Ramanujan Graphs

Ayush Bansal

Euler Circle

July 14, 2025

Adjacency Matrix

Definition

An adjacency matrix is a way to represent a graph in a square matrix where we put a 1 in A_{ij} and A_{ji} if an edge exists between vertices i and j and a 0 otherwise.

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Figure: Interested in Eigenvalues

Expander Graphs

Definition

Expander Graphs have a few number of edges (lots of zeros in the adjacency matrix) while being highly connected.

Expander Graphs

Definition

Expander Graphs have a few number of edges (lots of zeros in the adjacency matrix) while being highly connected.

Definition

The Cheeger Constant is defined as $h(G) = \min_{0 < |S| \le \frac{n}{2}} \frac{|\partial S|}{|S|}$

Expander Graphs

Definition

Expander Graphs have a few number of edges (lots of zeros in the adjacency matrix) while being highly connected.

Definition

The *Cheeger Constant* is defined as $h(G) = \min_{0 < |S| \le \frac{n}{2}} \frac{|\partial S|}{|S|}$

Remark

Their is no way to calculate h(G) is polynomial time. PNP.

Cheeger Constant

Example:

The Cheeger Constant for this graph is 1. In particular when |S|=2 and $|\partial S|=2$ we have $h(G)=\frac{|\partial S|}{|S|}=\frac{2}{2}=1$

Cheegers Inequality

Theorem (Alon-Milman, 1985)

Let G be a d-regular graph on n vertices and let the eigenvalues of its adjacency matrix be: $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$ then:

$$\frac{d-\lambda_2}{2} \leq h(G) \leq \sqrt{2d(d-\lambda_2)}$$

Ayush Bansal Ramanujan Graphs July 14, 2025 5 / 14

Cheegers Inequality

Theorem (Alon-Milman, 1985)

Let G be a d-regular graph on n vertices and let the eigenvalues of its adjacency matrix be: $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$ then:

$$\frac{d-\lambda_2}{2} \leq h(G) \leq \sqrt{2d(d-\lambda_2)}$$

$$A \cdot \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} \underbrace{1+1+\cdots+1}^{d} \\ \underbrace{1+1+\cdots+1}^{d} \\ \vdots \\ \underbrace{1+1+\cdots+1}^{d} \end{bmatrix} = \begin{bmatrix} d \\ d \\ \vdots \\ d \end{bmatrix} = d \cdot \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

◆□▶◆□▶◆■▶◆■▶ ● 900

5 / 14

Bounding Non-Trivial Eigenvalues

Theorem (Alon-Boppana, 1991)

In any *d*-regular graph with diameter δ let its eigenvalues be $\lambda_1 \geq \lambda_2 \geq \ldots, \geq \lambda_n$ Then

$$\lambda_2 \ge 2\sqrt{d-1} - \frac{2\sqrt{d-1}-1}{\lfloor \delta/2 \rfloor}$$

Bounding Non-Trivial Eigenvalues

Theorem (Alon-Boppana, 1991)

In any *d*-regular graph with diameter δ let its eigenvalues be $\lambda_1 \geq \lambda_2 \geq \ldots, \geq \lambda_n$ Then

$$\lambda_2 \geq 2\sqrt{d-1} - \frac{2\sqrt{d-1} - 1}{\lfloor \delta/2 \rfloor}$$

Theorem (Weaker version of Alon-Boppana, 1991)

Among the non-trivial eigenvalues let the eigenvalue with the greatest magnitude be σ . We have that:

$$\sigma \geq 2\sqrt{d-1}\cdot (1-\mathcal{O}(1))$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (^)

Proof:

ullet For any k the entry a_{ij} of A^k is the number of paths from i to j

Proof:

- For any k the entry a_{ij} of A^k is the number of paths from i to j
- ullet The sum over all a_{ii} represents the number of closed paths of length k

7 / 14

Proof:

- For any k the entry a_{ij} of A^k is the number of paths from i to j
- ullet The sum over all a_{ii} represents the number of closed paths of length k
- Lower bound by the number of closed paths of length 2k in an infinite d-regular graph.

Proof:

- For any k the entry a_{ij} of A^k is the number of paths from i to j
- ullet The sum over all a_{ii} represents the number of closed paths of length k
- Lower bound by the number of closed paths of length 2k in an infinite d-regular graph.

Proof Continued:

• $trace(A^{2k}) \geq n \cdot \#$ of closed paths $= n \cdot C_k (d-1)^k = n \cdot \frac{1}{k+1} {2k \choose k} (d-1)^k$

Ayush Bansal Ramanujan Graphs July 14, 2025 8 / 14

Proof Continued:

- $trace(A^{2k}) \geq n \cdot \#$ of closed paths $= n \cdot C_k (d-1)^k = n \cdot \frac{1}{k+1} {2k \choose k} (d-1)^k$
- $d^{2k} + n(\sigma^{2k}) \ge \sum \lambda_i^{2k} = trace(A^{2k})$

Ayush Bansal

Proof Continued:

- $trace(A^{2k}) \geq n \cdot \#$ of closed paths $= n \cdot C_k (d-1)^k = n \cdot \frac{1}{k+1} \binom{2k}{k} (d-1)^k$
- $d^{2k} + n(\sigma^{2k}) \ge \sum \lambda_i^{2k} = trace(A^{2k})$
- $\sigma \geq 2\sqrt{d-1} \cdot (1-O(1))$

Bounding Non-Trivial Eigenvalues

Theorem (Friedman, 2003)

For a random d-regular graph and some $\epsilon > 0$ the probability that

$$\sigma \leq 2\sqrt{d-1} + \epsilon$$

tends to 1 as the number of vertices goes to infinity.

We have now established both a lower bound and upper bound on the non-trivial eigenvalues.

Ramanujan Graphs

Definition

Ramanujan Graphs are d-regular graphs for which all non-trivial eigenvalues satisfy $|\lambda_i| \leq 2\sqrt{d-1}$

Now some questions to consider:

- Can we find explicit constructions of Ramanujan Graphs?
- 2 Do infinite Ramanujan Graphs exist?

Construction of Ramanujan Graphs

Constructions (Lubotzky-Phillips-Sarnak 1988, Margulis 1988)

Provided an explicit construction for the case where d-1=p using Cayley Graphs

Constructions (Morgenstern, 1994)

Generalized the construction to $d-1=p^k$

Existence of Infinite Bipartite Ramanujan Graphs

Construction (Marcus Spielman Srivastava, 2015)

- Take a complete $K_{d,d}$ graph
- Perform a 2-lift
- Interlacing families to conclude that their exists at least one 2-lift

Existence of Infinite Bipartite Ramanujan Graphs

Existence of Infinite Bipartite Ramanujan Graphs

13 / 14

Ayush Bansal Ramanujan Graphs July 14, 2025

Acknowledgments

Acknowledgments

I would like to thank the following people and groups:

- Rachana Madhukara
- Simon Rubinstein-Salzedo
- Euler Circle