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1 Introduction
Integral geometry is the study of shapes and their properties by aver-
aging or integrating over all possible positions, sizes, or orientations of
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those shapes. Rather than directly analyzing the geometric properties
of a given object, integral geometry investigates what can be inferred
by averaging over all possible positions, orientations, or configurations
of that object within a given space.

One classical example illustrating the principles of integral geometry
is Buffon’s needle problem. This asks: given an infinite plane with
parallel lines spaced distance d apart, what is the probability that a
randomly dropped needle of length ℓ will intersect a line? This problem
captures core ideas of integral geometry: the use of integration to study
how geometric objects interact under random placements.

While classical geometry is concerned with the intrinsic properties of
fixed shapes, integral geometry focuses on how geometric objects in-
teract when subjected to random placements and orientations within
a given space.

Just as induction provides a method for handling infinitely many num-
bers, integral geometry analyzes geometric properties averaged over
infinitely many positions and orientations. In the same way that the
formula ∑

n = n(n+1)
2 is a fundamental and elegant result of induction,

the formula P = 2L
πd which gives the probability that Buffon’s needle

crosses a line, stands as a classical and insightful outcome in integral
geometry.

This shift in perspective leads to elegant results such as Crofton’s for-
mula and Buffon’s needle, and extends to modern applications like
image reconstruction via the Radon transform. The sections that fol-
low explore the motivation this and the key mathematical ideas that
have shaped the field.

2 Motivation
Integral geometry lies at the intersection of two important branches
of mathematics: geometry and calculus. Traditional geometry focuses
on the properties of static shapes. Whereas, integral geometry shifts
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attention to how these shapes behave over all possible placements.

With this core idea behind integral geometry, typical questions in the
field include:

What properties emerge when a shape is averaged across all posi-
tions?

What is the probability that a random line intersects a given curve?

Which geometric quantities remain unchanged when averaged across
all transformations?

One motivation to study integral geometry is its connection to symme-
try and invariance. Many important results in mathematics come from
studying quantities that do not change under transformations, such as
length, area and curvature.

Another motivation comes from its wide range of applications across
many fields. In computer vision, integral geometry helps model how
objects appear under numerous perspectives. In tomography and med-
ical imaging, techniques such as Radon transform help to construct
internal structures from external data. In physics, similar methods are
used to understand particle behavior.

Integral geometry is powerful framework to study dynamic geometry.
It deepens our understanding of how shape, motion, and symmetry
interact in ways that classical geometry alone cannot.

3 Preliminaries

3.1 Invariant measures
3.1.1 Parameterizing

We start by looking at a simple example, all the straight lines in a
plane. This can be parameterized. A common way to represent this
is the (θ, s) representation, where θ is the angle with the horizontal
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axis and s is the the distance from the origin to the line measured on
the direction perpendicular to that line. This representation accurately
describes all the lines in the plane. Geometrically, the space of all lines
can be represented as S1 × R where S1 is the angle/direction and R is
the signed distance from the origin.

3.1.2 What are invariant measures

A central idea is the idea of invariant measures. For instance, the
space of lines in the plane can be parameterized by pairs (θ, s) where
θ ranges from 0 to 2π. This is invariant under Euclidean motions,
translations and rotations. Another way to think about this is if we
had a scanner scanning over the plane, no matter which way the plane
is oriented, the scanner gives us an unchanged amount of intersections.
This invariance is important in showing that integral geometry reflects
natural properties of shapes no matter the orientation.

With this parameterization, we can define an integral for the space of
the lines. Suppose we have a function f(l) that assigns a number to
each line l. We can write a double integral that scans over all the pos-
sible parameters,

∫
L

f(l), dl =
∫ 2π

0

∫ ∞

−∞
f(θ, s), ds, dθ.

Here L represents summing over all parameters for the line. It is im-
portant to note that ds, dθ is an invariant measure in a Euclidean space
as it does not depend on how we place the object. This is important as
integral geometry usually averages over random placements of objects.
This integral gives us a systemic way to integrate a function defined on
these lines such as computing a probability involving randomly drawn
lines.
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3.2 Geometric Probability

Geometric probability studies the likelihood of geometric events, such
as the probability that a randomly chosen point lies within a certain
region, or that a randomly placed object intersects a given set. Prob-
lems in geometric probability often require defining a suitable measure
on the space of possible configurations, and integrating over this space.

4 Historical Background
Integral geometry, as a formal discipline, emerged in the late 19th and
early 20th centuries, but its roots go back to classical problems in
geometric probability. The earliest and most famous of these is Buffon’s
needle problem, posed by Georges-Louis Leclerc, Comte de Buffon, in
1777. Buffon’s work was motivated by questions about randomness
and measurement, and his needle experiment provided one of the first
probabilistic methods for estimating the value of π.

In the 19th century, Alfred Crofton introduced what is now known as
Crofton’s formula, relating the length of a curve to the expected number
of intersections with random lines. This idea of measuring geometric
quantities by averaging over random configurations is the essence of
integral geometry.

The 20th century saw the formalization of the field by mathematicians
such as Wilhelm Blaschke and Luis Santaló, who developed the theory
of invariant measures and kinematic formulas. Their work connected
integral geometry to convex geometry, measure theory, and group the-
ory, and laid the groundwork for modern applications in areas such as
tomography, stochastic geometry, and computer vision.

4.1 Crofton’s formula

Suppose f(θ, s) is the number of times a line l intersects a given
curve C, then our double integral is the total number of intersections,
summed over all possible lines. This result is tied directly to the well
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known Crofton’s formula.

Crofton’s formula states that the length of a line can be found by
averaging how many times it gets intersected by straight lines. Suppose
we have a curve C on the plane, where a curve is covers all functions
excluding those with breaks/jumps. For every line l on the plane, where
f(l) is the amount of times that line l intersects our curve C. The total
count of intersections of these lines summed over all possible lines is
related to the curve. This gives us the formula:

1
4

∫
L

f(l), dl =
∫ 2π

0

∫ ∞

−∞
f(θ, s), ds, dθ.

We multiply our double integral by 1
4 because each line is double

counted as lines with angles θ and θ + π are essentially the same. We
can also see the line as approaching from above or below the curve.
This accounts for the 4x double counting and we thus divide by 4.

4.1.1 Crofton’s example

We can look at a simple example. Let’s suppose that C is a unit circle
with the equation x2 + y2 = 1. When |s| < 1, the line intersects the
circle at 2 points. When |s| = 1, the line is tangent and thus intersects
at only one point. When |s| > 1, the line cannot intersect at any point.
Thus, we can create a piecewise function where

f(θ, s) =


2 s < 1
1 s = 1
0 s > 1

As we came up with this piecewise function, we did not double count
the lines approaching from both sides. Thus, one layer of overcount
cannot be applied. We can plug this into Crofton’s formula in order to
solve for the length of the curve:

Length(C) = 1
4

∫ 2π

0

∫ ∞

−∞
f(θ, s), ds, dθ
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Since f(θ, s) = 0 when |s| > 1, we can restrict the range of the s-integral
to [−1, 1] to get:

Length(C) = 1
4

∫ 2π

0

∫ 1

−1
f(θ, s), ds, dθ.

We can then replace f(θ, s) with 2 for |s| < 1:

Length(C) = 1
4

∫ 2π

0

∫ 1

−1
2, ds, dθ.

Computing the inner integral gives us:

=
∫ 1

−1
2, ds = 2 − (−2) = 4.

Now the outer integral:

Length(C) = 1
4

∫ 2π

0
4, dθ = 1

4(8π) = 2π

which is indeed the length of a unit circle.

4.2 Grassmanians and kinematic formulas
4.2.1 Grassmanians

When integrating over these larger dimensions, we are basically inte-
grating over grassmanians. Grassmanians, which can be written as
G(k, n), is the space of k-dimensional linear spaces of Rn. An example
would be G(1, 3), which represents the set of all lines through the origin
in 3D space.

4.2.2 Kinematic formulas

Building onto invariant measures, kinematic formulas describe the av-
erage behavior of geometric quantities. A classic example of this is:
If two shapes in the plane, curve 1 and curve 2 can move randomly
relative(relative meaning one is fixed and the other is moving) to each
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other, then the expected number of intersection points is proportional
to their lengths.

In higher dimensions, kinematic formulas can help with expressing the
expected volume, surface area and so on. This is useful in many geo-
metric probability problems such as the Buffon’s needle.

4.3 Valuations

Another very important concept is valuations. Functions that assign a
number to a geometric object that reflects the way objects fit together.
Formally, a valuation on a group of sets can be written as:

ϕ(A ∪ B) + ϕ(A ∩ B) = ϕ(A) + ϕ(B).

This describes the way volume, surface area and more behave when
shapes are combined. In integral geometry, valuations provide a way
to describe how measurements interact.

4.4 Hadwidgers

Hadwidger’s theorem is an important result that classifies all geometric
valuations that are additive, continuous and invariant. It says that
any valuation in Rn is a linear combination of n + 1 quantities called
the intrinsic volumes. The intrinsic volumes consist of things such as
volume, surface area and the euler characteristic.

Intrinsic volume Intuition in Rn Example in R3

V0 Topological quantity Euler quantity
V1 1D extent Average projection length
V2 Surface measure Surface area
V3 Volume 3D volume

Hadwidger’s theorem tells us that these are the only possible building
blocks for shapes and no other fundamentally different quantities exist.
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5 Core Theorems and generalizations

5.1 General Kinematic Formulas

Kinematic formulas generalize the Crofton idea of averaging intersec-
tions over lines by looking at the average intersection between sets
under rigid motions. Let A and B be compact subsets of Rn like con-
vex bodies or smooth submanifolds. A smooth submanifold is simply
a lower dimensional surface.

Let G = Isom(Rn) be the group of rigid motions. In most applications
of integral geometry, we focus on orientation preserving G , known as
the special Euclidean group, denoted as SE(n) = Rn ⋊ SO(n). The
main object to study is the integral∫

G
µk(A ∪ gB), dg

which represents the expected k-dimensional volume of the intersection
A∪gB where g ∈ G randomly B throughout space. Here, µk represents
the volume in the dimension Rn. This average depends only on the
intrinsic features of the sets. This can be written as:∫

G
µk(A ∪ gB), dg =

∑
i,j

ci,jVi(A)Vj(B)

where Vi and Vj are intrinsic volumes such as volumes and surface areas
as mentioned above. ci,j are simply constants from the dimension.

5.2 Kinematics Example
5.2.1 About the equation

To see the kinematic formulas in action, let us consider two unit line
segments A and B in the plane R2. How many times do they intersect
on average if one line is randomly rotated and transalated. This is
under a case for a kinematic formula for curves which says that the
expected number of intersection points between two curves is:∫

SE(2)
#(A ∩ gB), dg = 1

π
· L(A) · L(B)
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. Here, SE(2) represents all rigid motions that can transalate and rotate
B. A typical element g ∈ SE(2) will look something like:

gB = RθB + x

where Rθ is an angle and x is a rotation vector. #(A ∩ gB) represents
the the number of points in the intersection of A and the moved version
of gB. The right-hand-side,

1
π

· L(A) · L(B)

where L(A) and L(B) are lengths of curves can be derived by first
rewriting the integral as:∫

SE(2)
#(A ∩ gB), dg =

∫ 2π

0

∫
R2

#(A ∩ (RθB + x)), dx, dθ

, separating out the invariant measures. We replaced dg with dx, dθ
which is known as the Haas measure.

We can imagine breaking A and B into many small straight segments
of infinitessimal lengths. The probability that a segment of B, when
randomly rotated and transalated, intersects as fixed segment of A is
proportional to the sin angle between them. More precisely, the chance
of intersection is proportional to | sin(θ)| where θ is the angle between
the two segments. Since we are rotating over all directions, we average
| sin(θ)| over θ ∈ [0, π] which gives us:

1
π

∫ π

0
| sin(θ)|, dθ = 2

π

. Now, summing over all possible segment pairs, each pair contributing
a tiny chance to intersect. The total expected number of intersections
scale with the product of the curve lengths. The 2

π becomes 1
π due

to symmetries and double counting in the angle. This gives back our
original equation:∫

SE(2)
#(A ∩ gB), dg = 1

π
· L(a) · L(b)

.
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5.2.2 Working through the example

We now work through an example using this equation. Let L(a) =
L(b) = 1 where L(a) and L(b) are straight lines with length 1. We
want to calculate the expected number of intersection points between
A and a randomly moved B.

First, we plug it into the formula to get:∫
SE(2)

#(A ∩ gB), dg = 1
π

· 1 · 1 = 1
π

. This means on average, if we move the segment B around the plane,
the expected number of intersections 1

π .

5.3 More on Crofton’s formula
5.3.1 Crofton’s formula in higher dimensions

Crofton’s formula extends to higher dimensions, allowing computation
of geometric quantites like areas and volumes. In Rn, one version of
the generalized Crofton’s formula expresses the (n − k) dimensional
volume on a set K ⊂ Rn in terms of the number of intersections it has
with k-planes. More precisely, if Gk

n denotes the space of all k-planes
in Rn with an invariant measure, then equation to represent this is:

V oln−k(K) = cn,k

∫
Gk

n

#(K ∩ E), dE

where cn,k is a constant depending on only one of the dimensions.

For example, the length of a curve in R3 can be computed by the
amount of time is is intersected by random planes. Similarly, the sur-
face area of a body can be determined by integrating over the number
of intersections with lines.

5.3.2 Example of higher dimension Crofton’s formula

We can use this formula to calculate the surface area of a sphere. Let
S2 ⊂ R3 be a unit sphere centered at the origin. We write it in the
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form S2 because the unit sphere can be thought of as a two-dimensional
manifold in R3. In R3, Crofton’s formula states that the surface area
of a smooth convex shape K is proportional to the number of times it is
intersected by a random straight line. This formula can be represented
as:

Area(K) = 1
2π

∫
G3

nK(L)dL

where G3 is the space of all lines in R3, and nK(L) is the number of
intersections of a line L with the boundary of K. The integral is with
respect to the invariant measure on G3.

5.4 Measure and Invariance

A central concept in integral geometry is the use of measures that
are invariant under certain transformations, such as translations or
rotations. For example, the Lebesgue measure on R2 is invariant un-
der translations, making it the natural choice for problems involving
random points in the plane. For problems involving lines, we seek a
measure on the space of lines that is invariant under rigid motions.

5.5 Group Actions

Group actions formalize the idea of moving objects around in space. In
integral geometry, we are often interested in how geometric quantities
behave under the action of a group, such as the group of rigid motions
(translations and rotations). Invariant measures under these group
actions are essential for the validity of integral geometric formulas.

6 Buffon’s Needle Problem in Detail
Suppose we have a floor with parallel lines spaced d units apart. We
drop a needle of length L ≤ d at random. What is the probability P
that the needle crosses a line?
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Let θ be the acute angle between the needle and the lines (0 ≤ θ ≤ π),
and let x be the distance from the center of the needle to the nearest
line (0 ≤ x ≤ d/2). The needle crosses a line if x ≤ L

2 sin θ.

The probability is given by

P = 1
π

∫ π

0

2
d

∫ L
2 sin θ

0
dx dθ = 2

πd

∫ π

0

L

2 sin θ dθ = L

πd

∫ π

0
sin θ dθ = 2L

πd

This result is really interesting because it connects a geometric prob-
ability with the number π, providing one of the earliest probability
methods for estimating π.

6.1 Generalizations

If L > d, the probability calculation becomes more complex, as the
needle can cross more than one line. The general formula involves inte-
grating over the possible number of crossings. Buffon’s needle problem
can also be generalized to other shapes (e.g., dropping a coin or a
rectangle), to higher dimensions, or to different arrangements of lines.

7 Crofton’s Formula

7.1 Statement

Crofton’s formula relates the length of a curve to the expected number
of times a random line intersects it. For a rectifiable curve C in the
plane,

L(C) = 1
2

∫
L

n(C, ℓ) dµ(ℓ)

where n(C, ℓ) is the number of intersections of C with the line ℓ, and
dµ is the invariant measure on the space of lines.

7.2 Proof of Crofton’s Formula

Let C be a smooth curve in the plane, parameterized by arc length
s ∈ [0, L], with position vector r(s) = (x(s), y(s)).
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A line in the plane can be described by the equation

x cos θ + y sin θ = p

where θ ∈ [0, π) and p ∈ R.

The invariant measure on the space of lines is dµ = dp dθ.

For each s, the set of lines passing through r(s) is given by all (θ, p)
with p = x(s) cos θ + y(s) sin θ.

The total number of intersections of C with all lines is∫
L

n(C, ℓ) dµ(ℓ) =
∫ π

0

∫ ∞

−∞
n(C, (θ, p)) dp dθ

But we can also write∫
L

n(C, ℓ) dµ(ℓ) =
∫ L

0

∫ π

0
δ(p − x(s) cos θ − y(s) sin θ) dθ dp ds

where δ is the Dirac delta function.

Integrating over p gives∫ L

0

∫ π

0
dθ ds =

∫ L

0

∫ π

0
δ(p − x(s) cos θ − y(s) sin θ) dθ dp ds

But for each s, the set of lines passing through r(s) is parameterized
by θ, so integrating over all θ gives the total measure of lines through
C.

The key step is to compute the expected number of intersections per
unit length. For a small segment ds, the set of lines intersecting it is
proportional to ds.

The calculation shows that∫
L

n(C, ℓ) dµ(ℓ) = 2L

so
L = 1

2

∫
L

n(C, ℓ) dµ(ℓ)
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7.3 Intuitive Explanation

Crofton’s formula can be understood intuitively as follows: The length
of a curve is proportional to the average number of times it is intersected
by random lines. The factor of 1/2 arises because each intersection is
counted twice (once for each direction of the line).

8 Worked Examples

8.1 Length of a Line Segment

Consider a line segment of length L. Every line that intersects the
segment does so exactly once, except for a set of measure zero (lines
tangent to the endpoints). The total measure of lines intersecting the
segment is 2L, so Crofton’s formula gives the correct length.

8.2 Length of a Circle

For a circle of radius r, the number of lines intersecting the circle is
proportional to the circumference. Crofton’s formula gives

L = 2πr

as expected.

8.3 Length of a Polygonal Curve

For a polygonal curve, Crofton’s formula can be applied to each seg-
ment, and the total length is the sum of the lengths of the segments.

8.4 Crofton’s Formula for an Ellipse

Let C be an ellipse with semi-axes a and b. The length of the ellipse is
given by

L = 4aE(e)
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where E(e) is the complete elliptic integral of the second kind and
e =

√
1 − b2/a2 is the eccentricity.

Using Crofton’s formula, we can compute the expected number of in-
tersections of a random line with the ellipse, and verify that it matches
the known formula for the circumference.

9 Applications of Crofton’s Formula
Crofton’s formula provides a way to define and compute the length of
curves in terms of intersections with lines, which is useful in geometric
measure theory.

There are higher-dimensional analogues of Crofton’s formula. For ex-
ample, the area of a surface can be expressed in terms of the expected
number of intersections with random planes.

In tomography, Crofton’s formula underlies the mathematics of re-
constructing images from projections, as in CT scans. The Radon
transform, which is fundamental in tomography, is closely related to
Crofton’s formula.

In stochastic geometry, Crofton’s formula is used to compute expected
values of geometric quantities in random structures, such as random
tessellations or random graphs.

Integral geometry is used in computer vision for shape recognition and
in robotics for motion planning. For example, Crofton’s formula can
be used to estimate the length of object boundaries in digital images.

17



10 Other Results in Integral Geometry

10.1 Santaló’s Formula

Santaló’s formula generalizes Crofton’s formula to higher dimensions
and more general spaces. It relates integrals over a space to integrals
over its dual space.

10.2 Blaschke’s Rolling Theorem

Blaschke’s rolling theorem gives conditions under which a convex body
can ”roll” inside another without losing contact.

10.3 Hadwiger’s Theorem

Hadwiger’s theorem classifies all continuous, rigid-motion-invariant val-
uations on convex bodies in Rn. It is a deep result with connections to
convex geometry, measure theory, and topology.

11 Modern Developments
Integral geometry extends to higher dimensions, with applications to
convex geometry, stochastic geometry, and more. For example, in three
dimensions, the surface area of a surface can be expressed in terms of
the expected number of intersections with random planes.

Stochastic geometry studies random geometric structures, often using
tools from integral geometry. For example, the expected number of in-
tersections of a random line with a random set can be computed using
Crofton’s formula.

Integral geometry is used in computer vision for shape recognition and
in robotics for motion planning. For example, Crofton’s formula can
be used to estimate the length of object boundaries in digital images.
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