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Abstract

This paper intends to explain some core aspects of measure the-
ory, including algebras and σ-algebras, measures, and a definition of
the integral with respect to a measure. After covering these topics,
the paper will then explore some of the properties and theorems of
locally compact Hausdorff spaces, most notably the Riesz Represen-
tation Theorem, on which this paper focuses.

1 Introduction

The Riesz Representation Theorem is a core result of 20th century func-
tional analysis. Riesz originally proved it in the paper [Rie09] in 1909. Riesz
originally proved the theorem for the space C[0, 1], the space of continuous
real-valued functions on [0, 1]. The theorem has since been generalized to all
continuous functions.

The theorem itself has applications in various fields, notably in functional
analysis (fairly obviously), probability theory, and the study of Lp spaces. In
functional analysis the theorem allows us to represent a linear functional on
the space of continuous functions with compact support as an integral. In
probability theory, we can represent the expectation of a random variable as
an integral with respect to some probability measure. With Lp spaces, we
can use the theorem to represent an integral on an Lp space as an integral
with respect to a measure. This paper focuses only on the functional analysis
and measure theory. Measure theory is a field in which certain structures
called σ-algebras and measures on those σ-algebras are studied.

The main sources for this paper are [Coh13] and [Fol99].
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2 Preliminaries

Definition 2.1. The extended real numbers, written as [−∞,+∞], consist of
the real numbers combined with +∞ and −∞. For all x ∈ [−∞,+∞],−∞ <
x, and x ∈ [−∞,+∞],+∞ > x. For arithmetic operations, we define them
quite intuitively, leaving the sums

(+∞) + (−∞)

and
(−∞) + (+∞)

undefined. We also define the products

0 · (+∞), 0 · (−∞), (+∞) · 0, (−∞) · 0

as equal to 0.

Definition 2.2. Let X be an arbitrary set. Then let T be a collection of
subsets of X with the following properties.

1. Both ∅ and X are elements of T .

2. Let A be an arbitrary set. Whenever {Xα : α ∈ T } ⊆ T , the union⋃
α∈AXα is an element of T .

3. Whenever Y, Z ∈ T , Y ∩ Z is in T as well.

The collection T is called a topology on X, and the pair (X, T ), often just
referred to as X, is called a topological space.

Definition 2.3. Let X be a topological space. Elements of the topology T
on X are referred to as open sets. The complement of an open set is called
closed. A set that is both open and closed is called clopen.
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Definition 2.4. Let X be a topological space, and let A be a subset. The
closure of A, denoted as Ā, is the intersection of all closed subsets of X
containing A.

Definition 2.5. Let X be a topological space, and let a be a point contained
in X. An open set containing a is called a neighborhood of a.

3 Measure Spaces

We will start by discussing measure spaces, which are spaces with a notion
of “measure” attached to a certain collection of their subsets.

3.1 Algebras and σ-algebras

Before we can do something involving a measure, we need to know what we
can measure. Specifically, we will be measuring elements of σ-algebras, but
it is nice to know about algebras and the distinction between algebras and
σ-algebras.

Definition 3.1. LetX be an arbitrary set. An algebra A onX is a collection
of subsets of X such that the following properties hold.

1. Both ∅, X ∈ A .

2. If A ∈ A , then Ac ∈ A .

3. For each finite sequence A1, . . . , An of sets belonging to A , the set
∪n

i=1Ai belongs to A .

4. For each finite sequence A1, . . . , An of sets belonging to A , the set
∩n

i=1Ai belongs to A .

Notice that only one of the third or fourth properties is actually necessary.
For a sequence of sets A1, . . . , An in A , the union ∪n

i=1A
c
i is in A . Since

A is closed under complementation, ∩n
i=1Ai, which complements ∪n

i=1A
c
i ,

is in A . We can also quickly check the converse. For a sequence of sets
A1, . . . , An in A , the intersection ∩n

i=1A
c
i is in A . Since A is closed under

complementation, ∪n
i=1Ai, the complement of ∩n

i=1A
c
i , is in A . Next, we will

define the σ-algebra, the structure that we will actually measure.
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Definition 3.2. Let X be an arbitrary set. An σ-algebra A on X is a
collection of subsets of X such that the following properties hold.

1. Both ∅, X ∈ A .

2. If A ∈ A , then Ac ∈ A .

3. For each countable sequence A1, . . . , An of sets belonging to A , the set
∪n

i=1Ai belongs to A .

4. For each countable sequence A1, . . . , An of sets belonging to A , the set
∩n

i=1Ai belongs to A .

Here we have a few examples of collections that are σ-algebras on a set
X.

Example. The set
{∅, X}

is a σ-algebra on X.

Example. The power set P(X), which contains every subset of X is a σ-
algebra on X.

Consider that all σ-algebras are algebras, as a finite union of sets ∪n
i=1Ai

can be made into the countable union ∪∞
i=1Ai, Ai : i > n = ∅, which is

equivalent. Similarly, a finite intersection of sets ∩n
i=1Ai can be made into

the countable union ∪∞
i=1Ai, Ai : i > n = X, such that A is a σ-algebra on

X.

Definition 3.3. Let X be a set, and let A be a σ-algebra on X. Then the
pair (X,A ) is called a measurable space.

Now, we can actually generate a σ-algebra from a collection of subsets of
a set. To do that, we need the following statement.

Proposition 3.4. Let X be a set. Then the intersection of a nonempty
collection of σ-algebras on X is a σ-algebra on X.

Proof. Let C be a nonempty collection of σ-algebras on X, and let A be the
intersection of the σ-algebras belonging to C. Then, by what we have shown
above, to show that A is a σ-algebra, we only need to show that it contains
∅, X, is closed under complementation, and is closed under formation of
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countable unions. First, ∅ and X are both in A , as they are in all σ-algebras
and thus in all C ∈ C. Then A is also closed under complementation, as for
any A ∈ A , A is in all σ-algebras in C. Then Ac is in all σ-algebras in C and
so is in A . Finally, suppose (Ai) is a sequence of sets in A and thus in all
σ-algebras in C. Then ∪∞

i=1Ai is in all C and so in A .

Proposition 3.5. For an arbitrary collection of subsets C of some set X,
there exists a unique smallest σ-algebra on X containing C .

Proof. In this context, the smallest σ-algebra on X containing C is the one
such that A is a σ-algebra on X containing C , and every σ-algebra on X
containing C also contains A . Let C be the collection of all σ-algebras
on X containing C . Then C is nonempty, since it contains the σ-algebra
containing every subset of X. The intersection of all elements of C is a σ-
algebra containing C that is included in all σ-algebras containing C . This
σ-algebra is unique, as if A1 and A2 are both smallest σ-algebras containing
C , then A1 ⊆ A2 and A2 ⊆ A1, so A1 = A2.

We say that this smallest σ-algebra is the σ-algebra generated by C .
Using this, we can define an important type of σ-algebra.

Definition 3.6. Let X be a topological space. Then the Borel σ-algebra
B(X) is the σ-algebra generated by the open subsets of X. The Borel subsets
of X are the subsets of X that are in B(X).

3.2 Measures

Now, we will define measures. There are actually two types of measures,
countably additive and finitely additive measures. This paper will focus ex-
clusively on countably additive measures.

Definition 3.7. Let X,A be a measurable space. A countably additive
function µ is a function with domain A and a range of the extended half-
line, or [0,+∞], and has the property that

µ(∪∞
i=1Ai) =

∞∑
i=1

µ(Ai)

is true for all countable sequences (Ai) of disjoint sets belonging to A .
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Definition 3.8. Let X,A be a measurable space. Then a measure µ is a
function for which the following two properties are true.

1. µ(∅) = 0.

2. µ is countably additive.

This also gives us some intuition as to why we are using σ-algebras: a
σ-algebra has the property that unions of countable sequences of elements of
the σ-algebra are also elements of the σ-algebra, so if we take any countable
sequence (Ai) of disjoint A -measurable sets, we can measure each individual
element, or we can measure any union of all these sets.

Definition 3.9. Let (X,A ) be a measurable space. Then if A ∈ A , A is
called A -measurable.

Definition 3.10. If X is a set, A is a σ-algebra on X, and µ is a measure
on A , then (X,A , µ) is called a measure space.

Definition 3.11. Let µ be a measure on a measurable space (X,A ). Then µ
is a finite measure if µ(X) < +∞. If X is the union of a sequence A1, A2, . . .
of sets in A where µ(Ai) < +∞ for all i, then µ is a σ-finite measure. The
measure space is also called finite or σ-finite if µ is finite or σ-finite.

Definition 3.12. A measure on a measurable space (X,B(X)) is called
Borel.

Definition 3.13. Let X be a set, and let P(X) be the power set of X.
An outer measure on X is a function µ∗ : P(X) → [0,+∞] such that the
following properties are true.

1. µ∗(∅) = 0.

2. If A ⊆ B ⊆ X, then µ∗(A) ≤ µ∗(B).

3. If (An) is an infinite sequence of subsets of X, then µ∗(∪nAn) ≤∑
n µ

∗(An).

A measure is not always an outer measure, and an outer measure is not
always a measure.
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Definition 3.14. Let X be a set, and let µ∗ be an outer measure on X. A
subset B ⊆ X is µ∗-measurable or measurable with respect to µ∗ if

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc)

for all subsets A of X.

Proposition 3.15. Let X be a set, let µ∗ be an outer measure on X, and
let Mµ∗ be the collection of all µ∗-measurable subsets of X. Then Mµ∗ is a
σ-algebra, and the restriction of µ∗ to Mµ∗ is a measure on Mµ∗.

Proof. We begin by showing that Mµ∗ is an algebra of sets. First, we’ll show
that for all subsets B ⊆ X such that µ∗(B) = 0 or µ∗(Bc) = 0, B is µ∗-
measurable. The countable subadditivity of µ∗ implies that for each subset
A of X, µ∗(A) ≤ µ∗(A ∩ B) + µ∗(A ∩ Bc). Then we need only check that
each subset A of X has the property that

µ∗(A) ≥ µ∗(A ∩B) + µ∗(A ∩Bc)

. As one of µ∗(B) and µ∗(Bc) is zero, and µ∗ is monotone, one of the terms on
the right-hand side of the inequality vanishes, and the other has a measure
that is at most µ∗(A). It follows that both ∅ and X are µ∗-measurable, so
they are both in Mµ∗ . Next, the equation

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc)

does not change if B and Bc are swapped, so Mµ∗ is closed under comple-
mentation. Now, suppose that B1 and B2 are both µ∗-measurable subsets
of X. We will prove B1 ∪ B2 is also µ∗-measurable. To do this, let A be an
arbitrary subset of X. Then we have

µ∗(A ∩ (B1 ∪B2)) = µ∗(A ∩ (B1 ∪B2) ∩B1) + µ∗(A ∩ (B1 ∪B2) ∩Bc
1),

which equals
µ∗(A ∩B1) + µ∗(A ∩Bc

1 ∩B2).

Then we can use this with the fact (B1∪B2)
c = Bc

1∩Bc
2 and the measurability

of B1 and B2. Then

µ∗(A ∩ (B1 ∪B2)) + µ∗(A ∩ (B1 ∪B2)
c)

= µ∗(A ∩B1) + µ∗(A ∩Bc
1 ∩B2) + µ∗(A ∩Bc

1 ∩Bc
2)

= µ∗(A ∩B1) + µ∗(A ∩Bc
1)

= µ∗(A).
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Since A was an arbitrary subset of X, B1 ∪ B2 must be measurable. Thus
Mµ∗ is an algebra. Next, to show it is a σ-algebra, suppose (Bi) is an infinite
sequence of disjoint µ∗-measurable sets. We will show by induction that

µ∗(A) =
n∑

i=1

µ∗(A ∩Bi) + µ∗(A ∩ (∩n
i=1B

c
i ))

holds for each subset A of X and each positive integer n. In the case where
n = 1, the equation is just a restatement of the measurability of B1. For the
induction step, note that the µ∗-measurability of Bn+1 and disjointedness of
(Bi) imply that

µ∗(A ∩ (∩n
i=1B

c
i ))

= µ∗(A ∩ (∩n
i=1B

c
i ) ∩Bn+1) + µ∗(A ∩ (∩n

i=1B
c
i ) ∩Bc

n+1)

= µ∗(A ∩Bn+1) + µ∗(A ∩ (∩n+1
i=1 B

c
i )).

With this we complete the inductive step. Notice that we do not increase
the right-hand side if we replace our initial µ∗(A ∩ (∩n

i=1B
c
i )) with µ∗(A ∩

(∩∞
i=1B

c
i )), so by letting the n in the sum in the resulting inequality approach

infinity, we find that

µ∗(A) ≥
∞∑
i=1

µ∗(A ∩Bi) + µ∗(A ∩ (∪∞
i=1Bi)

c).

Then, as µ∗ is countably subadditive,

µ∗(A) ≥
∞∑
i=1

µ∗(A ∩Bi) + µ∗(A ∩ (∪∞
i=1Bi)

c),

≥ µ∗(A ∩ (∪∞
i=1Bi)) + µ∗(A ∩ (∪∞

i=1Bi)
c)

≥ µ∗(A).

It follows that each preceding inequality must be an equality, and hence
∪∞

i=1Bi is µ
∗-measurable. Then Mµ∗ is closed under the formation of unions

of disjoint sequences of sets. Since the union of an arbitrary sequence of sets
(Bi) in Mµ∗ is the union of a sequence of disjoint sets

B1, B
c
1 ∩B2, B

c
1 ∩Bc

2 ∩B3, . . .

, Mµ∗ is closed under formation of countable unions. Thus Mµ∗ is a σ-
algebra.
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Next, we show the restriction of µ∗ to Mµ∗ is a measure. To do this we show
that it is countably subadditive. Let (Bi) be a sequence of disjoint sets in
Mµ∗ . Then

µ∗(∪∞
i=1Bi) ≥

∞∑
i=1

µ∗((∪∞
i=1Bi) ∩Bi) + µ∗((∪∞

i=1Bi) ∩ (∪∞
i=1Bi)

c)

≥
∞∑
i=1

µ∗(Bi) + 0.

Since the reverse inequality is given by countable subadditivity, then the
restriction of µ∗ to Mµ∗ is countably additive and thus a measure.

Definition 3.16. If (X,A ) is a measurable space such that for each x ∈ X
the set {x} is in A , a finite or σ-finite measure µ such that ∀x ∈ X, µ({x}) =
0 is called continuous.

A more complex definition for continuous and discrete measures is neces-
sary if A does not contain every {x} or if µ is not finite or σ-finite, but that
goes beyond the scope of this paper.

Definition 3.17. If (X,A ) is a measurable space such that for each x ∈ X
the set {x} is in A , a finite or σ-finite measure µ such that there exists a
countable subset D of X where µ(Dc) = 0 is called discrete.

We will be dealing not only with sets, but also functions. As such, we
require a definition for measurability of functions.

Proposition 3.18. Let (X,A ) be a measurable space, and let A be a subset
of X that belongs to A . For a function f : A → [−∞,∞], the following
conditions are equivalent.

1. For each real number t the set {x ∈ A : f(x) ≤ t} belongs to A .

2. For each real number t the set {x ∈ A : f(x) < t} belongs to A .

3. For each real number t the set {x ∈ A : f(x) ≥ t} belongs to A .

4. For each real number t the set {x ∈ A : f(x) > t} belongs to A .
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Proof. The identity

{x ∈ A : f(x) < t} =
⋃
n

{x ∈ A : f(x) ≤ t− 1

n
}

implies that every set in condition 2 is a union of a sequence of sets satisfying
condition 1, so condition 1 implies condition 2. The sets of condition 3 can
be expressed in terms of those in condition 2 with the identity

{x ∈ A : f(x) ≥ t} = A− {x ∈ A : f(x) < t}.

Similarly, condition 3 implies condition 4 by means of

{x ∈ A : f(x) > t} =
⋃
n

{x ∈ A : f(x) ≥ t+
1

n
}.

and condition 4 implies condition 1 with

{x ∈ A : f(x) ≤ t} = A− {x ∈ A : f(x) > t}.

Definition 3.19 (A -measurable function). A function f : A → [−∞,∞]
is A -measurable if and only if it satisfies one, and thus all, of the above
conditions.

Definition 3.20. Let (X,A ) and (Y,B) be measurable spaces. A function
f : X → Y is measurable with respect to A and B if for each B in B the
set f−1(B) belongs to A . A Borel measure is a function measurable with
respect to the Borel σ-algebra on two spaces X and Y .

Proposition 3.21. Let (X,A ) and (Y,B) be measurable spaces, and let B0

be a collection of subsets of Y such that B0 generates B. Then a function
f : X → Y is measurable with respect to A and B if and only if f−1(B) ∈ A
for all B in B0.

Proof. Going by the definition, every function f that is measurable with
respect to A and B has the property that f−1(B) ∈ A for all B in B0.
Conversely, assume that f−1(B) ∈ A for each B in B0. Let C be the
collection of all subsets B of Y such that f−1(B) ∈ A . The identities
f−1(Y ) = X, f−1(Bc) = (f−1(B))c, and f−1(∪nBn) = ∪nf

−1(Bn) imply that
C is a σ-algebra on Y . Since C includes B0, it must include the σ-algebra
generated by B0, which is B. Then f is measurable with respect to A and
B.
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4 Integrals in Measure Spaces

To deal with the Riesz Representation Theorem, we need a definition of the
integral that is applicable to measure spaces. We will construct it in three
parts.
We begin with simple functions. Let (X,A ) be a measurable space. We will
write S to represent the collection of all simple real-valued A -measurable
functions on X and S+ to be the collection of nonnegative functions in S .

Definition 4.1. Let (X,A ) be a measurable space. For a subset B ⊆ X,
the characteristic function XB is the function such that XB(x) = 1 if x ∈ B
and XB(x) = 0 if x /∈ B.

Definition 4.2 (Simple function). Let (X,A ) be a measurable space. A
simple function f : X → C is a function that is a finite linear combination
of complex coefficients connected to the characteristic functions of sets in X.
This would commonly be expressed in the form

f =
n∑

k=1

akXAk
.

As our simple functions are nonnegative and real-valued, they would be
f : X → [0,+∞). The coefficients would all be nonnegative real numbers.

Definition 4.3 (Integral for a nonnegative simple function). Let µ be a
measure on (X,A ). If f ∈ S+ and is given by f =

∑m
i=1 aiXAi

where
a1, . . . , am are nonnegative real numbers and A1, . . . , Am are disjoint subsets
of X that belong to A , then

∫
f dµ, the integral of f with respect to µ, is

defined as
∑m

i=1 aiµ(Ai).

This sum is either a nonnegative real number or +∞. We need to check
that

∫
f dµ depends only on f and not on a1, . . . , am and A1, . . . Am that f

is given by. To do this, we can choose another unrelated pair of sequences
b1, . . . , bn and B1, . . . , Bn such that f is also given by

∑n
j=1 bjXBj

, where
b1, . . . , bn are nonnegative real numbers and B1, . . . , Bn are disjoint subsets
of X that belong to A . Eliminating the sets Ai for which ai = 0 and the
sets Bj for which bj = 0, we can assume ∪m

i=1Ai = ∪m
j=1Bj. Then, as ai = bj

if Ai ∩Bj ̸= 0 and µ is additive,

m∑
i=1

aiµ(Ai) =
m∑
i=1

n∑
j=1

aiµ(Ai ∩Bj) =
n∑

j=1

m∑
i=1

bjµ(Ai ∩Bj) =
n∑

j=1

bjµ(Bj).
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Thus,
∫
f dµ does not depend on the representation of f used in its definition.

Next, we will check a few properties of this integral we’ll use in the next part
of the construction.

Proposition 4.4. Let (X,A , µ) be a measure space, and let f and g belong
to S+, and let α be a nonnegative real number. Then

1.
∫
αf dµ = α

∫
f dµ,

2.
∫
(f + g) dµ =

∫
f dµ+

∫
f dµ,

3. if f(x) ≤ g(x) holds at each x in X, then
∫
f dµ ≤

∫
g dµ.

Proof. Suppose that f =
∑m

i=1 aiXAi
, defined similarly to above, and g =∑n

j=1 bjXBj
, where both a1, . . . , am and b1, . . . , bn are nonnegative real num-

bers and A1, . . . , Am, B1, . . . , Bn are disjoint A -measurable sets. We can
assume again that ∪m

i=1Ai = ∪n
j=1. Then we have for properties one and two∫

αf dµ =
m∑
i=1

αaiµ(Ai) = α
m∑
i=1

aiµ(Ai) = α

∫
f dµ,

∫
(f + g) dµ =

m∑
i=1

n∑
j=1

(ai + bj)µ(Ai ∩Bj)

=
m∑
i=1

n∑
j=1

aiµ(Ai ∩Bj) +
m∑
i=1

n∑
j=1

bjµ(Ai ∩Bj)

=
m∑
i=1

aiµ(Ai) +
n∑

j=1

bjµ(Bj) =

∫
f dµ+

∫
g dµ.

For the third property, if ∀x ∈ X, f(x) ≤ g(x), then g − f is in S+, and so∫
g dµ =

∫
(f + (g − f)) dµ =

∫
f dµ+

∫
(g − f) dµ ≥

∫
f dµ.

With these properties, we can check a weaker version of the monotone
convergence theorem, which will be used as a tool in our definition.
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Proposition 4.5. Let (X,A , µ) be a measure space, let f belong to S+, and
let (fn) be a nondecreasing sequence of functions in S+ such that f(x) =
limn fn(x) for all x ∈ X. Then

∫
f dµ = limn

∫
fn dµ.

Proof. From third property of 4.4, we can see that∫
f1 dµ ≤

∫
f2 dµ ≤ · · · ≤

∫
f dµ.

Thus limn

∫
fn dµ exists, and is less than or equal to

∫
f dµ. Next, we’ll

show that it is also greater than or equal to, and thus equal to
∫
f dµ. Let

0 < ε < 1. We will construct a nondecreasing sequence of functions (gn)
such that gn ≤ fn for each n and such that limn

∫
gn dµ = (1 − ε)

∫
f dµ.

Then (1 − ε)
∫
f dµ ≤ limn

∫
fn dµ implying

∫
f dµ ≤ limn

∫
fn dµ, as ε is

arbitrary (and can be arbitrarily close to 0).
Suppose that a1, . . . , ak are the nonzero values of f and that A1, ..., Ak are
the sets on which these values occur, so that f is given by

∑k
i=1 aiXAi

. For
each n and i let A(n, i) = {x ∈ Ai : fn(x) ≥ (1 − ε)ai}. Then each A(n, i)
belongs to A and for each i the sequence {A(n, i)}∞n=1 is nondecreasing and
Ai = ∪nA(n, i). If we let gn =

∑k
i=1(1 − ε)aiXA(n,i), then gn ∈ S+ and

gn ≤ fn, and

lim
n

∫
gn dµ = lim

n

k∑
i=1

(1−ε)aiµ(A(n, i)) =
k∑

i=1

(1−ε)aiµ(Ai) = (1−ε)

∫
f dµ.

Now we can use this to define the integral of an arbitrary [0,∞]-valued
A -measurable function on X. For such a function f , let∫

f dµ = sup

{∫
g dµ : g ∈ S+ sup andg ≤ f

}
.

Similar properties hold for this new integral. We will check them.

Proposition 4.6. Let (X,A , µ) be a measure space, let f be a [0,+∞]-valued
A -measurable function on X, and let (fn) be a nondecreasing sequence of
functions in S+ such that f(x) = limn fn(x) for all x ∈ X. Then

∫
f dµ =

limn

∫
fn dµ.
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Proof. Since (fn) is nondecreasing,∫
f1 dµ ≤

∫
f2 dµ ≤ · · · ≤

∫
f dµ.

Thus limn

∫
fn dµ exists and limn

∫
fn dµ ≤

∫
f dµ. We now check the

reverse. As
∫
f dµ is the supremum of those elements of [0,+∞] of the

form
∫
g dµ, where g ranges over the set of functions belonging to S+ such

that g ≤ f . Thus to prove that
∫
f dµ ≤ limn

∫
fn dµ, we can check that

if g is a function in S+ where g ≤ f , then
∫
g dµ ≤ limn

∫
fn dµ. Then

suppose that g is such a function. Then (min(g, fn)) is a nondecreasing
sequence of functions in S+ such that g = limn(min(g, fn)), so

∫
g dµ =

limn

∫
(min(g, fn) dµ. Since

∫
(min(g, fn)) dµ ≤

∫
fn dµ, it follows that∫

g dµ ≤ limn

∫
fn dµ.

We also will show the other properties that we proved in 4.4 still hold.

Proposition 4.7. Let (X,A , µ) be a measure space, let f and g be [0,+∞]-
valued A -measurable functions on X, and let α be a nonnegative real number.
Then the following are true.

1.
∫
αf dµ = α

∫
f dµ.

2.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

3. If f(x) ≤ g(x) for all x ∈ X,
∫
f dµ ≤

∫
g dµ.

Proof. Let us take nondecreasing sequences (fn) and (gn) of functions in
S+ such that f = limn fn and g = limn gn. Then (αfn) is a nondecreasing
sequence of functions in S+ such that αf = limn αfn. Thus by using the
properties of the integral on functions in S+ we get that∫

αf dµ = lim
n

∫
αfn dµ = lim

n
α

∫
f dµ = α

∫
f dµ.

Next, (fn + gn) is a nondecreasing sequence of functions in S+ such that
f + g = limn(fn + gn). Thus by using the properties of the integral on
functions in S+ we get that∫

(f + g) dµ = lim
n

∫
(fn + gn) dµ

= lim
n
(

∫
fn dµ+

∫
gn dµ) =

∫
f dµ+

∫
g dµ

14



For property 3, consider that f ≤ g, then the set of functions hf ⊆ S+ such
that h ≤ f, ∀h ∈ hf is a subset of the set of functions hg ⊆ S+ such that
h ≤ g, ∀h ∈ hg, so it must be the case that∫

f dµ ≤
∫

g dµ.

Definition 4.8 (Integral). Let f be an arbitrary [−∞,∞]-valued measur-
able function. Then f+ is defined as max(+f(x), 0), and f− is defined as
max(−f(x), 0). These functions separate the positive and negative parts of
f(x) and are measurable. If

∫
f+ dµ and

∫
f− dµ are both finite, then f is

integrable. Then we can define the integral of f as∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

In the case that X = Rd and µ is Lebesgue outer measure, this integral
is referred to as the Lebesgue integral.

5 The Riesz Representation Theorem

At this point, we have almost enough background to get into the theorem. We
still require some understanding of locally compact Hausdorff spaces before
we begin.

5.1 Locally Compact Hausdorff spaces

Definition 5.1. Let X be a topological space. We call X Hausdorff if it
has the property that for any two points a, b ∈ X, then there exist disjoint
open sets A,B ⊆ X such that a ∈ A and b ∈ B.

Definition 5.2. Let A be a subset of a topological space X. If B is any set
such that O = Ub : b ∈ B is a collection of open sets in X with the property
that A ⊆

⋃
b∈B Ub, then we call O an open cover of A. If there is a finite

subset C ⊆ B such that A ⊆
⋃

b∈C Ub, then {Ub : b ∈ C} is called a finite
subcover of O.

15



Definition 5.3. LetX be a topological space, and letK ⊆ X be an arbitrary
subset. We call K compact if every open cover of K in has a finite subcover.
We call the topological space X a compact space if every open cover of X
has a finite subcover.

Note that a compact set in one topological space is not necessarily a
compact set in another.

Definition 5.4. Let X be a topological space. If every point x ∈ X has a
neighborhood with a closure that is a compact subset of X, then X is called
locally compact.

It follows from these definitions that a locally compact Hausdorff space
is a topological space that is locally compact and Hausdorff.

Example. Examples of locally compact Hausdorff spaces include the spaces
under the discrete topology (spaces where all subsets are open), Euclidean
spaces Rd, and compact Hausdorff spaces.

We will prove the following results, which will assist us in proving the
Riesz Representation Theorem.

Proposition 5.5. Let X be a Hausdorff space and let K and L be compact
disjoint subsets of X. Then there are disjoint open subsets U and V of X
such that K ⊆ U and L ⊆ V .

Proof. Assume that K and L are nonempty, as we would otherwise have ∅
as one open set and X as the other. Let us begin with the case where K
contains exactly one point, say X. For each y in L there is a pair Uy, Vy of
disjoint open sets such that x ∈ Uy and y ∈ Vy, as X is Hausdorff. Since L is
compact, there is a finite set y1, . . . , yn such that Vy1 , . . . , Vyn is an open cover
for L. The sets U and V defined by U = ∩n

i=1Uyi and V = ∪n
i=1Vyi are then

the required open sets. Now suppose K has more than one element. As we
have shown for each x in K there are disjoint open sets Ux and Vx such that
x ∈ Ux and L ⊆ Vx, there is a finite set x1, . . . , xm such that Ux1 , . . . , Uxm is
an open cover for K. Then we can define U = ∪m

i=1Uxi
and V = ∩m

i=1Vxi
.

Lemma 5.5.1. Let X be a locally compact Hausdorff space, let K be a com-
pact subset of X, and let U be an open subset of X that includes K. Then
there is an open subset V of X that has a compact closure and satisfies
K ⊆ V ⊆ V̄ ⊆ U .
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Proof. We’ll first show the case for a single point. Since X is locally compact,
for some point x ∈ X, there is an open neighborhood W whose closure is
compact. By replacingW withW∩U , we can ensure thatW is included in U .
Now we must ensure that W̄ is included in U . We’ll use 5.5 to choose disjoint
open sets V1, V2 that separate the compact sets x and W̄ −W . The closure
of V1 ∩ W is then compact and included in W and by extension U . Then,
since each point in K has an open neighborhood whose closure is compact
and included in U , there is some finite collection of these that covers K. Let
V be the union of these sets in the open cover, then V is the desired set.

Theorem 5.6 (Urysohn’s Lemma). Let X be a normal topological space,
and let E and F be disjoint closed subsets of X. Then there is a continuous
function f : X → [0, 1] such that f(x) = 0 holds at each x in E and f(x) = 1
holds at each x in F .

Proposition 5.7. Let X be a locally compact Hausdorff space, let K be
a compact subset of X, and let U be an open subset of X that includes
K. Then there is a function f that belongs to K (X) has the property that
XK ≤ f ≤ XU and supp(f) ⊆ U .

Proof. Use 5.5.1 to choose an open set V with compact closure such that
K ⊆ V ⊆ V̄ ⊆ U . According to 5.6, there is a continuous function g : V̄ →
[0, 1] such that g(x) = 1 for all x ∈ K and g(x) = 0 for all x ∈ (V̄ − V ).
Now define the function f : X → [0, 1] by letting f = g on V̄ and vanish
outside V̄ . The continuity of f follows as it is continuous on V̄ and constant,
implying continuous, on X − V . The support of f is included in V̄ and so is
included in U .

5.2 Radon Measure

Definition 5.8. Let f : X → R be a real-valued function where X is an
arbitrary set. The support, denoted supp(f), is the set of points x ∈ X such
that f ̸= 0.

In the case that X is a locally compact Hausdorff space, we will denote
by K (X) the set of continuous functions f : X → R for which supp(f) is
compact. Then K (X) is a vector space over R.

Proposition 5.9. Let X and Y be Hausdorff topological spaces, and let f :
X → Y be continuous. Then f is Borel measurable (measurable with respect
to B(X) and B(Y )).
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Proof. The continuity of f implies that if U is open in Y , then f−1(U) is an
open and thus Borel subset of X. As the collection of Borel sets is generated
by the open sets, f is Borel measurable by 3.21.

Definition 5.10. A Radon measure on a measurable space (X,A ) is a Borel
measure that is finite on all compact sets, outer regular on all Borel sets, and
inner regular on all open sets.

Let U be an open subset of a locally compact Hausdorff space X. We
will write f ≺ U to indicate that 0 ≤ f ≤ XU and supp(f) ⊆ U . Before we
can prove the theorem, we will require a few more lemmas.

Lemma 5.10.1. Let X be a Hausdorff space, let K be a compact subset of
X, and let U1 and U2 be open subsets of X such that K ⊆ U1 ∪ U2. Then
there are compact sets K1 and K2 such that K = K1 ∪ K2, K1 ⊆ U1, and
K2 ⊆ U2.

Proof. Let L1 = K − U1 and L2 = K − U2. Then L1 and L2 are disjoint
and compact, and so according to 5.5 they can be separated by disjoint open
sets, which we’ll call V1 and V2. If we define K1 and K2 by K1 = K − V1

and K2 = K − V2, then K1 and K2 are compact, are included in U1 and U2

respectively, and have K as their union.

Lemma 5.10.2. Let X be a locally compact Hausdorff space, let f belong to
K (X), and let U1, . . . , Un be open subsets of X such that supp(f) ⊆

⋃n
i=1 Ui.

Then there are functions f1, . . . , fn in K (X) such that f = f1+f2+ · · ·+fn
and such that for each i the support of fi is included in Ui. Furthermore, if
f is nonnegative, then f1, . . . , fn can be chosen so that all are nonnegative.

Proof. If n = 1 we can let f1 be f . So we begin by supposing n = 2. By
using 5.10.1, we construct compact sets K1 and K2 such that K1 ⊆ U1,
K2 ⊆ U2, and supp(f) = K1 ∪ K2, then use 5.7 to construct functions h1

and h2 in K (X) such that XKi
≤ hi ≤ XUi

and supp(hi) ⊆ Ui for i = 1, 2.
Define functions g1 and g2 by g1 = h1 and g2 = h2 − min(h1, h2). Then g1
and g2 are non-negative, have supports included in U1 and U2. and satisfy
g1(x) + g2(x) = max(h1, h2)(x) = 1 at each x in the support of f . Then we
can complete the case where n = 2 by letting f1 = g1 and f2 = g2.
The general case can be dealt with by induction. We can use what we have
proven to write f as the sum of two functions, having supports included in
∪n−1

i=1 Ui and Un, then use the induction hypothesis to decompose the first of
these functions to the sum of n− 1 valid functions.
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Lemma 5.10.3. Let X be a locally compact Hausdorff space, and let µ be a
Radon measure on X. If U is an open subset of X, then

µ(U) = sup

{∫
f dµ : f ∈ K (X) and 0 ≤ f ≤ XU

}
= sup

{∫
f dµ : f ∈ K (X) and f ≺ U

}
Proof. We can see that µ(U) is greater than or equal to the first supremum,
which is greater than or equal to the second. Therefore it is enough to show
that

µ(U) ≤ sup

{∫
f dµ : f ∈ K (X) and f ≺ U

}
.

Let α be a number that satisfies α < µ(U), and as µ is Radon, we can choose
a compact subset K of U such that α < µ(K). We can get a function f in
K (X) satisfying XK ≤ f and f ≺ U from 5.7. Then α <

∫
f dµ, and so

α < sup

{∫
f dµ : f ∈ K (X) and f ≺ U

}
.

Since α was arbitrary and less than µ(U), we’re done.

We can now prove the theorem for which this paper is named, the Riesz
Representation Theorem, originally proven by Riesz in [Rie09]. An interest-
ing paper comparing and constructing several different proofs for the theorem
that have appeared can be found in [Nar11].

Theorem 5.11. Let X be a locally compact Hausdorff space, and let I be a
positive linear functional on K (X). Then there is a unique Radon measure
µ on X such that for all f in K (X),

I(f) =

∫
f dµ.

Proof. We start with showing the uniqueness of µ. Suppose that µ and ν are
regular Borel measures on X such that

∫
f dµ =

∫
f dν = I(f) for each f in

K (X). By 5.10.3, µ(U) = ν(U) for each open subset U of X and then from
outer regularity µ(A) = ν(A) for each Borel subset A of X. Then µ = ν, so
µ is unique.
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We now begin the construction of a Radon measure representing the func-
tional I. We will follow off of some ideas from 5.10.3 and the definition of
outer regularity. We define a function µ∗ on the open subsets of X as

µ∗(U) = sup {I(f) : f ∈ K and f ≺ U} ,

and then extend it to all subsets of X with

µ∗(A) = inf {µ∗(U) : U is open and A ⊆ U} .

These are consistent in the sense that an open set is assigned the same value
by both. Now we’ll show that µ∗ is an outer measure on X and every Borel
subset of X is µ∗-measurable.
The relation µ∗(∅) = 0 and the monotonicity of µ∗ are clear. We will check
the countable subadditivity of µ. First suppose (Un) is a sequence of open
subsets of X. We will verify that

µ∗(
⋃
n

Un) ≤
∑
n

µ∗(Un).

Let f be a function in K (X) and f ≺ ∪nUn. Then supp(f) is a compact
subset of ∪nUn, so there is a positive integer N such that supp(f) ⊆ ∪N

n=1Un.
By 5.10.2, f is the sum of functions f1, . . . , fN that belong to K (X) and
satisfy fn ≺ Un for n = 1, . . . N . Then

I(f) =
N∑

n=1

I(fn) ≤
N∑

n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(Un).

With the above definition of µ∗ on the open subsets of X, the inequality is
verified.
Now, suppose (An) is an arbitrary sequence of subsets of X. The inequality
µ∗(∪nAn) ≤

∑
n µ

∗(An) is clear if
∑

n µ
∗(An) = +∞. Suppose then that∑

n µ
∗(An) < +∞, let ε be a positive real number, and for each n use the

above definition for µ∗(A) for subsets of X to choose an open set Un that
includes An and satisfies µ∗(Un) ≤ µ∗(An) +

ε
2n
. Then from our inequality

for open sets,

µ∗(∪nAn) ≤ µ∗(∪nUn) ≤
∞∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(An) + ε.
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Since ε is arbitrary, the relation µ∗(∪nAn) ≤
∑

n µ
∗(An) follows, and so µ∗

is countably subadditive and thus an outer measure.
Since the family of µ∗-measurable sets forms a σ-algebra, we can show that
every Borel subset of X is µ∗-measurable by checking that all open subsets
of X are µ∗-measurable. So let U be an open subset of X. Then we can
prove U is µ∗-measurable by showing that

µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c)

holds for each subset A ofX where µ∗(A) < +∞. Suppose A is such a set, ε is
a positive real number, and use µ∗(A) = inf {µ∗(U) : U is open and A ⊆ U}
to choose an open set V that includes A and satisfies µ∗(V ) < µ∗(A) + ε. If
we show that

µ∗(V ) > µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε,

then
µ∗(A) + ε > µ∗(A ∩ U) + µ∗(A ∩ U c)− 2ε,

and since ε is arbitrary, that µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c) holds and U
is µ∗-measurable. Thus, to show that it is the case, choose a function f1 in
K (X) that satisfies f1 ≺ V ∩U and I(f1) > µ∗(V ∩U)−ε, let K = supp(f1),
and choose f2 in K (X) such that f2 ≺ V ∩Kc, and I(f2) > µ∗(V ∩Kc)− ε.
Since f1 + f2 ≺ V and V ∩ U c ⊆ V ∩Kc,

µ∗(V ) ≥ I(f1 + f2) > µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε.

Then our inequality holds, so every Borel subset of X is µ∗-measurable.
For the next part of the proof, suppose A is a subset of X and f belongs to
K (X). We will show that if XA ≤ f , then µ∗(A) ≤ I(f), whileif0 ≤ f ≤ XA

and if A is compact, then I(f) ≤ µ∗(A). First, assume XA ≤ f . Let ε be
such that 0 < ε < 1, and define Uε as Uε = {x ∈ X : f(x) > 1 − ε}. Then
Uε is open, and each g in K (X) where g ≤ XUε also has the property that
g ≤ 1

1−ε
f , so µ∗(Uε) ≤ 1

1−ε
I(f). As A ⊆ Uε and since ε can be arbitrarily

close to 0, µ∗(A) ≤ I(f). Next, suppose 0 ≤ f ≤ XA and A is compact. Let
U be an open set including A. Then f ≺ U and so I(f) ≤ µ∗(U). Since U
was an arbitrary open set including A, I(f) ≤ µ∗(A).
We will finish the proof by verifying that a restriction of our construction is a
measure that satisfies the conditions of the theorem. Let µ be the restriction
of µ∗ to the Borel subsets of X, let µ1 be the restriction of µ∗ to the σ-algebra
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of Mµ∗ of µ∗-measurable sets. We will show µ and µ1 are Radon measures,
and ∫

f dµ =

∫
f dµ1 = I(f)

for all f in K (X). By 3.15, µ1 is a measure on Mµ∗ and since B(X) ⊆
Mµ∗ as we have shown earlier, µ is a measure on B(X). By 5.7, for each
compact subset K of X there is a function f belonging to K (X) where
XK ≤ f . This implies that µ and µ1 are finite on compact sets. The
outer regularity of µ and µ1 follows from our earlier equation µ∗(A) =
inf {µ∗(U) : U is open and A ⊆ U} , and the inner regularity follows from
µ∗(U) = sup {I(f) : f ∈ K and f ≺ U}. Then µ and µ1 are Radon. Next,
we’ll look at the identity

∫
f dµ =

∫
f dµ1 = I(f). Since each function

in K (X) is the difference of two nonnegative functions in K (X), we can
focus on the nonnegative functions in K (X). Let f be such a nonnegative
function, and ε be a positive number. For each positive integer n define a
function fn : X → R by

fn(x) =


0 if f(x) ≤ (n− 1)ε,

f(x)− (n− 1)ε if (n− 1)ε < f(x) ≤ nε,

ε if nε < f(x).

Then each fn belongs to K (X), f =
∑

n fn, and there is a positive integer N
such that fn = 0 if n > N . Let K0 = supp(f) and for each positive integer
n let Kn = {x ∈ X : f(x) ≥ nε}. Then εXKn ≤ fn ≤ εXKn−1 for all positive
integers n, so the properties of the integral imply εµ(Kn) ≤ I(fn) ≤ εµ(Kn−1)
and εµ(Kn) ≤

∫
fn dµ ≤ εµ(Kn−1) for each n. As f =

∑N
n=1 fn, it follows

that
N∑

n=1

εµ(Kn) ≤ I(f) ≤
N−1∑
n=1

εµ(Kn)

and
N∑

n=1

εµ(Kn) ≤
∫

f dµ ≤
N−1∑
n=1

εµ(Kn).

Thus I(f) and
∫
f dµ both lie in the interval [

∑N
n=1 εµ(Kn),

∑N−1
n=1 εµ(Kn)],

with length εµ(K0) − εµ(KnN). As ε is arbitrary, I(f) and
∫
f dµ must

be equal. It is clear that
∫
f dµ =

∫
f dµ1, so our proof for the Riesz

Representation Theorem is complete.

22



References

[Coh13] Donald L. Cohn. Measure theory. Birkhäuser Adv. Texts, Basler
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