ease.

However, Monte Carlo simulation has its limitations. Its convergence rate is O(1/v/M),
meaning that improving accuracy requires a quadratic increase in the number of simulations
M. Furthermore, in the context of path-dependent derivatives like barrier options, the



PRICING FX BARRIER OPTIONS VIA STOCHASTIC SIMULATION 7

presence of binary payoffs and discrete monitoring can lead to high variance and subtle
biases.

For these reasons, Monte Carlo methods are often paired with variance reduction tech-
niques and pathwise corrections to improve efficiency and accuracy. This paper focuses on
using Monte Carlo simulation to price FX barrier options, incorporating such techniques to
produce reliable estimates.

In the following section, we introduce the mathematical model used to describe the un-
derlying FX dynamics and define the structure of the barrier option payoff.

7. MATHEMATICAL MODEL FOR FX BARRIER OPTIONS

This section introduces the modeling framework used to describe and price barrier options
in the context of foreign exchange (FX) markets. Barrier options are contracts whose payoff
depends not only on the value of the underlying asset at maturity, but also on whether
the asset price has crossed a specified level, known as the barrier, at any point during the
contract’s life. These products are especially popular in FX markets, where they serve as
tailored instruments for hedging and speculation [Hull8|. Their lower cost relative to vanilla
options, combined with their ability to express specific directional or volatility views, makes
them attractive in institutional trading. However, the path-dependence introduced by the
barrier condition complicates their mathematical treatment and often rules out closed-form
pricing formulas.

Let S; denote the FX spot rate at time ¢, representing the domestic currency price of
one unit of foreign currency. Under the domestic risk-neutral measure Q, the spot rate is
modeled as a geometric Brownian motion satisfying the stochastic differential equation

(7.1) dS; = (rg —r)S;dt + oS, dW,2,

where 74 and 7 are the domestic and foreign continuously compounded interest rates, respec-
tively; o > 0 is the volatility of the exchange rate; and V[/tQ is a standard Brownian motion
under Q [Shr04]. This model reflects the forward rate parity condition and ensures that the
discounted spot rate process e "5, is a Q-martingale, in accordance with the no-arbitrage
principle. The solution to is given explicitly by

1
Sy = Spexp ((rd —rp— 502> t+ aWtQ> ,

which implies that the logarithm of .S; is normally distributed.

The derivative contracts of interest are single-barrier call options with European-style
exercise. These options grant the right to buy the underlying currency at a fixed strike price
K at time T', but only if the spot rate has not breached a specified barrier level B during
the option’s life. We focus on the down-and-out call option, which becomes void if the spot
rate ever falls to or below the barrier B, where B < Sy. If the barrier is not breached, the
option behaves like a vanilla European call. The payoff at maturity is therefore defined by

q)(ST) = ]l{minogth Si>B} - maX(ST - K, 0),

where the indicator function enforces the knockout condition. Other variants, such as knock-
in, up-and-out, or double-barrier options, follow similar logic and can be handled with ex-
tensions of the same framework.
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Under this model, the arbitrage-free price of the option at time zero is given by the risk-
neutral valuation formula:

Vo =E° [e7" T ®(Sy)],

where the expectation is taken under the domestic risk-neutral measure. For a narrow class
of barrier options with constant parameters and continuous monitoring, this expectation
can be computed analytically using reflection techniques [RR91]. However, in most practical
settings, such closed-form solutions are no longer valid. In particular, monitoring typically
occurs at discrete times, such as daily market closes or fixings, rather than continuously.

When the barrier is monitored at a finite set of times {to,¢1,...,t,} C [0,T], the effective
payoff becomes

q)diSC<ST) - ]]-{min{Sto,Stl,...,Stn}>B} : maX(ST - K7 0)

This modification changes the distribution of payoffs and introduces a systematic upward
bias in the price relative to the continuous-monitoring case, since paths that breach the
barrier between monitoring points are not detected. Several studies have quantified this
effect and proposed correction terms, though in practice, such adjustments are often handled
numerically [BGK97].

Some barrier contracts also include fixed amounts paid immediately upon barrier breach,
known as rebates. These payments may be contingent on how and when the barrier is hit,
and they affect both the valuation and the optimal hedging strategy. In this paper, we
restrict attention to the case of zero-rebate options to simplify exposition and focus on the
core path-dependent pricing challenge. Additionally, we assume the FX spot rate follows
constant volatility GBM throughout, though more realistic models could include stochastic
volatility or jumps.

For convenience, we summarize the main parameters used in the modeling framework in
Table [I| below. These variables will be used throughout the remainder of the paper in the
development of simulation methods and analysis of numerical results.

Table 1. Model Parameters for FX Barrier Option

Symbol Description

Sy FX spot rate at time ¢

So Initial FX spot rate

K Strike price

B Barrier level

T Maturity (years)

rq4, T Domestic and foreign interest rates

o Volatility of FX spot rate

®(Sy)  Payoff function

I/VtQ Brownian motion under risk-neutral measure

8. NUMERICAL METHODS: MONTE CARLO SIMULATION

As shown in the previous section, pricing a barrier option requires computing the ex-
pected discounted payoff under a risk-neutral measure. For European-style barrier options
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with simple conditions and continuous monitoring, closed-form solutions are available. How-
ever, these formulas rely on idealized assumptions, such as constant volatility, continuous
observation, and lognormality, that often break down in practical settings. When barriers
are monitored at discrete times, or when the payoff structure is path-dependent or lacks
symmetry, closed-form pricing formulas are generally unavailable. Even when such formu-
las exist, they may rely on idealized assumptions (e.g., continuous monitoring or constant
volatility) that limit their practical accuracy. In these cases, simulation-based numerical
methods provide flexible, model-agnostic alternatives that adapt more readily to realistic
market settings.

To apply Monte Carlo methods to the pricing problem at hand, we begin by discretizing
the stochastic process S; defined in equation . For each simulated path, we generate a
sequence of asset prices {Si,, St,, ..., S, } over a uniform grid of times 0 =ty < t; < -+- <
t, = T, where the number of time steps n is chosen large enough to capture the possibility of
barrier crossing between steps. We use a uniform time grid with n steps, yielding a constant
time increment At = T'/n.

Given the dynamics of the spot rate under the risk-neutral measure,

dS, = (rqg —r;)Sydt + oS, dW2,

we simulate each path using the exact solution to this stochastic differential equation. That
is, for each step we update the spot rate using the formula

1
Stk+1 = Stk - exp [(Td_rf — 50’2) At‘f‘O’\/ At - Zk:| s

where Z; ~ N (0, 1) are independent standard normal random variables. This scheme pre-
serves the exact distributional properties of GBM at discrete time points, avoiding the dis-
cretization bias that arises in first-order approximations.

After simulating a large number M of independent paths {St(m)}te{to,...,tn}, we compute the
payoff for each path according to the discretely monitored down-and-out call structure:

oM =1 fuings -max(S\™ — K, 0).

o ,...,S§?>}>B}
The final Monte Carlo estimate for the option price is then given by the average discounted
payoff:
| M
VA —rdT | g(m)
Vo=1; D e o,
m=1
This estimator is unbiased under the discrete monitoring framework and converges almost
surely to the true value as M — oo. This estimator is unbiased under the discrete monitoring
framework and converges almost surely to the true value as M — oco. To improve efficiency,
we later incorporate variance reduction techniques that reduce estimator variance without
significantly increasing computational cost.

Remark 8.1. While the Monte Carlo estimator is unbiased with respect to the discretely
monitored model, it overestimates the true price under continuous monitoring due to unde-
tected barrier crossings between time steps. Hence, it is structurally upward-biased when
compared to the ideal continuous-monitoring case.
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Sample Paths of FX Spot Rate in Monte Carlo Simulation
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Figure 2. Sample paths of the FX spot rate under geometric Brownian
motion used in Monte Carlo simulation. Paths that cross the barrier level
B = 85 are shown in red and contribute no payoff, while valid paths are
shown in blue. The dashed line indicates the barrier. This illustrates the
path-dependence of the down-and-out option payoft.

One of the most accessible variance reduction methods is antithetic variates, which we
describe in detail in Section [10] Briefly, it involves simulating a second path using the
negated random draws of each Brownian increment to reduce variance through cancellation
of symmetric fluctuations.

We also explore the control variate method in Section (10, which leverages a correlated
variable with known expected value (e.g., a vanilla European option) to reduce variance
through analytical adjustment.

Beyond these classical techniques, more sophisticated methods such as conditional Monte
Carlo and importance sampling have also been applied to barrier option pricing
[Bla21]. However, these methods often require nontrivial mathematical setup and problem-
specific tuning. In this paper, we focus on plain Monte Carlo simulation as well as the two
aforementioned variance reduction methods: antithetic and control variates, which are both
accessible and effective in practice.

A crucial consideration when implementing Monte Carlo for barrier options is the accurate
detection of barrier crossing. Since the true asset path is continuous but simulations are
discretized, a barrier may be crossed between two time steps without being detected. This
leads to overestimation of the option value. To mitigate this, one can increase the number
of monitoring points, apply Brownian bridge interpolation techniques, or use correction
factors derived from analytic asymptotics. In this work, we address the issue by choosing a
sufficiently fine time grid to make the approximation error negligible relative to the sampling
error from the simulation.
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Finally, to assess the reliability of our pricing estimates, we compute confidence intervals
based on the central limit theorem.

Assumption 8.1. The confidence interval formula assumes that the number of simulations
M is sufficiently large for the central limit theorem to apply. In practice, choosing M > 10*
typically ensures a good approximation to normality.

Given the standard deviation s of the sample payoffs {®™}, the 95% confidence interval
for Vj is given by the open interval

(170—1.96-i, %+1.96-i).

VM VM
This allows us to quantify the statistical error and evaluate the efficiency gains achieved
through variance reduction.

By combining model-based path simulation with careful statistical techniques, we are able
to compute accurate estimates for a wide range of contract configurations and parameter
values. The next section presents numerical results from our implementation and analyzes
the effectiveness of each variance reduction strategy.

9. CORRECTING DISCRETE MONITORING BI1AS viA BROWNIAN BRIDGE
INTERPOLATION

A well-known issue in pricing discretely monitored barrier options is upward bias: simu-
lated paths may cross the barrier between monitoring dates without detection. When only
discrete prices are checked, these breaches go unnoticed, leading to falsely retained paths and
overestimated option prices. This problem worsens with coarser monitoring grids or tighter
barrier levels.

To mitigate this, we implement a correction based on Brownian bridge interpolation. A
Brownian bridge is a Brownian motion conditioned to start and end at specified values
over a fixed time interval. In our setting, we model the asset path between time steps as
a Brownian bridge conditioned on the simulated prices at those endpoints. Rather than
immediately discarding a path when all discrete prices lie above the barrier, we scale its
payoff by the conditional survival probability that the path remained above the barrier
between observations.

Proposition 9.1. Let log S; follow Brownian motion under the risk-neutral measure. Then
the probability that the process stays above a log-barrier log B on [t;_1,t;], conditional on
log Sy, , andlog Sy, is given by:

B-zl—exp(—

We define the corrected payoff as

2(log St,_, — log B)(log S;, — log B)
o2 At '

PP — max(Sr — K, 0) - HB.
i=1
This formulation preserves the binary path-dependence structure while accounting for missed
barrier crossings probabilistically.

A derivation of this formula can be found in |Gla04] and [Shr04].
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Remark 9.1. This adjustment is inexpensive to compute, involving only a product of closed-
form expressions, and adds negligible overhead even for large numbers of paths. The method
becomes especially valuable when simulation constraints limit the number of time steps.

Simulated FX Paths with Missed Barrier Crossings
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Figure 3. Two FX paths (dashed) that survive discrete monitoring yet
likely breach the barrier when interpolated. Brownian bridge adjustment
penalizes these cases.

We now investigate how this correction interacts with the monitoring frequency. Table
shows the option price under both naive and Brownian bridge-corrected methods as the
number of monitoring dates increases. The corrected price remains stable, while the naive
estimate converges toward it from above.

Monitoring Points (n) Naive Estimate BB-Corrected Relative Bias (%)

10 7.0123 6.3588 +10.28
20 6.4972 6.3294 +2.65
100 6.3825 6.3241 +0.92
250 6.3418 6.3127 +0.46

Table 2. Effect of monitoring frequency on naive and Brownian
bridge-corrected estimates.

All simulations in this table use the same random seed and baseline parameters specified
in Section : So =100, K =100, B=285,T =1, 0 =0.15, rg = 0.02, and 7y = 0.01.

Remark 9.2. These results confirm that the naive Monte Carlo estimator systematically
overstates the option’s value when monitoring is coarse. While the Brownian bridge correc-
tion is itself an approximation, it more closely reflects the continuously monitored barrier
condition and serves as a practical benchmark when closed-form solutions are unavailable.
For some configurations (e.g., constant parameters and continuous sampling), closed-form
solutions can be derived via reflection principles [RR91].

In our benchmark setting with 100,000 paths and 50 monitoring dates, the corrected
price is approximately 2.6% lower than the naive estimate. This difference is economically
meaningful within the context of institutional pricing.
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Method Estimate Std. Dev 95% CI Width
Naive Monte Carlo (100k) 6.4972 0.8601 0.1142
Monte Carlo 4+ Brownian Bridge 6.3294 0.8457 0.1218

Table 3. Barrier option prices with and without Brownian Bridge correction.

Remark 9.3. While both estimators exhibit similar variance, only the Brownian bridge
method captures the bias due to missed barrier crossings. The standard deviation remains
stable because both methods are applied to the same set of simulated paths.

Thus, Brownian bridge interpolation offers a principled and computationally cheap way
to reduce pricing bias from discrete monitoring, enhancing the realism of simulation-based
methods without sacrificing tractability.

10. VARIANCE REDUCTION TECHNIQUES

While Monte Carlo simulation offers a flexible framework for pricing complex deriva-
tives, its slow convergence rate often results in high computational cost, especially for path-
dependent options with binary features like barrier conditions. As described in Section[6] our
baseline estimator computes the expected discounted payoff by simulating a large number
of FX spot rate paths under the risk-neutral measure and averaging the resulting payoffs.
However, this approach can suffer from high variance, particularly when many paths are
knocked out and yield zero payoff.

To mitigate this issue, we implement two classical variance reduction techniques called an-
tithetic variates and control variates, which improve estimator efficiency without introducing
bias.

The antithetic variates method reduces variance by exploiting symmetry in the underlying
randomness. For each simulated Brownian path used to generate an asset price trajectory,
we also simulate its antithetic counterpart by negating the Brownian increments. Let X®
and X denote the discounted payoffs from a pair of original and antithetic paths. The
antithetic estimator is given by:

M
antl - Z <X(z X(l )
=1

This averaging reduces random fluctuations due to the anti-correlation between the path
pairs. While it does not guarantee improvement in all cases, it is computationally cheap and
generally effective for options with symmetric path dependencies.

The control variates method improves accuracy by introducing a second random variable
Y, called the control variate, whose expected value EQ[Y] is known and which is highly
correlated with the original payoff X. The adjusted estimator takes the form:

‘Z:trl:X—'—A(,LLY_Y)7
where X and Y are the sample means of X and Y over the simulated paths, py is the known
expected value of Y, and A is the optimal coefficient minimizing variance:
Cov(X,Y)

A= )
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In our implementation, we select as the control variate the terminal payoff of a European
call option with the same strike, maturity, and underlying asset as the barrier option. Because
this vanilla option has a closed-form Black-Scholes price under the same GBM dynamics, it
provides a natural and highly correlated benchmark. The strength of this method depends
on the correlation between the two payoffs: the closer their movements, the more effectively
variability in the barrier option payoff can be canceled out by deviations in the vanilla option
payoft.

These variance reduction techniques are simple to implement and significantly improve the
efficiency of Monte Carlo pricing. Their empirical performance in the context of FX barrier
options will be evaluated in the following section using simulated data under the geometric
Brownian motion model.

11. EMPIRICAL EVALUATION OF VARIANCE REDUCTION (GBM MODEL)

We now evaluate the effectiveness of the variance reduction techniques developed in pre-
vious sections under a geometric Brownian motion (GBM) model for the FX spot rate. This
serves as a baseline for later comparison with stochastic volatility models. The option under
consideration is a down-and-out European call with the following specifications: initial spot
rate Sy = 100, strike price K = 100, barrier level B = 85, maturity 7" = 1 year, domestic
and foreign interest rates r4 = 0.02 and r; = 0.01, and volatility o = 0.15. The barrier is
monitored daily, yielding 250 observation dates. For each method, we simulate M = 100,000
paths and report the standard deviation and 95% confidence interval width of the estimated
option price.

Using plain Monte Carlo simulation, we obtain an unbiased estimate under discrete mon-
itoring, but the resulting confidence interval is wide due to the binary nature of the barrier
condition. Many paths are knocked out early and contribute zero payoff, inflating variance
across the sample.

To address this, we first apply antithetic variates, which pairs each simulated path with a
second path generated using negated Brownian increments. This approach reduces random
fluctuations due to its symmetric construction and achieves a standard deviation reduction
of over 70%, while preserving the unbiasedness of the estimator.

We then apply the control variate method, using the payoff of a vanilla European call
option as the auxiliary variable, priced analytically using the Black-Scholes formula. Because
this payoff is highly correlated with that of the barrier option (sample correlation exceeding
0.9), the adjusted estimator achieves dramatic gains in efficiency. In our baseline case,
the variance is reduced by over 99%, and the confidence interval tightens by an order of
magnitude.

Table 4] summarizes the numerical results for all three estimators. Each method yields a
consistent price estimate, but with markedly different levels of statistical uncertainty.

These results confirm that even simple variance reduction methods can dramatically im-
prove simulation efficiency. Antithetic variates offer a nearly cost-free improvement, while
control variates are highly effective when an analytically priced, strongly correlated reference
is available. These gains reduce computational overhead and enable more precise pricing
estimates with fewer simulations, which is important particularly in high-dimensional or
time-sensitive settings.
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Method Estimate Std. Dev 95% CI Width Variance Reduction (%)
Plain Monte Carlo 6.2943 9.7629 0.1210 0.00
Antithetic Variates — 6.3278 5.2937 0.0656 70.60
Control Variates 6.1997 0.8493 0.0105 99.24

Table 4. Monte Carlo pricing results for down-and-out FX barrier option
under GBM.

Monte Carlo Convergence (GBM Barrier Option)

7.0 -
Plain MC

—e— Antithetic
—e— Control Variate

6.81

6.6

P .
6.2} \

103 104
Number of simulated paths (log scale)

Option price estimate

Figure 4. Convergence of Monte Carlo price estimates for the down-and-out
FX barrier option under GBM. Control variates deliver the flattest curve,
indicating the strongest variance reduction.

12. HESTON STOCHASTIC VOLATILITY MODEL

The assumption of constant volatility in geometric Brownian motion is a significant simpli-
fication. In foreign exchange markets, volatility exhibits empirical features such as clustering,
mean reversion, and correlation with asset price movements. To incorporate more realistic
volatility dynamics observed in FX markets, we adopt the Heston stochastic volatility model,
in which the asset price and variance evolve jointly under a coupled system of stochastic dif-
ferential equations.

The Heston model modifies the asset dynamics by introducing a second stochastic process
for variance. The system of SDEs under the risk-neutral measure becomes:

S, = (ra — r7)Sy dt +/ViS, dW?,
AV, = k(0 — V) dt + o,/ Vi dW,

where V/ is the instantaneous variance and W, WY are Brownian motions with correlation
p, so that dW; dW} = pdt. This formulation accounts for several observed properties of
volatility: it tends to revert to a long-term level 8, fluctuates with a degree of uncertainty
proportional to o,, and typically exhibits negative correlation with asset returns (leverage
effect).
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Parameter Interpretation

K Speed of mean reversion toward 6

0 Long-run average variance

o Volatility of variance (“vol of vol”)

p Correlation between asset and variance shocks
Vo Initial variance

Table 5. Heston model parameters and their financial interpretations.

Since barrier options do not admit closed-form solutions under the Heston model, we rely
on simulation-based methods for pricing. We discretize the system using Euler-Maruyama.
At each time step At, we simulate:

Vivar = Vi + k(0 = Vo)At + 0,/ Vit (pZy + /1 — p* Z5),
Spiat = Si-exp |(ra—rp — L)AL+ \/V;AtZl} ,

where 7, Zy ~ N(0,1) are independent. The variance path must be kept non-negative.
To ensure stability, we apply a reflection scheme and replace negative values with a small
positive threshold, i.e., Vi;a; < max(Viya¢, €), where e = 1075.

Remark 12.1. This adjustment is necessary for numerical stability, especially when the
Feller condition 2x6 > o2 is violated. While this introduces a slight upward bias in price
estimation, it is a practical necessity.

Simulating under the Heston model is computationally more intensive than the constant
volatility case. Each path requires generating two correlated random sequences and tracking
both asset and variance trajectories. However, the model captures phenomena that are crit-
ical for pricing path-dependent instruments. For instance, volatility clustering significantly
affects the likelihood of barrier breaches, and high-volatility periods increase the probability
of knockouts.

Remark 12.2. In Figure [, we observe that the stochastic volatility path exhibits periods
of elevated variance. These clusters of volatility increase the effective diffusion of the spot
rate, amplifying the likelihood of hitting a barrier even when the path starts well above it.

The Heston framework enables a direct comparison of simulation performance and pricing
outcomes under constant versus stochastic volatility. In particular, it provides a setting to
assess the robustness of variance reduction strategies and examine how volatility clustering
affects barrier breach probabilities and estimator variance. While more complex, the Heston
framework aligns more closely with real FX market behavior and enables more robust risk
assessments for exotic options.

13. EMPIRICAL EVALUATION UNDER THE HESTON MODEL

To complement our earlier analysis under the geometric Brownian motion (GBM) frame-
work, we now simulate and evaluate the pricing of the same down-and-out FX barrier option
under the Heston stochastic volatility model. This model incorporates time-varying volatil-
ity through a mean-reverting square-root process and is better suited to capturing volatility
clustering and the leverage effect observed in real-world FX markets.
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Simulated FX Path under Heston Stochastic Volatility Model

105+ —— Heston Path (Stochastic Vol)
—== Barrier (B = 85)
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95

Spot Rate
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80

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5. Illustrative comparison of GBM (dashed) and stochastic volatility
(purple) FX paths. Volatility clustering increases path variability and affects
barrier breach risk.

We simulate 100,000 FX spot paths using the full Heston model described in Section |12}
with the following parameters:

e Initial variance vy = 0.04
e Mean reversion rate Kk = 2.5
e Long-run variance ¢ = 0.04
e Volatility of volatility o, = 0.3
e Correlation p = —0.5
The option contract setup is identical to the GBM experiment: spot rate So = 100, strike
K =100, barrier B = 85, maturity 7' = 1 year, and 250 daily monitoring steps. We assume
domestic and foreign risk-free rates r4 = 0.02 and r; = 0.01.
Using plain Monte Carlo simulation without any variance reduction techniques, we obtain
the following results:

Table 6. Barrier Option Price under Heston Model (100,000 Monte Carlo

paths)
Method Estimate Std. Dev 95% CI Width
Plain Monte Carlo (Heston)  7.6666 11.7521 0.0728

These results show a noticeably higher price compared to the GBM benchmark. While the
Heston model increases the probability of early barrier breach due to volatility spikes, it also
introduces periods of elevated variance that increase the potential for large terminal payoffs,
which can outweigh the additional knockouts. Although variance reduction methods were
effective under GBM, their effectiveness under Heston is expected to decrease due to increased
payoff variability and weakened correlation structures, especially for control variates derived
from GBM assumptions.

Because our implementation uses only the plain Monte Carlo estimator for Heston, we leave
a full variance reduction comparison under stochastic volatility for future work. However,



18 CONNOR HUH

this baseline result illustrates the impact of incorporating stochastic volatility into barrier
option pricing and the need for careful calibration and computational strategy.

14. DISCUSSION

This work investigated the pricing of down-and-out foreign exchange barrier options via
Monte Carlo simulation under both constant and stochastic volatility models. Beginning
with the geometric Brownian motion (GBM) framework, we implemented antithetic variates
and control variates, and assessed their effectiveness through empirical experiments. Under
GBM, variance reduction was substantial, with control variates achieving a reduction of over
99% in standard error when an appropriately chosen vanilla European option was used as
the auxiliary variable. However, selecting an effective control variate is often nontrivial; its
success depends on strong correlation with the target payoff and the availability of an exact
or efficiently computed expected value.

We subsequently extended the model to incorporate stochastic volatility through the He-
ston framework, in which the spot rate evolves jointly with a mean-reverting square-root
process for instantaneous variance. Simulation results under Heston indicated higher barrier
option prices relative to the GBM benchmark. This increase can be attributed to volatility
clustering and the broader distributional tails associated with the stochastic variance process.
However, this realism comes at the cost of significantly increased estimator variance.

The results also highlight structural limitations of variance reduction under stochastic
volatility. The control variate approach, while effective under GBM due to the availability
of closed-form prices and strong payoff correlation, performs poorly under Heston unless
the auxiliary variable is adapted to the stochastic structure. Furthermore, methods such as
Brownian bridge interpolation, which improve discretization accuracy in the GBM case, are
not directly transferable to Heston due to the lack of conditional tractability and Gaussian
structure.

In summary, Monte Carlo methods remain a robust tool for pricing barrier options, par-
ticularly when analytical solutions are unavailable. Nevertheless, their practical effectiveness
depends critically on the modeling framework and on the availability of variance reduction
strategies that align with the structure of the underlying dynamics. The analysis here pro-
vides a benchmark for performance under both GBM and Heston models, and motivates
further work on model-aware variance reduction techniques and more efficient simulation
schemes under stochastic volatility.

15. CONCLUSION AND FUTURE WORK

We investigated the pricing of down-and-out FX barrier options using Monte Carlo simula-
tion under both constant and stochastic volatility models. In the constant volatility setting,
we implemented antithetic variates, control variates, and Brownian bridge interpolation to
address the high variance and discretization bias inherent in barrier option simulation. The
control variate method, using the payoff of a European call option under the Black-Scholes
framework, led to substantial variance reduction due to strong correlation between the aux-
iliary and target payoffs.

Under the Heston stochastic volatility model, we observed higher option prices and in-
creased variance in the Monte Carlo estimator, reflecting the broader distribution of terminal
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payoffs induced by volatility clustering. Variance reduction methods designed for GBM were
not directly transferable: while still applicable, their effectiveness was significantly reduced,
particularly in the case of control variates.

Several extensions remain. First, constructing effective control variates under stochastic
volatility, possibly through simulated vanilla payoffs with common variance paths, is a natu-
ral direction. Second, interpolation schemes adapted to non-Gaussian settings could improve
bias correction in models such as Heston. Third, hybrid simulation methods that combine
quasi-Monte Carlo techniques or multi-level methods with variance reduction may improve
both convergence rate and computational efficiency.

This work provides a reference implementation of simulation-based pricing for barrier op-
tions and identifies structural limitations and methodological adjustments required in moving
from GBM to more realistic dynamics.
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