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@ Many modern problems involve complex, high-dimensional
distributions.

@ Classical sampling methods fail to scale.

@ We need general-purpose tools for inference.
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Why Sampling is Hard

e We often only know 7(x) o f(x).
@ Computing the normalizing constant is intractable.

@ But we still want samples from .

Example: ,
4
7(x) o f(x) = e X T3

o0 4 2
Z :/ e X 3% dx
—o
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Markov Property

Definition

A stochastic process (X;)¢>0 with state space X satisfies the Markov
property if

P(Xt41 = Xeq1 | Xo = X0, -+, Xt = xt) = P(Xe41 = Xeq1 | Xe = xt).
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Markov Property

Definition

A stochastic process (X;)¢>0 with state space X satisfies the Markov
property if

P(Xt41 = Xeq1 | Xo = X0, -+, Xt = xt) = P(Xe41 = Xeq1 | Xe = xt).

Markov Chains are memoryless
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Transition Kernel

Definition

Let X be a countable state space and P(x — x’) denote the transition
kernel. Then,

Z P(x - x)=1, P(x—x)>0 Vx,x.

Bob Zhao MCMC and MH July 11, 2025 5/23



Transition Kernel

Definition
Let X be a countable state space and P(x — x’) denote the transition
kernel. Then,

Z P(x - x)=1, P(x—x)>0 Vx,x.
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Stationary Distribution

Definition

Z T(x)P(x = x') = n(x’) forall X' € X.
xeX

Bob Zhao MCMC and MH July 11, 2025 6/23



Stationary Distribution

Z T(x)P(x = x') = n(x’) forall X' € X.
xeX
v
Example:
05 03 0.2
P=102 05 03
03 02 05
T=1[03 04 03]
05 03 0.2
nP=1[03 04 03]]02 05 03[ =[03 04 03]=n
03 02 05
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Detailed Balance

Definition

7(x)P(x = x') = m(xX)P(x" — x) for all x,x" € X.
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Detailed Balance

7(x)P(x = x') = m(xX)P(x" — x) for all x,x" € X.

Example of Detailed Balance
0 1 0
P=1]05 0 05|, m=[; 3 1]
1 0 0

T(1)P(1 - 2) = 1:2, W(2)P(2—>1):%-0.5:

MH—- J>H—\

m(2)P(2 = 3) == -05= %, T(3)P(3—2)=> 1=
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Irreducibility

Definition

A Markov chain with state space X is irreducible if for any x, x’ € X,
there exists t € N such that

Pi(x — x") > 0.
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Irreducibility

Definition

A Markov chain with state space X is irreducible if for any x, x’ € X,
there exists t € N such that

Pi(x — x") > 0.

Example Transition Matrix

0.5 05 0.0
P= 100 06 04
0.3 0.0 0.7
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Aperiodicity

Definition
A state x € X has period d if

d = ged{t € NP*(x — x) > 0}.
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Example: Aperiodicity

@ Consider a 3-state Markov chain:

05 05 0
P=]10 05 05
05 0 05
0.5 0.5 0.5
0.5 0.5
0.5

e Each state can return to itself in multiple steps (2, 3, 4...).

@ So the period is gcd(2,3,4,...) = 1: chain is aperiodic.
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Why These Matter

o Irreducibility: The chain can explore the entire state space.
@ Aperiodicity: The chain does not get locked into cyclic patterns.

@ Together with a stationary distribution, they ensure convergence of
the chain to that distribution regardless of starting point.
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MCMC Overview

@ MCMC "reverse engineers’ a markov chain.

@ Goal: Long-run distribution of the chain equals .
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MCMC Overview

@ MCMC "reverse engineers’ a markov chain.

@ Goal: Long-run distribution of the chain equals .
Heatmap-style Histogram of Metropolis-Hastings Samples Ta rget Distri b ution

f(x)

L

os 10 15 20
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Metropolis-Hastings

@ Propose x' ~ g(x — x').
@ Accept with probability:

a(x, x') = min <1, 7T(>“)<7(>H><)>

m(x)g(x = X')
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Metropolis-Hastings: Proposal and Acceptance

One MH Proposal Step
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Total Variation Distance

Definition

The total variation distance between two distributions p and 7 over a
discrete state space X is:

=l =5 3 lu(x) = ()

xeX
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Total Variation Distance

Definition

The total variation distance between two distributions p and 7 over a
discrete state space X is:

=l =5 3 lu(x) = ()

xeX

@ Measures how far apart two distributions are.

@ Ranges from 0 (identical) to 1 (completely disjoint).
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Definition
The mixing time () is the smallest time t such that the distribution
of the chain is within ¢ of the stationary distribution , for all starting

states:
tmix(€) := min {t s max ||Pi(x, ) — 7l|tv < 5} ;
xeX
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Mixing Time Example

@ Markov chain with transition matrix:

66

0.9 0.1
P= [0.5 0.5

1
] Stationary distribution: 7 = [5 ]
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Mixing Time Example

@ Markov chain with transition matrix:

p_ {0.9 0.1

. C 5 1
0.5 0'5] Stationary dlstrlbut|on_7r_[ ]

66

e Start with po = [0, 1] (start from state 2)

Bob Zhao

t ot |t — 7|lTv
0l [01] 5/6

1| [0.5,05] 1/3

2 | [0.7,0.3] 1/15

3 |[0.78,022] | ~o0.018
oo | [2, 1/6] 0

MCMC and MH




Expected Squared Jump Distance (ESJD)

Definition
The Expected Squared Jump Distance (ESJD) is defined as:

ESJD = E[é® - ax, x + €)],

where ¢ ~ N(0,02) and a(x, x + €) is the Metropolis-Hastings acceptance
probability.

v
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o Adaptive MH
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o Adaptive MH
e MALA (uses gradients)
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o Adaptive MH
e MALA (uses gradients)
e Hamiltonian Monte Carlo (HMC)
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Adaptive Metropolis-Hastings (AMH)

@ Proposal updates over time:

Adaptive Proposal at Step n

a.(X' | x) = N(x,0%%,)
Y, = Cov(xi,...,xn) + €l
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Metropolis-Adjusted Langevin Algorithm (MALA)

@ Incorporates gradient of log-density into proposal.

@ Moves towards higher-density regions.

Proposal Step

2
x’=x+%V|ogf(x)+eZ, Z ~N(0,1)
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Hamiltonian Monte Carlo (HMC)

@ Simulates Hamiltonian dynamics with position x and momentum p.

@ Avoids random walk behavior by using gradients to propose distant
points with high acceptance.

Hamiltonian

1
H(x, p) = —log f(x) + S [lplI*
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