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1. Introduction

Ramanujan graphs are d regular graphs with its non-trivial eigenvalues all satisfying the
bound |λi| ≤ 2

√
d− 1. This bound turns out to be tight by the results of Alon-Boppana and

Friedman which together imply that Ramanujan Graphs are the best expanders. We first
talk about common results in spectral graph theory such as Cheegers inequality and Then
we will give two constructions the first by Lubotzky, Phillips and Sarnak which uses heavy
duty number theory and then by Marcus, Spielman and Srivastava which uses a probabilistic
method. Finally we will wrap up by talking about the Ihara Zeta function and show that
Ihara Zeta function of a graph is equivalent to the Riemann Hypothesis if and only if the
our graph is Ramanujan.

2. Basic Notation

A graph is a set of vertices V and edges E connecting any two different vertices together.
In this paper we will represent graphs in so called adjacency matrices which when analyzed
can tell us a great deal about the properties of our graph. An adjacency matrix is a way to
represent a graph with n vertices in a n× n square matrix where we put a 1 in Aij and Aji

if an edge exists between vertices i and j and a 0 otherwise. In a graph where their are no
loops the main diagonal consists of only 0s as no edge exists between vertex i and i.

Example. The adjacency matrix for Figure 1 is0 1 1
1 0 0
1 0 0


In particular analyzing the eigenvalues of this adjacency matrix turns out to be fruitful. In

this paper we study graphs which are k-regular meaning each vertex has degree of k. Imme-
diately one can notice that any k-regular graph’s adjacency matrix has a trivial eigenvalue
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k with its corresponding eigenvector being

V =


1
1
...
1


This is because when we perform the matrix multiplication A · V = A1 the i’th entry of A1

is the sum of all the entries in the i’th row of A. By definition, the sum of the entries in i’th
row gives the degree of i which is k in our case. In particular:

A · V =



1 + 1 + · · ·+ 1︸ ︷︷ ︸
k

1 + 1 + · · ·+ 1︸ ︷︷ ︸
k
...

1 + 1 + · · ·+ 1︸ ︷︷ ︸
k


=


k
k
...
k

 = k ·


1
1
...
1


The spectrum of a graph the ordered set of eigenvalues of its adjacency matrix: λ1 ≥ λ2 ≥
. . . λn. Analyzing eigenvalues of graphs can help us identify good expander graphs which
are graphs which are graphs that are both sparse meaning they contain a minimal number
of edges while being highly connected. We will describe a way to measure how connected a
graph is in the following section.

Remark 2.1. In a connected and undirected graph the minimum number of edges is n − 1

which corresponds to a tree while the maximum number of edges is (n)(n−1)
2

where every edge
between two vertices is present.

3. Results in Spectral Graph Theory

We begin by discussing the main results from spectral graph theory but first we define the
Cheeger constant which helps us measure how connected a graph is.

Definition 3.1. The Cheeger constant is defined as

h(G) = min
0<|S|≤n

2

|∂S|
|S|

where S is a subset of the graph G, |S| represents the number of vertices in S, and |∂S| is
the number of edges between S and G\S.

Example. The Cheeger Constant for the graph in Figure 2 is 1. The minimum value of
h(G) = 1 is achieved with the set of green vertices S = {D,E} as shown in the figure. In

this case we have |S| = 2 vertices and |∂S| = 2 edges. This yields h(G) = |∂S|
|S| = 2

2
= 1.

While we have shown the result for the optimal subset we must remember to check all
possible subsets S in order to calculate h(G).

With the Cheeger constant we now have a way to quantify how connected a graph is.
Evidently a good expander graph has a large Cheeger constant since we want our graph to
be highly connected. In fact we want the absolute best Cheeger constant which motivates
the following question: “In what situations is the Cheeger constant maximized?” It turns
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out that calculating the Cheeger constant is NP -hard so the best we can do is bound it.
Alon-Milman proved the following theorem in [AM85]:

Theorem 3.2 (Alon-Milman, 1985). In a d-regular graph G with its second largest eigenvalue
being λ2 we have

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2)

Remark 3.3. The motivation for using λ2 instead of λ1 stems from λ2 being the first non-
trivial eigenvalue of a graph.

From this inequality it is evident that h(G) is maximized precisely when λ2 is minimized.
Thus we now turn our attention to finding the smallest value of λ2. Again this problem is
NP -hard so the best we can do is find bounds on λ2. First the lower bound was established
by Alon and Boppana [Alo86] in 1991 and then the upper bound was established by Friedman
[Fri03] in 2003 almost 2 decades later.

Definition 3.4. The diameter δ of a graph G is the length of the longest shortest path
between any two vertices in a graph.

Theorem 3.5 (Alon-Boppana, 1991). In any d-regular graph with diameter δ let its eigen-
values be λ1 ≥ λ2 ≥ . . . ,≥ λn Then

λ2 ≥ 2
√
d− 1− 2

√
d− 1− 1

⌊δ/2⌋
In this paper we will prove a weaker version of Alon-Boppana in Section 4.

Theorem 3.6 (Friedman, 2003). For a d-regular graph and some ϵ > 0 the probability that

λi ≤ 2
√
d− 1 + ϵ

tends to 1 as the number of vertices goes to infinity.

The same 2
√
d− 1 appears in both the lower and upper bounds thus these bounds are

tight. You can’t bound λ2 any better. A special class of graphs which achieve this bound
are Ramanujan Graphs which we now explicitly define:

Definition 3.7. A Ramanujan Graph is a d-regular graph where all non-trivial eigenvalues
satisfy

|λi| ≤ 2
√
d− 1

Corollary 3.8. The probability of a random d-regular graph being Ramanujan is 69% as n
goes to ∞. We refer the reader to [HMY25] for a detailed explanation.
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In fact this bound appears naturally in several other types of graphs as well. One notable
example is trees for which we have the following lemma:

Lemma 3.9. If T is a tree with maximal degree k then all non-trivial eigenvalues of the
adjacency matrix satisfy |λi| ≤ 2

√
d− 1.

Proof. Let A be the adjacency matrix of the tree T . Let r be the root of the tree T and for
a vertex vi let d(r, vi) be its distance from r. Finally let D be a invertible diagonal matrix
such that dii = δd(r,vi) for a parameter δ > 0.
We now construct a matrix B = DAD−1 by definition B has the same eigenvalues as A

and we know the entries of B explicitly. They are

bij =

{
δd(r,vi)−d(r,vj), if vi and vj are adjacent

0, otherwise

Now let λ be an eigenvalue of B with a non-zero eigenvector x. The eigenvalue equation
is then:

λxi =
∑
vi−vj

δd(r,vi)−d(r,vj)xj

We choose an index i such that |xi| is maximal. From this we have xi ̸= 0 and |xj| ≤ |xi|.
Taking absolute values of the eigenvalue equation gives:

|λ||xi| =
∑
vi−vj

δd(r,vi)−d(r,vj)|xj| =⇒ |λ||xi| ≤
∑
vi−vj

δd(r,vi)−d(r,vj)|xi|

Now if we divide both sides by |xi| we have

|λ| ≤
∑
vi−vj

δd(r,vi)−d(r,vj)

This expression gives us a bound on λ which we can now analyze based on the location of
vi in the graph. In a tree, any neighbor vj of vi has distance d(r, vj) = d(r, vi)± 1. We have
the following cases:

Case 1: vi is the root
All deg(vi) neighbors are a distance 1 away so we have |λ| ≤ deg(vi) · δ−1 ≤ k

δ

Case 2: vi is a leaf
Its single neighbor is one step closer to the root than vi so we have |λ| ≤ δ1 = δ

Case 3: Any other vi
vi has one neighbor closer to the root and all other deg(vi)− 1 neighbors further away from
the root. This means |λ| ≤ δ1 + (deg(vi)− 1)δ−1 ≤ λ+ k−1

δ

To minimize the maximum of these bounds, we want δ to minimize δ + k−1
δ
. After some

basic calculus we find that this occurs namely when δ =
√
k − 1. With this value for δ all

our 3 cases satisfy |λ| ≤ 2
√
k − 1 which is our bound. ■

4. Alon-Boppana

We now discuss the proof of the Alon-Boppana Theorem.

Definition 4.1. An infinite d-regular tree is a graph with infinite vertices of degree d,
containing no cycles.
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Figure 3. Portion of an Infinite 3-regular Tree

Example. A infinite 3-regular tree is shown in Figure 3 up to 4 generations.

Lemma 4.2. For a graph with adjacency matrix A the number of paths of length k from
vertex i to vertex j is the entry aij of the matrix Ak

Proof. We proceed via induction. The base case k = 1 is trivial as a path of length 1 between
vertex i and vertex j can only exist if their is an edge between them. This is exactly what
A1 = A encodes so we are done.

Assume that all entries of Ak satisfy the lemma. We will show that the matrix Ak+1 must
also satisfy the lemma. The number of paths of length k + 1 from vertex i to vertex j is
equal to the sum of the number of paths of length k from vertex i to a neighbor of vertex j.
This is precisely what the matrix multiplication Ak ·A does to the new entry aij of A

k+1 so
our lemma is proven. ■

Lemma 4.3. For a graph with adjacency matrix A and eigenvalues λi we have:

trace(Ak) =
n∑

i=1

λk
i

Proof. We will prove this lemma in two parts. First we show that trace(G) =
∑n

i=1 λi in
any matrix G. Then we show that if the eigenvalues of a graph G are λ1, λ2, . . . , λn then the
eigenvalues for the matrix Gt are λt

1, λ
t
2, . . . , λ

t
n. These two will readily imply our lemma.

We prove the first part by finding the characteristic polynomial of the adjacency matrix
A in two different ways. Since the characteristic polynomial is unique we will be able to
compare coefficients of the polynomials we find and then conclude. In particular we look at
the coefficient of Xn−1. We know that

P (X) = det(
[
A− IX

]
) = det



a11 −X a12 . . . a1n

a21 a22 −X . . . a2n
...

...
. . .

...
an1 an2 . . . ann −X




The coefficient of Xn−1 when evaluated turns out to be is −
∑n

i=1 aii = −trace(A). Moreover
the characteristic polynomial is also defined as

P (X) = (X − λ1)(X − λ2) . . . (X − λn)

whose coefficient of Xn−1 is −
∑n

i=1 λi. Thus by comparing coefficients of Xn−1 we conclude

−trace(A) = −
n∑

i=1

λi =⇒ trace(A) =
n∑

i=1

λi
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.
Now we prove the second part. Let the eigenvector for λi be v. We proceed with induction

and show that if Ak has eigenvalue λk
i then Ak+1 has eigenvalue λk+1

i . The base case k = 1
is trivial. For the inductive step we have that Ak · v = λk

i v. Multiplying both sides of this
equation by A we have that

AAkv = Aλk
i v =⇒ Ak+1v = λk

i (Av) = Ak+1v = λk+1
i v

Thus λk+1
i is an eigenvalue for the matrix Ak+1. Repeating this for all eigenvectors concludes

the second part. ■

Now we are ready to prove a weaker version of Alon-Bopanna.

Theorem 4.4. Let G be a d-regular graph and the eigenvalues of the adjacency matrix be
λ1, λ2, . . . , λn. Let the eigenvalue with the greatest magnitude be σ. We have that for any
integer k

σ ≥ 2
√
d− 1 ·

(
1−O

(
log k

k

))
Proof. By lemma 4.2 we know that the number of closed paths (i.e. paths from vertex i back
to vertex i) is

∑n
i=1 aii which is also just the trace of a matrix. The path length must be even

in order for us to have a closed path so we will consider path lengths of 2k rather than k.
The number of closed paths of length 2k starting from a single vertex vi in a graph is lower
bounded by the number of closed paths of length 2k in an infinite d-regular graph. This is
because in G you may have cycles which add additional paths which are not counted in the
infinite graph. However every path in the infinite graph is counted in the regular graph since
the infinite graph is a covering.

In fact, the number of closed paths of length 2k in a infinite d-regular graph is at least
Ck · (d− 1)k where Ck is the kth Catalan number. We can see this since a path of length 2k
consists of going forward k times and going backwards k times. Each time you go forward
you have at least d− 1 choices and each time you go backward you are forced to go back the
way you came. Thus in our path we have (d− 1)k choices for where to go. It is well known
the number of arrangements of when to go forward or backwards is Ck as you can never go
back more times than you go forward; it makes no sense to go forward, back, back as you
would be outside the graph. Thus we have

(4.1) trace(A2k) =
n∑

i=1

# of closed paths from vi ≥ n ·Ck(d− 1)k = n · 1

k + 1

(
2k

k

)
(d− 1)k

By lemma 4.3 we know

trace(A2k) =
n∑
i

λ2k
i

We now bound
∑n

i=1 λ
2k
i as follows:

(4.2) d2k + nσ2k ≥ d2k + (n− 1)σ2k ≥
n∑

i=1

λ2k
i = trace(A2k)

Combining equations 4.1 and 4.2 we have that

d2k + nσ2k ≥ trace(Ak) ≥ n · 1

k + 1

(
2k

k

)
(d− 1)k
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We can approximate the right hand side via Stirling’s formula to get

σ ≥ 2k

√
1

k + 1

(
2k

k

)
(d− 1)k − d2k

n
≈ 2k
√
22k(d− 1)k · Ω(k−1.5) = 2

√
d− 1

(
1−O

(
log(k)

k

))
which concludes. ■

5. LPS Construction of Ramanujan Graphs

The first explicit constructions of Ramanujan Graphs was given by Lubotzky, Phillips,
and Sarnak in 1988 and we often refer to the construction as the LPS construction. The
construction is number theory heavy and utilizes Cayley Graphs which we will define below

Definition 5.1. We call p a quadratic residue modulo q if their exists an integer x such that
p ≡ x2 (mod q).

Remark 5.2. We shorten the words quadratic residue to QR and non-quadratic residue to
NQR for convenience.

Definition 5.3. The Legendre symbol is denoted (p
q
) where:

(
p

q

)
=


1, if p is a QR modulo q

−1, if p is NQR modulo q

0, if q | p

Lemma 5.4. For every odd prime p there are exactly p−1
2

QR and NQR modulo p.

Proof. Evidently assume that x2 ≡ y2 (mod p) for two distinct integers x and y. Then

(x− y)(x+ y) ≡ 0 (mod p) =⇒ x+ y ≡ 0 (mod p)

as x ̸= y. So in fact all values of 12, 22, . . . , (p−1
2
)2 are QR and they are each distinct for size

reasons. This leaves the rest of the integers p − 1 − p−1
2

= p−1
2

being NQR. Note we ignore
0 since p | 0. ■

Lemma 5.5. If p ≡ 1 (mod 4) is a prime then their exists an integer i such that i2 ≡ −1
(mod p).

Proof. By Wilson’s theorem since (p− 1)! ≡ −1 (mod p) and p ≡ 1 (mod 4) then

(p− 1)! ≡
((

p− 1

2

)
!

)2

· (−1)
p−1
2 ≡

((
p− 1

2

)
!

)2

≡ −1 (mod p)

So a value of i which works is just
((

p−1
2

)
!
)2

■

With the number theory preliminaries out of the way we now state what a Cayley Graph
is.

Definition 5.6. Let G be a group and let S be a set of group G such that I /∈ S. The
Cayley Graph is then defined as a set of vertices and edges where every element of the group
G becomes an vertex with a directed edge between any two vertices a and b if ab−1 ∈ S.

Remark 5.7. We prevent the identity from being in S as to avoid self-loops.

Definition 5.8. The center of a group is denoted Z(G) and is the set of elements in G that
commute with every other element in G
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Now we will study some special groups which the LPS construction uses.

Definition 5.9. The general linear group GL(n,Fp) is the group of all n × n invertible
matrices for which each entry in the matrix is taken modulo p.

Definition 5.10. The projective general linear PGL(n,Fp) = GL(n,Fp)/Z(G) is a group
of equivalences classes of n × n matrices with each entry taken modulo p. Two matrices A
and B are in the same equivalence class if one is a non-zero multiple of the other. That is,
A = λB for λ ∈ F

Definition 5.11. The special general linear group SL(n,Fp) is a group which consists of all
matrices that are a part of GL(n,Fp) which have determinant 1.

Definition 5.12. The projective special general linear group PSL(n,Fp) = SL(n,Fp)/Z(G)
is a subgroup of PGL(n,Fp) consisting of all equiv lance classes that contain at least one
matrix with determinant 1.

Lemma 5.13. The number of equivalence classes in PGL(2,Fp) is p(p2 − 1).

Proof. The order of the PGL(2,Fp) is determined by its definition as a quotient group,
PGL(n,Fp) = GL(n,Fp)/Z(G). The order of GL(2,Fp) can be found by counting the
number of 2 × 2 invertible matrices over Fp. This is equivalent to choosing two linearly
independent vectors from F2

p yielding |GL(2,Fp)| = (p2−1)(p2−1). The center of this group
Z(G) consists of all non-zero vector scalar matrices so |Z| = |F∗

p| = p− 1. Thus

|PGL(2,Fp)| =
(p2 − 1)(p2 − 1)

p− 1
= p(p2 − 1)

. ■

Lemma 5.14. Any matrix with a quadratic residue for its determinant represents an equiv-
alence class in PSL(2,Fp).

Proof. Consider A ∈ GL(2,Fp). Then det(A) can either be a QR or a NQR. Suppose that
det(A) is a QR. Now note that since we are dealing with 2× 2 matrices det(λA) = λ2det(A)
which is again a QR. So λ−1A ∈ SL(2,Fp). In particular, all scalar multiples of c−1A belong
in the same equivalence class. Now if det(A) is a NQR then we can never have a QR by the
same reasoning above. ■

Lemma 5.15. The number of equivalence classes in PSL(2,Fp) is
p(p2−1)

2
.

Proof. By 5.4 we know that we have exactly half QR and half NQR thus the number of

equivalence classes in PSL(2,Fp) is exactly half of those in PGL(2,Fp) which is p(p2−1)
2

. ■

Now we will state a theorem without proof as it requires a lot of heavy duty machinery.

Theorem 5.16. Jacobi’s Four Square Theorem, 1834 The number of solutions to a2 + b2 +
c2 + d2 = n is 8 times the sum of all diviosrs of n which are not divisible by 4.

Corollary 5.17. If p ≡ 1 (mod 4) is an odd prime then their exist 8(p + 1) solutions to
a20 + a21 + a22 + a23 = p. In particular their exist exactly p + 1 solutions such that a0 > 1 and
a0 is odd.



RAMANUJAN GRAPHS 9

Proof. Each solution must have exactly 3 odd numbers and one even number in order for

p ≡ 1 (mod 4). So the number of solutions where a0 is the odd one is 8(p+1)
4

= 2(p+ 1) and
we again divide by two for when a0 is positive or negative. This gives us p + 1 solutions as
we wanted. ■

Finally now we are ready to state the LPS construction. Proving that this construction
actually satisfies the bounds for a Ramanujan Graph is extremely technical and we refer the
reader to [LPS88].

Theorem 5.18. Lubotzky-Phillips-Sarnak Ramanujan Graph Construction Let p, q ≡ 1
(mod 4) be two primes and by 5.5 i an integer satisfying i2 ≡ −1 (mod p) We know by
5.17 that their exist q + 1 solutions to a20 + a21 + a22 + a23 = q for which a0 > 1 and a0 is odd.
Associate each solution a0, a1, a2, a3 the matrix:

a =

[
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

]
We use this set of matrices as the generating set S for the Cayley graph. It turns out that
their are both bipartite and non-bipartite constructions of a q + 1 regular Ramanujan graph.

Case 1: q is a NQR modulo p
Here, the Cayley graph is constructed using the group PGL(2,Fp) and the generating set S.
This produces a bipartite Ramanujan graph with p(p2 − 1) vertices.

Case 2: q is a QR modulo p
Here, the determinant of any generator a ∈ S is a square in Fp ensuring that all elements
of the generating set S belong to the group PSL(2,Fp). The corresponding Cayley graph
is therefore built on this smaller group resulting in a non-bipartite Ramanujan graph with
p(p2−1)

2
vertices.

A few years later after LPS and Margulis [Mar88] in 1994 Moregenstern [Mor94] extended
their work by generalizing the construction to cover all graphs of degree pk + 1 where p is a
prime. Since then no major advancements have been made in finding explicit construction for
non bipartite Ramanujan graph. In fact, we still don’t have a construction of a degree 7 non-
bipartite Ramanujan Graph. However their has been work done on constructing bipartite
Ramanujan Graphs which we talk about in the following section:

6. Existence and Construction of Infinite Bipartite Ramanujan Graphs

This construction was so ahead of its time because it was still an open problem weather
infinite bipartite Ramanujan graphs existed or not. This proof not only answers this question
but details a method to construct them even though the proof is probabilistic in nature. First,
let us preface the motivation for using bipartite graphs. When we try bounding λ2 it is very
hard to keep all the negative eigenvalues greater than −2

√
d− 1. In essence, when you try

bounding λ2 you will mess up the bound for some negative eigenvalue. Thus, if we only
consider bipartite graphs it suffices to only bound λ2 as we get the lower bound for free since
eigenvalues are symmetric about 0. The proof is as follows:

Lemma 6.1. Eigenvalues are symmetric about 0 for a bipartite graph.
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Proof. By the definition of a bipartite graph we can split up the graph into having two

sub-square matrices as follows:

[
0 A1

A2 0

]
. Now consider an eigenvector

[
u1

u2

]
of the matrix[

0 A1

A2 0

]
. Immediately we have that[

0 A1

A2 0

]
·
[
u1

u2

]
=

[
A1 · u2

A2 · u1

]
= k ·

[
u1

u2

]
Now we want to show that −k is also an eigenvalue however this is immediately obvious as[

0 A1

A2 0

]
·
[
−u1

u2

]
=

[
A1 · u2

−A2 · u1

]
= −k ·

[
−u1

u2

]
■

Definition 6.2. A 2-lift in a process where you generate a new graph G′ with 2n vertices
from a graph G with n vertices. The process is as follows:

(1) Take the graph G and double it. Each vertex gets duplicated with the corresponding
vertex for X in the original graph G being X ′ in the new graph. It is evident that if
any two vertices X and Y are connected in the original graph G then X ′ and Y ′ are
connected as well.

(2) We now have the option of leaving edges between X and Y and X ′ and Y ′ alone or
crossing them in the sense that we instead join X with Y ′ and X ′ with Y .

Example. We emphasize that multiple 2−lifts exist and this is an example of a 2-lift. See
Figure 4 and Figure 5

A

D

B

C

A′

D′

B′

C ′

Figure 4. Doubled Graph

A

D

B

C

A′

D′

B′

C ′

Figure 5. Final Graph



RAMANUJAN GRAPHS 11

Remark 6.3. Observe that when we perform a 2-lift our graph always remains bipartite since
we never introduce any new odd cycles.

Definition 6.4. The adjacency matrix A′ of the 2-lift is called the doubled adjacency matrix.

If the adjacency matrix of the original graph was A then the doubled adjacency matrix
(i.e. Figure 4) would look like [

A 0
0 A

]
Now after you cross some edges your adjacency matrix would change but still be symmetric
about the diagonal.

Example. The adjacency matrix for Figure 5 would be

0 1 0 0 0 0 1 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0


Representing 2-lifts in adjacency matrices gets quite hard as the size of the matrices grows

exponentially which makes it difficult to analyze the matrices eigenvalues. This means we
need a new and better way to analyze the eigenvalues of the adjacency matrix of 2-lift. This
way must not double the size of the adjacency matrix but still encode the same information
about the eigenvalues.

Definition 6.5. The signed adjacency matrix As for a graph G is the adjacency matrix with

aij =

{
−1, if edges I − J ′ and I ′ − Jexist

1, otherwise

Example. The signed adjacency matrix for 5 is
0 1 −1 0
1 0 0 1
−1 0 0 1
0 1 1 0


Definition 6.6. The eigenvalues of A are called the old eigenvalues.

Definition 6.7. The eigenvalues of As are called the new eigenvalues.

It turns out that their does exist a way to analyze the eigenvalues of the doubled adjacency
matrix without the issues of size. This comes from the following theorem:

Theorem 6.8. The union of the signed adjacency matrix and the adjacency matrix are the
eigenvalues of the matrix of the doubled graph.
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Proof. The doubled adjacency matrix can be written as Â =

[
A1 A2

A2 A1

]
. Observe that A =

A1 +A2 and As = A1 −A2. Suppose that (α, v) and (β, u) are the eigen-pairs of A and As,

respectively. Then the following are eigen-pairs of Â:(
α,

[
v
v

])
and

(
β,

[
u
−u

])
Since the eigenvectors of the form

[
v
v

]
and

[
u
−u

]
are mutually orthogonal, and there are 2n

of them, they span all the eigenvectors of Â. ■

Definition 6.9. A matching on a graph consisting is a set of i edges for which no two edges
share a vertex.

Example. In the following graph m2 = 7 and an example of a possible matching with 2 edges
is:

A

B

C

D

E

F

Definition 6.10. The matching polynomial for a graph G where represents the number of
matchings with i edges is:

M(X) =
∑
i≥0

(−1)imiX
n−2i

where mi

Example. The matching polynomial for 6 is

MG(x) = (−1)0m0x
6−0 + (−1)1m1x

6−2 + (−1)2m2x
6−4 + (−1)3m3x

6−6

which after computing mi gives

MG(x) = x6 − 6x4 + 7x2 − 1

Matchings on graphs are studied widely and are quite nice because of several recurrences
which are present. We present one here below:
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Lemma 6.11. Let the matching polynomial on a graph G be µg. Suppose two vertices a and
b are connected by an edge e. Then we have: µg(X) = X · µg−e(X) + µg−a−b where µg−q(X)
represents the matching polynomial of the graph without q.

Proof. Evidently the number of matchings on a graph can be equal to the number of match-
ings with two vertices plus the number of matchings without those two vertices which is
what we count above. ■

Lemma 6.12. The expected characteristic polynomial of the signed matrices after the 2-lift
is equal to the matching polynomial. In other words

E(As(G)) = µg

Proof. The key idea is to find the characteristic polynomial by evaluating the determinant
via the Leibniz formula.

E(As(G)) = E(det(XI − As(G)) = E

∑
π∈Sn

sgn(π)x|a:π(a)=a|
∏

a:π(a)̸=a

(S(a, π(a)))


Above we are summing over every permutation of the adjacency matrix as per Leibniz’s
formula. We refer to points which are unchanged after the permutation as fixed points (i.e
S(a, π(a)) = S(a, a)). In each permutation the only way we can get a factor of x is if we
have a fixed point in our permutation as the main diagonal consists of only x. Thus the
degree of x is the number of fixed points. The coefficient of of x|a:π(a)=a| is the product of all
other terms in our permutation times sgn(π) by definition. By linearity of expectation this
expression is also equal to∑

π∈Sn

sgn(π)x|a:π(a)=a|E

 ∏
a:π(a)̸=a

(S(a, π(a)))


One can see that each permutation consists of cycle(s) in the sense that a −→ b −→ . . . −→ a and
so on. Here, the only way to get a non-zero expected value term is that all remaining non-fixed
points are part of a cycle of length 2 meaning S(a, π(a)) = S(a, b) and S(b, π(b)) = S(b, a).
Since each entry which is not in the main diagonal is either 1 or −1 which equal probability
and S(a, b) = S(b, a) as the matrix is symmetric we have a net contribution from each
involution of 1.

Now suppose that their exists a cycle which is not of length 2. Then each term S(i, π(i))
is independently 1 or −1 in that cycle so the expected value of the cycle’s product and thus
the product of the permutation is 0.

The number of permutations which consist of just involutions are precisely the matching
on a graph as each one corresponds to a particular edge and they are all disjoint, which
finishes proving this lemma. ■

Corollary 6.13. If G is a tree with adjacency matrix A then A = µg

Proof. The proof follows the exact same manner as above but we have no cycles which are
present as the graph is a tree so we have an equality. ■

Definition 6.14. A path tree Ta(G) is a tree rooted at vertex a such that paths start at a
and do not contain any vertex twice.
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Godsil proved the following:

Theorem 6.15. µG(x) divides µTa(G)(x)

This implies that µG(x) also divides the characteristic polynomial of Ta(G) by corollary
6.13. Suppose our graph G has maximal degree d then by lemma 3.9 all eigenvalues of µG(x)
are bounded by 2

√
d− 1. This implies the following theorem:

Theorem 6.16. All real roots of µg(x) lie in the interval (−2
√
d− 1, 2

√
d− 1)

Definition 6.17. Two real-rooted polynomials P and Q are said to be interlacing polyno-
mials if they satisfy either of the following two cases:

(1) The roots of P and Q are α1, α2, . . . , αn and β1, β2, . . . , βn−1 satisfy α1 ≤ β1 ≤
α2 · · · ≤ βn−1 ≤ αn

(2) The roots of P and Q are α1, α2, . . . , αn and β1, β2, . . . , βn satisfy α1 ≤ β1 ≤ α2 · · · ≤
αn ≤ βn

We only care about the second case since all polynomials we deal with have the same
number of roots, but nevertheless we state the two cases for completion. A common example
of interlacing polynomials is a polynomial and its derivative.

Definition 6.18. Two monic polynomials P and Q are said to have a common interlacing
if their exists another polynomial G which interlaces both P and Q.

Definition 6.19. An interlacing family of polynomials exists if all polynomials can be
represented as a tree where each node has exactly two children such that the node is the
common interlacing of the two children.

We present an equivalent statement to Definition 6.18

Lemma 6.20. The statement two monic polynomials P and Q have a common interlacing
is equivalent to showing that the polynomial R = t ·P +(1− t)Q is real rooted for all t ∈ [0, 1]

Proof. We first show that the backward direction. For now, let us assume that both of these
polynomials P and Q each have n distinct roots. By our assumption we also know that our
polynomial R has n real roots, say γ1(t), γ2(t), . . . , γn(t) as well. In order to show that the
existence of R implies a common interlacing it suffices to show that between the roots α1

and β1 their exists a root γ1(t). As t varies from 0 to 1 inclusive, γ1(t) starts at α1 and goes
to β1. Suppose instead that in between of α1 to β1 their exists another root say, α2, then at
the precise moment when γ1(t) = α2, we have that

0 = R(γ1(t)) = tP (γ1(t)) + (1− t)Q(γ1(t)) = tP (α2)︸ ︷︷ ︸
0

+(1− t)Q(α2) =⇒ Q(α2) = 0

Which means that Q has a shared root with P violating our assumption, so in fact no such
α2 can exist and thus our roots α1, α2, . . . , αn and β1, β2, . . . , βn alternate which implies a
common interlacing.

Now for the forward direction. Again, we assume that the polynomials P and Q have n dis-
tinct roots. Since a common interlacing exists we know that their exists points λ1, λ2, . . . , λn

which split the roots of P and Q. We will show that their exists a root for R in each of
the intervals (λi, λi+1) for i ∈ [1, n − 1]. As both polynomials are monic we know that
at each of the λi’s both polynomials P and Q must have the same sign (they cross the
axis in the same direction at each of their roots). Thus finally by the intermediate value
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theorem we know that since R(λi) = tP (λi)︸ ︷︷ ︸
+

+(1− t)Q(λi)︸ ︷︷ ︸
+

=⇒ R(λi) > 0. Moreover

R(λi+1) = tP (λi+1)︸ ︷︷ ︸
−

+(1− t)Q(λi+1)︸ ︷︷ ︸
−

=⇒ R(λi+1) < 0 so their must exist a root for R

between λi and λi+1 which finishes. ■

Lemma 6.21. Let f1, f2, . . . , ft be monic real-rooted polynomials with degree n. Let

F =
t∑

i=1

fi

If f1, f2, . . . , ft form an interlacing family then there exists an fi for which the largest root
of fi is at most the largest root of F

Proof. Let the polynomial which interlaces all of fi be P (x). Let the second largest root of
P (x) be αn−1. Then all fi must have a root ≥ αn−1 and in particular we must have that
fi(αn−1) ≤ 0 since the end behavior of fi is positive. This implies that F (αn−1) ≤ 0 as well.
However since F also has end behavior which is positive F must have another root βn. Since

F (βn) = 0 =
n∑

i=1

fi(βn)

their must exist an fi whose roots lie in between αn−1 and βn inclusive because if their didn’t
all

fi(βn) < 0 =⇒
n∑

i=1

fi(βn) < 0 ̸= 0

■

Now the final piece of the puzzle was what Marcus, Spielman, Srivastava proved in 2018
which we state below we refer the reader to the details in [MSS18].

Theorem 6.22. The characteristic polynomials of all signed matrices f1, f2, . . . , fi form an
interlacing family

Now since the characteristic polynomials of all signed matrices form an interlacing family
we know that their exists a signing fr for which the largest root is bounded by the largest
root of

∑i
i=1 fi, which have roots already bounded by

√
d− 1. Since we have bounded the

largest eigenvalue we have simultaneously bounded the lowest eigenvalue as well thus proving
that the new doubled graph is in fact Ramanujan.

7. Ihara Zeta Function

It turns out that their exists a zeta function for a graph which was first motivated by the
Selberg Zeta function for Riemann surfaces. Ihara [IHA66] pioneered the Ihara Zeta function
which shows an equivalence between Ramanujan graphs and the Riemann hypothesis. This
function is takes on a ‘new’ form of primes in the form of prime cycle equivalence classes
which we define below. Let X be a k-regular graph in the rest of the section with q = k− 1.

First we talk about the Riemann Hypothesis.

Definition 7.1. A closed geodesic γ is a proper walk on a graph which starts and ends on
the same vertex. Let ℓ(γ) represent the number of edges in the closed geodesic.
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We let the notation γr mean that we traverse the closed geodesic γ r times.

Definition 7.2. A prime geodesic is a closed geodesic which cannot be represented by a
power of a shorter closed geodesic.

Definition 7.3. A prime geodesic cycle is an equivalence class of a prime geodesic.

Remark 7.4. The reason we need an equivalence class is in order to distinguish paths which
are the same but start on different vertices. For example consider the paths (1, 2, 3, 1) and
(2, 3, 1, 2); they are the same but have different starting points thus the need to define an
equivalence class.

Definition 7.5. The Ihara Zeta Function is the following:

ZX(s) =
∏
p

(1− q−s·ℓ(p))−1

Here the product is over all prime geodesic cycles p, ℓ(p) represents the length of the cycle
p and s is a complex variable.

This definition is motivated by the following theorems.

Theorem 7.6. Let A be the adjacency matrix of the graph X. For g = (q−1)|X|
2

we have

ZX(s) = (1− u2)−g · det(I − Au+ qu2I)−1

where u = q−s

Theorem 7.7. ZX(s) satisfies the Riemann Hypothesis if and only if X is a Ramanujan
Graph.

Proof. Notice that the poles of ZX(s) in the region 0 < R(s) < 1 are determined by the zeros
of the determinant term. Let ϕ(z) be the characteristic polynomial of A. The determinant
det(I−Au+qu2I) is zero if and only if there exists an eigenvalue z of A such that 1−zu+qu2 =
0.

First we show the backwards direction. That is, if X is a Ramanujan graph then ZX(s)
satisfies the Riemann Hypothesis. Let z0 be an non-trivial eigenvalue of A. The correspond-
ing values of u0 that determine the poles of ZX(s) are the roots of the quadratic equation
qu2 − z0u+ 1 = 0. By the quadratic formula we have

u0 =
z0 ±

√
z20 − 4q

2q

Since our graph is Ramanujan we know that |z0| ≤ 2
√
q = 2

√
k − 1. This implies that

the discriminant z20 − 4q ≤ 0. Therefore the roots u0 are a complex conjugate pair or real
and equal if z20 = 4q. Both cases are resolved in the same manner as below. WLOG say
z20 − 4q < 0
Here the roots are both complex conjugates of each other and by Vietas we know that the
product of the roots is 1

q
. Then we must have

u0 · ū0 = |u0|2 =
1

q
=⇒ |u0| =

1
√
q

Recalling the substitution u = q−s, the condition |u0| = q
−1
2 which means that |q−s0| =

q−R(s0) = q
−1
2 . This forces R(s0) =

1
2
, thus all non-trivial poles lie on the critical line.
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Now we will show the forward direction that if ZX(s) satisfies the Riemann Hypothesis then
X is a Ramanujan graph. The poles of the zeta function ZX(s) occur when the determinant
term is zero, that is det(I−Au+qu2I) = 0. This happens exactly when the matrix Au−qu2I
has an eigenvalue of 1. This condition can now be rewritten as an 1− λu+ qu2 = 0. By the
Riemann hypothesis we know that for any pole s0 the real part R(s0) =

1
2
so this forces the

magnitude of u0 = q−s0 to be |u0| = q
−1
2 = 1√

q
. Now if we rearrange 1− λu+ qu2 = 0 we get

|λ0| = |u−1
0 + qu0| which by the triangle inequality implies

|λ0| = |u−1
0 + qu0| ≤ |u−1

0 |+ |qu0| =
√
q + q(

1
√
q
) = 2

√
q

Which is what we needed in order for X to be Ramanujan. ■

8. Expander-Mixing Lemma

Lemma 8.1 (Alon’s Expander Mixing lemma). Let G be a d-regular, n-vertex graph. Then
for any two subsets S, T ⊂ V (G), we have∣∣∣∣e(S, T ) + e(S ∩ T )− d

n
|S||T |

∣∣∣∣ ≤ σ

√(
|S| − |S|2

n

)(
|T | − |T |2

n

)
≤ σ

√
|S||T |.

If S and T are disjoint, we have∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ σ

√(
|S| − |S|2

n

)(
|T | − |T |2

n

)
≤ σ

√
|S||T |.

Proof. Let A be the adjacency matrix of a d-regular graph on n vertices. Let {v1, v2, . . . , vn}
be a corresponding orthonormal basis of eigenvectors. For a d-regular graph, the principal
eigenvector is v1 =

1√
n
1, corresponding to the eigenvalue λ1 = d.

For any two subsets of vertices S, T ⊆ V , let 1S and 1T be their respective indicator
vectors. We can express these vectors in the eigenbasis as:

1S =
n∑

i=1

aivi and 1T =
n∑

i=1

bivi

The coefficients are found via inner products: ai = ⟨1S, vi⟩ and bi = ⟨1T , vi⟩. In particular,

the coefficients for v1 are a1 = ⟨1S,
1√
n
1⟩ = |S|√

n
and b1 = ⟨1T ,

1√
n
1⟩ = |T |√

n
. A simple

calculation yeilds that we have,
∑n

i=1 a
2
i = ⟨1S,1S⟩ = |S| and

∑n
i=1 b

2
i = ⟨1T ,1T ⟩ = |T |.

The term e(S, T ) + e(S ∩ T ) represents the number of ordered pairs of vertices (s, t) with
s ∈ S and t ∈ T that are connected by an edge, which can be written as

∑
s∈S,t∈T Ast =

1T
SA1T . Evaluating this expression in the eigenbasis gives:

1T
SA1T =

(
n∑

i=1

aivi

)T

A

(
n∑

j=1

bjvj

)
=

n∑
i,j=1

aibjλjv
T
i vj =

n∑
i=1

λiaibi

We can further simplify this by using, vTi vj = δij.
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Some calculations with Cauchy-Shwarz show that:∣∣∣∣e(S, T ) + e(S ∩ T )− d

n
|S||T |

∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

λiaibi − λ1a1b1

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=2

λiaibi

∣∣∣∣∣
≤ σ

n∑
i=2

|aibi|

≤ σ

√√√√( n∑
i=2

a2i

)(
n∑

i=2

b2i

)

= σ
√

(|S| − a21) (|T | − b21)

= σ

√(
|S| − |S|2

n

)(
|T | − |T |2

n

)
.

■
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