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Motivation

Many modern problems involve complex, high-dimensional
distributions.

Classical sampling methods fail to scale.

We need general-purpose tools for inference.
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Why Sampling is Hard

We often only know π(x) ∝ f (x).

Computing the normalizing constant is intractable.

But we still want samples from π.

Example:
π(x) ∝ f (x) = e−x4+3x2

Z =

∫ ∞

−∞
e−x4+3x2 dx
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Markov Property

Definition

A stochastic process (Xt)t≥0 with state space X satisfies the Markov
property if

P(Xt+1 = xt+1 | X0 = x0, . . . ,Xt = xt) = P(Xt+1 = xt+1 | Xt = xt).

x0 x1 x2 . . . xt xt+1

Markov Chains are memoryless
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Transition Kernel

Definition

Let X be a countable state space and P(x → x ′) denote the transition
kernel. Then, ∑

x ′

P(x → x ′) = 1, P(x → x ′) ≥ 0 ∀x , x ′.
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Stationary Distribution

Definition ∑
x∈X

π(x)P(x → x ′) = π(x ′) for all x ′ ∈ X .

Example:

P =

0.5 0.3 0.2
0.2 0.5 0.3
0.3 0.2 0.5


π =

[
0.3 0.4 0.3

]
πP =

[
0.3 0.4 0.3

] 0.5 0.3 0.2
0.2 0.5 0.3
0.3 0.2 0.5

 =
[
0.3 0.4 0.3

]
= π
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Detailed Balance

Definition

π(x)P(x → x ′) = π(x ′)P(x ′ → x) for all x , x ′ ∈ X .

Example of Detailed Balance

P =

 0 1 0
0.5 0 0.5
1 0 0

 , π =
[
1
4

1
2

1
4

]
π(1)P(1 → 2) =

1

4
· 1 =

1

4
, π(2)P(2 → 1) =

1

2
· 0.5 =

1

4

π(2)P(2 → 3) =
1

2
· 0.5 =

1

4
, π(3)P(3 → 2) =

1

4
· 1 =

1

4
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Irreducibility

Definition

A Markov chain with state space X is irreducible if for any x , x ′ ∈ X ,
there exists t ∈ N such that

Pt(x → x ′) > 0.

Example Transition Matrix

P =

0.5 0.5 0.0
0.0 0.6 0.4
0.3 0.0 0.7


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Aperiodicity

Definition

A state x ∈ X has period d if

d = gcd{t ∈ NPt(x → x) > 0}.
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Example: Aperiodicity

Consider a 3-state Markov chain:

P =

0.5 0.5 0
0 0.5 0.5
0.5 0 0.5



1 2 3

0.5 0.5

0.5

0.5 0.5 0.5

Each state can return to itself in multiple steps (2, 3, 4...).

So the period is gcd(2, 3, 4, . . . ) = 1: chain is aperiodic.
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Why These Matter

Irreducibility: The chain can explore the entire state space.

Aperiodicity: The chain does not get locked into cyclic patterns.

Together with a stationary distribution, they ensure convergence of
the chain to that distribution regardless of starting point.
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MCMC Overview

MCMC ”reverse engineers” a markov chain.

Goal: Long-run distribution of the chain equals π.

x

f (x)

Target Distribution
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Metropolis-Hastings

Propose x ′ ∼ q(x → x ′).

Accept with probability:

α(x , x ′) = min

(
1,

π(x ′)q(x ′ → x)

π(x)q(x → x ′)

)
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Metropolis-Hastings: Proposal and Acceptance

x

x ′

proposal

α(x , x ′) = min

(
1,

f (x ′)

f (x)

)

x

f (x)

One MH Proposal Step
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Total Variation Distance

Definition

The total variation distance between two distributions µ and π over a
discrete state space X is:

∥µ− π∥TV :=
1

2

∑
x∈X

|µ(x)− π(x)|

Measures how far apart two distributions are.

Ranges from 0 (identical) to 1 (completely disjoint).
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Mixing Time

Definition

The mixing time tmix(ε) is the smallest time t such that the distribution
of the chain is within ε of the stationary distribution π, for all starting
states:

tmix(ε) := min

{
t : max

x∈X
∥Pt(x , ·)− π∥TV ≤ ε

}
.
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Mixing Time Example

Markov chain with transition matrix:

P =

[
0.9 0.1
0.5 0.5

]
Stationary distribution: π =

[
5

6
,
1

6

]

Start with µ0 = [0, 1] (start from state 2)

t µt ∥µt − π∥TV
0 [0, 1] 5/6
1 [0.5, 0.5] 1/3
2 [0.7, 0.3] 1/15
3 [0.78, 0.22] ≈ 0.018
∞ [56 , 1/6] 0
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Expected Squared Jump Distance (ESJD)

Definition

The Expected Squared Jump Distance (ESJD) is defined as:

ESJD = E[ϵ2 · α(x , x + ϵ)],

where ϵ ∼ N (0, σ2) and α(x , x + ϵ) is the Metropolis-Hastings acceptance
probability.
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Variants

Adaptive MH

MALA (uses gradients)

Hamiltonian Monte Carlo (HMC)
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Adaptive Metropolis-Hastings (AMH)

Proposal updates over time:

Adaptive Proposal at Step n

qn(x
′ | x) = N (x , σ2Σn)

Σn = Cov(x1, . . . , xn) + ϵI
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Metropolis-Adjusted Langevin Algorithm (MALA)

Incorporates gradient of log-density into proposal.

Moves towards higher-density regions.

Proposal Step

x ′ = x +
ϵ2

2
∇ log f (x) + ϵZ , Z ∼ N (0, I )
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Hamiltonian Monte Carlo (HMC)

Simulates Hamiltonian dynamics with position x and momentum p.

Avoids random walk behavior by using gradients to propose distant
points with high acceptance.

Hamiltonian

H(x , p) = − log f (x) +
1

2
∥p∥2
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