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1 Introduction

In the 1400s, King Louis XI of France was recorded to possess the first indoor
billiard table, transforming the game of pool into an indoor sport. Around
600 years later, Alexander Zelyakov and Anatole Katok published their paper
”Topological transitivity of billiards in polygons”, widely considered to be the
first mathematical paper which formalized rational billiards as a topic.

Now, how does the recreational game of pool relate to this topic of rational
billiards? Many readers are already familiar with 8-ball pool before, whether
on a real table or on a phone. One of the most satisfying aspects of pool is
the ability to perfectly control the trajectory of the cue ball. The cue ball will
roll in a straight line until it hits a pool table wall, where it’ll bounce off at the
same angle which it hit it with. On a phone screen, one could even imagine
pulling out a ruler to carefully measure each angle and trajectory, calculating
the perfect shot in every round of 8-ball pool.

Mathematically, these rules and ideas lead to the study of billiard dynamics,
which analyzes how a frictionless ball moves forever in a closed polygon, bounc-
ing perfectly off the sides each time. One main question posed in billiard dy-
namics is the concept of periodic billiard paths; Will the ball you launch ever
return to exactly where it started, moving in the same direction?

For common shapes like squares or rectangles, billiard trajectories insides these
polygons are well understood. It’s known that if a ball’s direction has a rational
slope, its path will always repeat after a certain amount of bounces. Billiard
trajectories in shapes like triangles have been well-explored similarly. In 2009,
Richard Evan Schwartz proved that all triangles with angles at most 100 degrees
contain a periodic billiard path, and this number has since been improved to
112.2 degrees. Billiard trajectories like these can be classified as rational bil-
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liards; a special case of billiard systems where all interior angles of the polygon
are rational multiples of π.

However, not all rational billiards have solutions like the square or equilateral
triangle. The regular pentagon poses a challenge to find periodic paths on.
Unlike squares or equilateral triangles, the regular pentagon cannot tile a plane
completely, meaning the usual trick of unfolding does not produce a simple
pattern.

Finally, in 2018, Diana Davis and Samuel Lelièvre made a breakthrough on
this problem. They found a way to transform the double pentagon, which is
two pentagons stuck together, into a new shape called the golden L, which
is a shape constructed using rectangles and the golden ratio, making billiard
trajectories easier to calculate. Using this shape, they managed to give a step-
by-step method to find every possible periodic billiard path inside the pentagon.
They also managed to determine how many times it bounces (the combinatorial
period) and how far the ball travels (the Euclidean length) before returning to
its original position.

2 Billiards

2.1 Definitions

Definition 2.1. A billiard system is defined as the motion of a point mass
inside a closed polygonal region, where the particle moves in straight lines within
the interior and reflects elastically off the boundary. The motion is governed by
the law of reflection: the angle of incidence equals the angle of reflection.

Lemma 2.2. Let a billiard trajectory strike the boundary of a polygonal table
at a point where the boundary is smooth. Then the angle of incidence is equal
to the angle of reflection; that is, the trajectory satisfies the law

θin = θout,

where θin is the angle between the incoming trajectory and the normal of the
boundary, and θout is the angle between the outgoing trajectory and the same
normal.

Proof. Let the billiard ball travel along a straight line segment until it strikes
the boundary at a point P . Let the incoming vector v⃗in make an angle θin with
the boundary at P .

According to the geometric law of reflection, the reflected vector v⃗out lies in the
same plane as v⃗in and n⃗, and satisfies
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v⃗out = v⃗in − 2(v⃗in · n⃗)n⃗,

which is the reflection formula across a plane normal to n⃗.

This transformation preserves the angle between the trajectory and the bound-
ary, meaning that the angle the outgoing trajectory makes with n⃗ is equal to
that of the incoming trajectory.

Therefore, θin = θout.

Hence, the law of reflection holds at every collision with the boundary.

2.2 Examples of Billiard Systems

2.2.1 Rectangular Billiard (Pool Table)

Donald hits the ball at random.

While playing pool, have you ever felt
like Donald Duck?

In Donald in Mathmagic Land (1959),
there’s a moment where Donald fran-
tically hits the cue ball in every direc-
tion, hoping one shot might magically
work.

But then, he’s introduced to the dia-
mond system, a method for predict-
ing bank shots in pool. Suddenly, the
pool table transforms into a game of
math, where each shot follows a pre-
dictable pattern based on angles and
reflections.

This moment perfectly captures rect-
angular billiards. In mathematics, a
standard pool table is modeled as a
rectangle where the ball reflects off
the sides according to the law of re-
flection. If the direction of the ball
has a rational slope, the path will al-
ways repeat itself at one point.
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Figure 1: The diamond system saves
the day! Figure 2: Now Donald is happy!

2.2.2 Elliptic Billiard

An elliptic billiard takes place inside an elliptical boundary. A unique feature
of this system is that any trajectory starting at one focus will always reflect
through the other focus. Elliptic billiards typically exhibit three distinct types
of behavior, focal, hyperbolic, and parabolic. In focal trajectories, the trajec-
tories pass through both foci and reflect back and forth and this motion will
converge to the major axis. In hyperbolic trajectories, the trajectories bounce
around creating a dense hyperbolic-shaped region in between the foci. In ellip-
tic trajectories, the trajectories bounce around creating a dense elliptic-shaped
region outside the foci.

Will insert image of the three kinds of billiards

F1 F2

Figure 3: Three types of trajectories in an elliptic billiard: focal (blue), hyper-
bolic (red), and parabolic (green).

2.2.3 Sinai Billiard

The Sinai billiard, also known as the Lorentz gas, involves a square domain
with a circular obstacle removed from the center. This system is one of the
earliest known models of deterministic chaos. Despite the simple geometry,
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slight changes in initial conditions of the particle trajectory lead to significant
changes in behavior.

Figure 4: Sinai billiard system: square boundary with a central circular obstacle

3 Rational Billiards

3.1 Definitions

Definition 3.1. A rational polygon is a polygon where each of its interior
angles is a rational multiple of π. That is, for each interior angle θi, there exist
integers mi, ni such that θi =

miπ
ni

.

Definition 3.2. A rational billiard is a billiard system in which the polygonal
domain is a rational polygon.

3.2 Examples

The class of rational billiards is particularly important due to the structure it
imposes on the billiard system. When the underlying polygon is rational, the
dynamics of the billiard flow become far more easy to calculate as the possible
directions of motion are limited and we are able to use techniques such as
unfolding.

Several classic shapes qualify as rational polygons and serve as foundational
examples.

• In a square table, all angles are π/2

• In a equilateral triangle, all angles are π/3
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• In a regular hexagon, all angles are 2π/3

(a) Square

(b) Equilateral Triangle

(c) Regular Hexagon

Figure 5: Trajectories in three basic rational billiard tables. (Will add trajec-
tories later when I figure it out and its vertical for some reason fix this using a
table and alignment)

These cases contrast sharply with irrational polygons, where the internal an-
gles are not rational multiples of π. In such settings, trajectories often behave
erratically, and no unfolding procedure exists, leading to unpredictable billiard
trajectories.

4 Periodic Trajectories in Billiards

4.1 Definitions and Properties

In the study of billiards, one central object of interest is the periodic trajectory.

Definition 4.1. A billiard trajectory is said to be periodic if the particle returns
to its initial position and direction after a finite number of reflections off the
boundary. That is, a trajectory starting at a point x0 with initial direction θ is
periodic if there exists a minimal integer n such that the path after n reflections
returns to x0 with the same incoming direction θ.

One example of a periodic trajectory lies in a square billiard table. In a square
billiard table, if the slope of the trajectory is rational, say m = p/q, then the
trajectory is periodic, and the particle will return to its initial position in 2(p+q)
reflections off the boundary. In the following section, we will prove this claim.
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Figure 6: A periodic trajectory in a square billiard with rational slope 1
2 . (Not

complete yet)

Not all trajectories in a billiard table are periodic; some fill regions densely,
never returning exactly to their starting point.

4.2 Periodic Paths in Classical Shapes

Acute Triangle: The Fagnano Orbit

One classical polygon which exhibit periodic orbits is the Fagnano orbit in acute
triangles, which exists in any acute triangle and is the shortest periodic billiard
path in all acute triangles.

Proof. Let △ABC be an acute triangle. Let D,E, F be the feet of the perpen-
diculars from vertices A,B,C to the opposite sides BC,AC,AB, respectively.
Consider the path D → E → F → D.

To prove that this forms a valid billiard trajectory, we must show that the path
reflects off the sides of the triangle according to the law of reflection: the angle
of incidence equals the angle of reflection.

We use a geometric argument based on reflection and similar triangles. Consider

the segment
−−→
DE, which reflects off side AC at point E. Reflect the triangle

△ABC across the line AC, and let D′ be the reflection of point D. Since E
lies on the mirror line AC, the path D → E → F becomes a straight-line path
D′ → E → F in the reflected triangle.

The triangle △D′EF is thus a straight-line path, and the point E lies on the
reflection line. By construction, the triangles△D′EA and△DEA are congruent
by the Hypotenuse-Leg (HL) criterion, since both share the segment AE and

include right angles at E. It follows that the angle between
−−→
DE and side AC

is equal to the angle between
−−→
EF and side AC, confirming that the angle of

incidence equals the angle of reflection at point E.
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An identical argument applies at points F and D, demonstrating that each leg
of the path reflects off its respective side in accordance with the law of reflection.
Since the triangle is acute, all three altitudes fall within the triangle, ensuring
that the path lies entirely within the interior.

After three such reflections, the trajectory returns to its starting point D with
the same direction, forming a closed periodic billiard orbit of period 3. This
trajectory is known as the Fagnano orbit, and it is also the shortest periodic
path that can be inscribed within the triangle.

A B

C

F

D
E

Figure 7: Fagnano periodic orbit inside an acute triangle.

4.3 Research into Non-classical Shapes and Difficulties

While classical billiard theory largely concerns rational polygons, recent efforts
have explored more general domains, such as those with curved boundaries
or irrational angles. These non-classical shapes present major theoretical and
computational challenges, especially regarding the existence and classification
of periodic orbits.

A central example is the Sinai billiard, which consists of a square with a circular
obstacle removed from its center. First studied by Yakov Sinai in the 1960s, this
model exhibits chaotic and ergodic behavior, in stark contrast to the structured
dynamics seen in rational polygons. The presence of a convex obstacle intro-
duces dispersing reflections, preventing the trajectory from settling into periodic
patterns or invariant cylinders. As a result, tools like unfolding and translation
surfaces—essential in rational polygonal billiards—do not apply in this setting.

Even in purely polygonal domains, challenges persist. One long-standing open
question is whether every triangle admits a periodic billiard trajectory. While
rational triangles (those with all angles rational multiples of π) are known to
admit periodic orbits due to unfolding methods, the general case remains elusive.
The most notable progress has come from computer-assisted proofs by Richard
Schwartz and collaborators, who have confirmed that all triangles with largest
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angle less than 112.3◦ possess at least one periodic trajectory. Beyond this
angle, the question is unresolved.

These limitations underscore the fragility of periodicity under geometric pertur-
bation. Small deviations from rationality or the introduction of curvature can
destroy the combinatorial structures (e.g., cutting sequences, saddle connection
trees) that organize periodic directions in rational billiards. Consequently, re-
search into non-classical shapes often relies on numerical experiments, heuristics,
and partial results, highlighting a rich area where dynamical systems theory, ge-
ometry, and computation intersect.

Figure 8: The Sinai Billiard

5 Unfolding Method and Translation Surfaces

5.1 Unfolding

Zemlyakov and Katok established that rational billiards can be studied through
the symmetries generated by reflecting the polygon across its sides, a process
known as unfolding. This symmetry gives rise to a reflection group and allows
one to construct covering surfaces that simplify the analysis of billiard trajec-
tories.

The sequence of reflections forms a finite group, known as the reflection group,
which governs the structure of the unfolding. When the group is finite, one
can construct a compact translation surface by appropriately gluing together a
finite number of polygonal copies. On this surface, the billiard flow corresponds
to straight-line motion—thus transforming a piecewise-dynamical system with
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reflections into a flow on a flat Riemann surface with conical singularities.

This technique not only simplifies the analysis of trajectories but also allows the
application of tools from geometry and topology. For example, on the unfolded
surface, trajectories can be studied using holonomy vectors, saddle connections,
and affine automorphisms. The genus of the resulting surface depends on the
angles of the original polygon and increases with the complexity of the reflection
group. A classical example is the square billiard, which unfolds into a torus tiled
by four copies of the square. In contrast, the regular pentagon unfolds into a
higher-genus surface composed of ten pentagons arranged in a necklace pattern.

Unfolding also plays a central role in defining and analyzing cutting sequences,
periodic directions, and Veech groups. For rational polygons, this connection
enables the enumeration of periodic trajectories and the classification of direc-
tions into minimal, uniquely ergodic, or periodic types. However, this approach
critically depends on the rationality of the angles; for irrational polygons, the
unfolding generally fails to produce a translation surface, making the dynamics
much harder to understand.

Thus, unfolding serves as a bridge between polygonal billiards and the rich world
of flat surfaces and Teichmüller dynamics, enabling deep structural insights that
would be inaccessible through direct analysis of the original billiard system.

5.2 Translation Surfaces

6 The Pentagon Problem

6.1 Introduction to the Pentagon

The regular pentagon presents a challenging yet compelling case in the study
of polygonal billiards. Unlike polygons that tile the plane by reflections (e.g.,
squares, equilateral triangles), the pentagon lacks many symmetries which lie in
these polygons despite it being a rational billiard. As a result, regular pentagons
do not tile the plane evenly. Remarkably, periodic trajectories do exist in the
pentagon, but their structure is far more subtle and beautiful than in simpler
shapes.

6.2 Results of Davis and Lelièvre Breakthrough

Davis and Lelièvre developed a powerful framework to understand periodic tra-
jectories in the regular pentagon using translation surfaces. By unfolding the
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Figure 9: Incomplete tiling of the plane using regular pentagons

pentagon through reflections, they constructed the necklace surface consisting of
ten pentagons. This necklace surface covers the double pentagon surface (built
from two oppositely-oriented pentagons), which in turn is affinely equivalent to
a much simpler surface: the golden L. Working on the golden L, a right-angled
surface with affine symmetries, allows for exact enumeration of periodic direc-
tions via a tree structure. Each periodic trajectory in the pentagon corresponds
to a saddle connection vector on the golden L, and the dynamics can be fully
translated between these surfaces.

Figure 10: Pentagon Ring Figure 11: Pentagon to Golden L
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7 The Golden L and the Double Pentagon

7.1 Construction of the Golden L

The golden L is constructed from three rectangles: a unit square, a rectangle of

size 1× 1
ϕ , and another of size 1

ϕ ×1, where ϕ = 1+
√
5

2 is the golden ratio. These
are glued to form an L-shaped translation surface. Through a series of shears
and cuts, the golden L can be mapped to the double pentagon surface, which
then folds into the necklace and ultimately into the original pentagon billiard
table.

1× 1
1
ϕ
× 1

1× 1
ϕ

Figure 12: The Golden L

7.2 Geometry of the Golden L

The golden L surface supports two cylinders of periodic trajectories in every
periodic direction: a short and a long cylinder, whose length ratio is ϕ. Each
cylinder corresponds to a collection of parallel trajectories, and the cylinder
decomposition reveals the modular structure of the surface.

To study trajectories in the regular pentagon, we take advantage of the fact
that the golden L surface is affinely equivalent to the double pentagon surface.
The key transformation is a shear matrix that maps vectors in the golden L to
their corresponding directions in the double pentagon. Specifically, this shear
is given by:

P =

[
1 cos

(
π
5

)
0 sin

(
π
5

)] , P−1 =

[
1 cos

(
π
5

)
0 sin

(
π
5

)]−1
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As an example, if v⃗ =

[
1
1

]
is a vector on the golden L, then its image under the

shear is:

P · v⃗ =

[
1 cos

(
π
5

)
0 sin

(
π
5

)] [1
1

]
=

[
1 + cos

(
π
5

)
sin

(
π
5

) ]
This affine transformation allows us to transfer geometric and combinatorial in-
formation about periodic trajectories from the golden L, where they are easier to
describe algebraically, onto the more complex geometry of the double pentagon,
and ultimately to the regular pentagon.

8 Tree Structure of Periodic Directions in the
Pentagon

8.1 Shears

The golden L admits a decomposition of the first quadrant into four distinct
sectors, each of which corresponds to a shear transformation σi. These shears
act on vectors in the positive cone and generate the Veech group of the surface.
The purpose of each σi is to map the full first quadrant into one of the four
sectors W1,W2,W3,W4, which tile the quadrant non-overlappingly (as shown
in Figure 13).

The matrices are defined as:

σ0 =

[
1 ϕ
0 1

]
, σ1 =

[
ϕ ϕ
1 ϕ

]
, σ2 =

[
ϕ 1
ϕ ϕ

]
, σ3 =

[
1 0
ϕ 1

]

Each matrix is responsible for compressing and redirecting directions into its
associated sector. These shears provide a recursive mechanism for constructing
periodic directions and serve as the foundation for the tree of saddle connections.

8.2 Tree of Words

Every periodic direction on the golden L surface can be obtained by starting
with a known direction—typically the base vector [1, 0]—and applying a finite
sequence of the shear matrices σ0, σ1, σ2, σ3. This recursive process defines a
4-ary tree where each node corresponds to a direction vector, and the path to
reach it is recorded as a tree word—a sequence of digits encoding the shears
applied.
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Figure 13: Color coded sectors of the Golden L. Each shear σ0 to σ3 maps the
positive quadrant into a colored wedge.

For instance, the word 0213 represents the composition σ0σ2σ1σ3, applied to the
initial vector [1, 0]. The resulting vector lies in a specific direction corresponding
to a periodic trajectory in the golden L and, via shear conjugation, in the double
pentagon.

The tree structure is symmetric about the line y = x, and its depth deter-
mines the geometric complexity and combinatorial period of the corresponding
trajectories.

9 Period of Periodic Trajectories

9.1 Combinatorial Period

One of the key insights of Davis and Lelièvre’s work is the ability to compute the
combinatorial period of a periodic trajectory directly from the coordinates of
its associated saddle connection vector on the golden L surface. These vectors
arise from applying sequences of shear matrices to the initial direction [1, 0],
forming a tree structure where each path (or ”tree word”) uniquely determines
a direction and its corresponding dynamics.

Theorem 9.1 (Form of Periodic Directions). Each tree word corresponds to a
vector of the form

[a+ bϕ, c+ dϕ],
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Figure 14: Construction of the tree of directions from the base vector. Arrows
represent shear applications.

where a, b, c, d ∈ Z≥0 and ϕ = 1+
√
5

2 is the golden ratio. This vector encodes the
direction of a periodic trajectory on the golden L.

Theorem 9.2 (Combinatorial Period on the Double Pentagon). Given a tree
word that leads to the vector [a + bϕ, c + dϕ], the associated periodic trajectory
on the double pentagon has a combinatorial period

Pdouble = 2(a+ b+ c+ d).

Theorem 9.3 (Adjustment for Regular Pentagon). To compute the period on
the original regular pentagon, one must determine the symmetry of the trajectory
on the double pentagon:

• If the trajectory is asymmetric, then Ppentagon = Pdouble.

• If the trajectory is symmetric, then Ppentagon = 5 · Pdouble.

10 Conclusion and Generalizations

The study of periodic trajectories in the regular pentagon reveals a rich connec-
tion between the studies geometry, algebra, and dynamics. Through the lens
of translation surfaces and affine shears, Davis and Lelièvre’s framework allows
one to classify and count periodic directions using tree structures and saddle
connection vectors defined in terms of the golden ratio. The golden L surface,
serving as a combinatorially and geometrically tractable model, translates the
complexities of the regular pentagon into an explicitly computable setting.
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