Integral Geometry: Measuring by Averaging Intersections

Charvi Atreya

July 2025

What Is Integral Geometry?

- Integral geometry studies how to compute lengths, areas,
 volumes by averaging over families of intersecting objects.
- Rather than measuring directly:
 - Ask: How often do lines or planes intersect the shape?
- Integrals are taken using invariant measures, unchanged by motion.
- Fundamental idea: translate measurement problems into intersection problems.
- Appears in convex geometry, probability, imaging, and tomography.

Crofton's Formula in \mathbb{R}^2

$$\mathsf{Length}(\mathit{C}) = \frac{1}{4} \int \#(\ell \cap \mathit{C}) \, \mathit{d}\ell$$

- \bullet ℓ : oriented line in plane
- $d\ell$: measure over all directions and offsets
- $\#(\ell \cap C)$: number of intersection points
- $\frac{1}{4}$ accounts for orientation and direction (double counting)
- Used in stereology to estimate length from random line probes

Worked Example — Crofton on Circle

- Let $C = S^1$, the unit circle of radius 1.
- Lines are parameterized by $(\theta, p) \in [0, \pi) \times \mathbb{R}$
- A line intersects S^1 if |p| < 1, and intersects in 2 points
- We can plug in our values into the Crofton's formula to solve:

$$\int_0^{\pi} \int_{-1}^1 2 \, dp \, d\theta = 8\pi$$

Apply Crofton:

$$\mathsf{Length}(S^1) = \frac{1}{4} \cdot 8\pi = 2\pi$$

Confirms circumference using integral geometry

Line Space and Invariant Measure

- A line is determined by:
 - Direction angle $\theta \in [0, \pi)$
 - Signed perpendicular distance $p \in \mathbb{R}$
- ullet So line space is $S^1 imes \mathbb{R}$
- Natural measure: $d\ell = dp \, d\theta$
- Invariance: translating or rotating the curve doesn't change the integral
- Essential for Crofton-type results to be geometric (coordinate-free)

Kinematic Formula for Curves

$$\int_{\mathsf{SE}(2)} \#(\mathsf{A} \cap \mathsf{g} \mathsf{B}) \, \mathsf{d} \mathsf{g} = \frac{1}{\pi} \cdot \mathsf{L}(\mathsf{A}) \cdot \mathsf{L}(\mathsf{B})$$

- A, B: curves in the plane
- $gB = R_{\theta}B + x$: rotated + translated version of B
- $SE(2) = \mathbb{R}^2 \times SO(2)$: rigid motions in the plane
- Left-hand side: integrate over all positions + rotations of B
- Applications: average behavior in geometry, image analysis

Why the $\frac{1}{\pi}$?

- \bullet For small segments, probability of intersection depends on angle θ
- Contribution $\propto |\sin \theta|$
- Angular average:

$$\frac{1}{\pi} \int_0^\pi |\sin \theta| \, d\theta = \frac{2}{\pi}$$

- Normalization from uniform rotation leads to constant $\frac{1}{\pi}$
- Shows how motion symmetry controls average intersection behavior

Worked Example — Two Segments

- Let *A*, *B* be unit-length segments in the plane.
- Then:

$$\int_{\mathsf{SE}(2)} \#(A \cap gB) \, dg = \frac{1}{\pi}$$

- Proof sketch:
 - Break curves into infinitesimal segments.
 - Each pair contributes $\propto |\sin \theta|$.
 - Integrate over all directions + translations.
- More generally:

Expected intersections =
$$\frac{1}{\pi}L(A)L(B)$$

• Example: if L(A) = 2, L(B) = 3, then expected intersections =

Crofton in Higher Dimensions

$$\operatorname{Vol}_{n-k}(K) = c_{n,k} \int \#(K \cap E) dE$$

- Applies to volumes, areas, and lengths in \mathbb{R}^n
- E: affine k-dimensional plane
- Examples:
 - Length from plane slices in \mathbb{R}^3
 - Area from line probes
- $c_{n,k}$: dimension-dependent constant (often known explicitly)

Worked Example — Surface Area of Sphere

- Let $S^2 \subset \mathbb{R}^3$ be the unit sphere.
- Almost all lines intersect it in 2 points.
- Integrate over all such lines:

$$\int \#(S^2 \cap \ell) d\ell = 2 \cdot \mu(\text{lines hitting } S^2)$$

Normalize to get:

$$Area(S^2) = 4\pi$$

 Works for convex bodies: surface area from counting line intersections

Grassmannians

- G(k, n): space of all k-dimensional subspaces of \mathbb{R}^n
- Appears in Crofton-type integrals where we integrate over all planes of fixed dimension
- dim G(k, n) = k(n k)
- Natural invariant measure on G(k, n): basis for uniform integration over orientations
- Used in Blaschke–Petkantschin formulas and stereological analysis

Summary

- Integral geometry = measure via intersection averages
- Crofton: lengths/areas via line or plane intersections
- Kinematic: intersections under motion averages over SE(n)
- Grassmannians and invariant measures provide uniformity
- Applications: stereology, tomography, random shapes, convex geometry

Thank you! Questions?

References

M. W. Crofton.

On the theory of local probability.

Philosophical Transactions of the Royal Society of London, 158:181-199, 1868.

W. Blaschke.

Vorlesungen über Integralgeometrie.

Chelsea Publishing, New York, 3rd edition, 1949.

D. A. Klain and G.-C. Rota.

Introduction to Geometric Probability.

Cambridge University Press, 1997.

L. A. Santaló.

Integral Geometry and Geometric Probability.

Addison-Wesley, 1976.