Riesz Representation Theorem

Benjamin Rosen

July 2025

Algebras and σ -algebras

For a set X, a σ -algebra on X is a collection of subsets of X such that the following properties hold:

- \bigcirc \varnothing , X are present.
- 2 If A is present, so is A^c .
- **3** If (A_1) is a countable sequence of sets in the σ -algebra, $\bigcup_{i=1}^{\infty} A_i$ is also in the σ -algebra.
- **1** If (A_1) is a countable sequence of sets in the σ -algebra, $\bigcap_{i=1}^{\infty} A_i$ is also in the σ -algebra.

The *Borel* σ -algebra for a topological space X is the σ -algebra generated by the open sets of X.

Measures

A measure μ is a function with a σ -algebra as its domain and the extended half-line $[0, +\infty]$ (or a subset of the extended half-line) as its range, and satisfies the following two properties.

- $\bullet \mu(\varnothing)=0.$

If X is a set, $\mathscr A$ is a σ -algebra on X, and μ is a measure, then we call $(X,\mathscr A)$ a measurable space and $(X,\mathscr A,\mu)$ a measure space.

A measure is *Borel* if it is a measure on the Borel σ -algebra for a topological space X.

Outer measure

We call the collection of all subsets of a set X the powerset of X, and denote it as $\mathcal{P}(X)$.

An outer measure on X is a function $\mu^*: \mathcal{P}(X) \to [0, +\infty]$ such that

- **1** $\mu^*(\varnothing) = 0$,
- ② if $A \subseteq B \subseteq X$, then $\mu^*(A) \le \mu^*(B)$, and
- **3** if (A_n) is an infinite sequence of subsets of X, then $\mu^*(\cup_n A_n) \leq \sum_n \mu^*(A_n)$.

Measurable functions

Let (X, \mathscr{A}) be a measurable space, and let A be a subset of X that belongs to \mathscr{A} . For a function $f: A \to [-\infty, \infty]$, the function is called \mathscr{A} -Measurable if for each real number t the set $\{x \in A: f(x) \leq t\}$ belongs to \mathscr{A} .

Lebesgue Integration

The construction of an integral we can connect to a measure is necessary. As it's the focus of someone else's talk, I won't go into too much detail, but it follows this general formula.

- Start by defining the integral for simple functions.
- ② Continue by using a sequence of the integrals of simple functions to get the integral of a $[0, +\infty]$ -valued function.
- **3** Subtract the integrals of the positive and negative parts of an extended-real-valued function to get its integral, defining integrals for functions on $[-\infty, \infty]$.

Locally compact Hausdorff spaces

A topological space X is called *Hausdorff* if for any two points a, b that are not equal, there exist disjoint neighborhoods of a and b.

If every point $x \in X$ has a neighborhood with a closure that is a compact subset of X, then X is called *locally compact*.

The Riesz Representation Theorem

The Riesz Representation Theorem itself was proven in 1909 by Riesz, for continuous real-valued functions on [0,1]. It has since been generalized to all continuous functions.

The theorem statement is as follows: Let X be a locally compact Hausdorff space, and let I be a positive linear functional on $\mathcal{K}(X)$. Then there is a unique Radon measure μ on X such that

$$I(f) = \int f \ d\mu$$

holds for all f in $\mathcal{K}(X)$.

There also is a version involving Hilbert spaces, but that one I am admittedly not as familiar with.

Proving the Riesz Representation Theorem

The proof of the Riesz Representation Theorem involves 3 main steps:

- Constructing the measure.
- Verifying the construction.
- Verifying that the measure is unique.

Questions, Answers, and a Duck

Pictured here is a duck, for asking questions to.

