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Elliptic Integrals

Definition (Elliptic Integral)

An elliptic integral is a function of the form

f (x) =

∫ x

c
R(t,

√
p(t))dt

with R being a rational function in R, (that is, it can be expressed as the
quotient of two real polynomial functions, constant or not) and p(t) being
a real polynomial of degree three or four.
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Incomplete Elliptic Integrals

The Incomplete Elliptic Integrals are expressed in the following manner:

Legendre also derived trigonometric forms of them:

First Kind (trigonometric)

F (ϕ | k) =
∫ ϕ

0

dθ√
1− k2sin2θ

(1.1)

Second Kind (trigonometric)

E (ϕ | k) =
∫ ϕ

0
dθ
√

1− k2 sin2 θ (1.2)

Third Kind (trigonometric)

Π(ϕ | α, k) =
∫ ϕ

0

dθ

(1− α2 sin2 θ)
√

1− k2 sin2 θ
(1.3)

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 3 / 23
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First Kind

F (k, x) =

∫ x

0

dt√
(1− t2)(1− k2t2)

(1.1)

Legendre also derived trigonometric forms of them:

First Kind (trigonometric)

F (ϕ | k) =
∫ ϕ

0

dθ√
1− k2sin2θ

(1.2)

Second Kind (trigonometric)

E (ϕ | k) =
∫ ϕ

0
dθ
√

1− k2 sin2 θ (1.3)

Third Kind (trigonometric)

Π(ϕ | α, k) =
∫ ϕ

0

dθ

(1− α2 sin2 θ)
√

1− k2 sin2 θ
(1.4)
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Incomplete Elliptic Integrals

The Incomplete Elliptic Integrals are expressed in the following manner:

First Kind

F (k, x) =

∫ x

0

dt√
(1− t2)(1− k2t2)

(1.1)

Second Kind

E (k , x) =

∫ x

0

√
1− k2t2

1− t2
dt (1.2)

Legendre also derived trigonometric forms of them:

First Kind (trigonometric)

F (ϕ | k) =
∫ ϕ

0

dθ√
1− k2sin2θ

(1.3)

Second Kind (trigonometric)

E (ϕ | k) =
∫ ϕ

0
dθ
√

1− k2 sin2 θ (1.4)

Third Kind (trigonometric)

Π(ϕ | α, k) =
∫ ϕ

0

dθ

(1− α2 sin2 θ)
√

1− k2 sin2 θ
(1.5)
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Incomplete Elliptic Integrals

The Incomplete Elliptic Integrals are expressed in the following manner:

First Kind

F (k, x) =

∫ x

0

dt√
(1− t2)(1− k2t2)

(1.1)

Second Kind

E (k , x) =

∫ x

0

√
1− k2t2

1− t2
dt (1.2)

Third Kind

Π(n, k , x) =

∫ x

0

dt

(1 + nx2)
√
(1− x2)(1− k2x2)

(1.3)

Legendre also derived trigonometric forms of them:

First Kind (trigonometric)

F (ϕ | k) =
∫ ϕ

0

dθ√
1− k2sin2θ

(1.4)

Second Kind (trigonometric)

E (ϕ | k) =
∫ ϕ

0
dθ
√

1− k2 sin2 θ (1.5)

Third Kind (trigonometric)

Π(ϕ | α, k) =
∫ ϕ

0

dθ

(1− α2 sin2 θ)
√

1− k2 sin2 θ
(1.6)
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Incomplete Elliptic Integrals

Theorem (Legendre)

Any elliptic integral can be described as a linear combination of the
canonical forms. In other words,

∫ x

c
R
(
t,
√
p(t)

)
dt = c1F (k , x) + c2E (k , x) + c3Π(n, k , x) + c4f (x),

with c1, c2 and c3 being real constants, and f (x) being a combination of
elementary functions.

Proof.

Labahn and Mutrie [LMoWDoCS97] describe algorithms for explicitly
finding the combination.
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Complete Elliptic Integrals

Some specific values are notable in the solution of problems that involve
elliptic integrals, therefore, we call those specific cases ”complete”:

First Kind (complete)

K (k) = F (k, 1) = F
(π
2

∣∣k) (1.4)

Third Kind (complete)

E (k) = E (k , 1) = E
(π
2

∣∣k) (1.5)

Third Kind (complete)

Π(n, k) = Π (n, k , 1) = Π
(π
2

∣∣α, k) ; (1.6)
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The Arc Length of an Ellipse

Now, let’s take a look at an interesting problem involving those integrals:
the computation of the arc length of an ellipse.

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 6 / 23



The Arc Length of an Ellipse

Now, let’s take a look at an interesting problem involving those integrals:
the computation of the arc length of an ellipse.

x

y

Figure: An ellipse.

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 6 / 23



The Arc Length of an Ellipse

Definition (Parametric Ellipse)

A parametric curve γ : R → R2 is a function that maps a real number to a
point in the plane. One can denote an ellipse using that tool:

γ(t) =

(
A cos t
B sin t

)
for t ∈ R and A,B ∈ R.
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The Arc Length of an Ellipse

Definition (Parametric Ellipse)

A parametric curve γ : R → R2 is a function that maps a real number to a
point in the plane. One can denote an ellipse using that tool:

γ(t) =

(
A cos t
B sin t

)
for t ∈ R and A,B ∈ R.

Theorem (Arc length of a parametric curve)

As you should know from basic calculus, if one has a parametric curve
γ(t) = (x(t), y(t)), the arc length L of the curve at an interval I ⊂ R,
sup I = a and inf I = b,

L =

∫ b

a

√
x ′2(t) + y ′2(t)dt.
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The Arc Length of an Ellipse

Taking the theorem and the previously defined parametric equation, one
may attempt to compute the arc length of an ellipse γ:

L[γ] =
∫ 2π

0
dt
√

A2 sin2 t + B2 cos2 t. (1.7)

which is, at the very least, difficult to compute directly. In fact, this
integral does not have a closed-form expression in terms of elementary
functions (trigonometric functions, exponentials, logarithms, etc). But we
have elliptic integrals, so we can reduce this expression in terms of them!
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The Arc Length of an Ellipse

Let’s do some work on the integrand:√
A2 sin2 t + B2 cos2 t

= B

√
cos2 t +

A2

B2
sin2 t

= B

√
1− sin2 t +

A2

B2
sin2 t

= B

√
1− B2 − A2

B2
sin2 t,
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The Arc Length of an Ellipse

and for k =

√
B2 − A2

B
, we attain√

A2 sin2 t + B2 cos2 t = B
√

1− k2 sin2 t,

which takes the exact same form of the integrand of the second kind
elliptic integral (eq. 1.2) up to a constant. Therefore, it becomes clear that

Arc length of an ellipse

L[γ] = B · E

(
2π;

√
B2 − A2

B

)
is the expression for the length of an elliptic arc in terms of, well, elliptic
integrals.
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The Arc Length of an Ellipse

However, due to the symmetry of an ellipse, one can see that its total arc
length is equal to four times the length of its arc from 0 to π

2 . With that
in mind, we restructure:

Arc length of an ellipse

L[γ] = 4 · B · E

(√
B2 − A2

B

)
is the expression for the length of an elliptic arc in terms of, well, elliptic
integrals, with E (k) being the complete elliptic integral of the second kind.
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The Arc Length of a Lemniscate

Definition (Lemniscate)

A lemniscate is a type of curve that resembles an ”eight” (8) or an infinity
symbol (∞). In polar coordinates, it can be described as

r2 = a2 cos 2θ.

x

y

Figure: A lemniscate.
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The Arc Length of a Lemniscate

The arc length of the polar curve in 3 is given by

L =

∫ β

α
dθ

√(
dr

dθ

)2

+ r2.

We can compute it:

r =
√
a2 cos 2θ = a

√
cos 2θ

(
dr

dθ

)2

=

(
a

sin 2θ√
cos 2θ

)2

= a2
sin2 2θ

cos 2θ

L =

∫ 2π

0
dθ

√
a2

sin2 2θ

cos 2θ
+ a2 cos 2θ
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The Arc Length of a Lemniscate

L = a

∫ 2π

0
dθ

√
1

cos 2θ

L = a

∫ 2π

0
dθ

√
1

1− 2 sin2 θ
, (1.7)

which is, again, difficult.
First, we note that the right lobe of the lemniscate is located on the

interval θ ∈
[
−π
4
,
π

4

]
, and since both lobes are symmetric, the total

arclength may be calculated by multiplying the length of the right lobe by
two. Thus the formula can be put together in a more convenient manner,
it being

L = 2a

∫ π
4

−π
4

dθ
1√

1− 2 sin2 θ
,

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 7 / 23



The Arc Length of a Lemniscate

but we also have that∫ π
4

−π
4

dθ
1√

1− 2 sin2 θ
= 2

∫ π
4

0
dθ

1√
1− 2 sin2 θ

due to the symmetry in the top and bottom parts of the lobe, so

L = 4a

∫ π
4

0
dθ

1√
1− 2 sin2 θ

.

Now, we’ll use the substitution

2 sin2 θ =
1

2
sin2 ψ,
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The Arc Length of a Lemniscate

which can be trivially checked to be valid for all θ ∈
[−π

4 ,
π
4

]
. Then, note

that ψ is valid when (though not only when) it’s in the range
[
0, π2

]
.

Therefore,

L = 4a

∫ π
2

0

dψ√
1− 1

2 sin
2 ψ

,

which clearly fits equation 1.1, by having k = 1√
2
, so

L = 4a · F
(
π

2
;
1√
2

)
,

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 7 / 23



The Arc Length of a Lemniscate

and since F (π2 | k) = K (k), we have

Arc length of a lemniscate

L = 4a · K
(

1√
2

)
. (1.7)

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 7 / 23



Series Expansion (First Kind)

Lemma

1√
1− x2

=
∞∑
n=0

xn(−1)n
(
−1/2

n

)
=

∞∑
n=0

xn(−1)2n
(2n − 1)!!

(2k)!!

=
∞∑
n=0

xn
(2n − 1)!!

(2n)!!

for real x.

We can put it into 1.1 to get∫ ϕ

0

dθ√
1− k2sin2θ

=

∫ ϕ

0
dθ

∞∑
n=0

k2n sin2n θ
(2n − 1)!!

(2n)!!
,

which implies

Theorem

F (ϕ | k) =
∞∑
n=0

∫ ϕ

0
k2n sin2n θ

(2n − 1)!!

(2n)!!
dθ (1.8)
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Series Expansion (Second Kind)

For the second kind, we’ll use

(1− x)1/2 = 1−
∞∑
n=0

(2n + 1)!!

(2n + 2)!!
xn+1.

The previous result can be expanded to its first few terms:

Theorem

E (ϕ | k) =
∫ ϕ

0

(
1− 1

2
k2 sin2 θ − 1

8
k4 sin4 θ − 1

16
k6 sin6 θ − . . .

)
dθ.

(1.9)

Unfortunately, we don’t really have a nice general expression for the
integrals of the third kind.
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E (ϕ | k) =
∫ ϕ
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dθ

∞∑
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Extending the domain

In the real numbers, the elliptic integrals are really only well defined for
0 ≤ k < 1. However, mathematicians do not like to be limited by domains,
so we can extend our definition.

Definition (Residue)

For an analytic complex functions whose Laurent series representation is
given by

f (z) =
∞∑

n=−∞
an(z − z0)

n,

its residue at z0 is

Res
z=z0

f (z) = a−1,

that is, the coefficient of the −1 term.
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Residue theorem

Theorem (Cauchy’s Residue Theorem)

For an analytic complex function, if a countour γ encloses a set of poles
A = {a1, a2, . . . , an}, ∫

γ
f (z)dz = 2πi

∑
a∈A

Res
z=a

f (z),

that is, the integral through the contour is equal to the sum of the
residues enclosed by it times 2πi .
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Cutting the domain

With those two powerful tools, we can extend our integrals to the complex
domain. But first, we need to make some treatment on our square root.

The function
√
z is multi-valued, that is, there are always two values ±ω

that satisfy; such behavior is undesirable, since it prevents the formation of
poles, which are fundamental for the usage of the residue theorem. To
solve that, we will use a technique called Riemann surfaces. Let’s take
z = Re iθ, with real R and θ, and
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Definition (Square root)

Let’s take a variable w , then define

S = {(z ,w) ∈ C2 | w2 = z}.

With that in mind, we can make a mapping

S → C,

(z ,w) 7→ w

that is bijective. By taking w = w(z) =
√
z , we have

√
z 7→ w ,

which is single valued.
This will be the definition used for square root from now, unless specified
otherwise.

This will be the definition used for square root from now, unless specified
otherwise.
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Lemma

y = 1√
(1−t2)(1−k2t2)

is analytic with branch points t = ±1 and t = ± 1
k .

Proof.

Analyticity can be easily checked with Cauchy-Riemann equations. Then,
we check when the denominator vanishes, which is clearly when

t = ±1 or t = ±1

k
.
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we check when the denominator vanishes, which is clearly when

t = ±1 or t = ±1

k
.
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With those poles, we can apply the residue theorem:

F (k, x) =

∫
γ

1√
(1− t2)(1− k2t2)

dt

= 2πi

(
Res
z=1

f (z) + Res
z=−1

f (z) + Res
z= 1

k

f (z) + Res
z=− 1

k

f (z)

)
,

with

γ(t) = x · e2πit for t ∈ [0, 1),

that is, the complex circle centered at the origin that passes through x .
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Jacobi’s Elliptic Functions

Definition (Jacobi’s Elliptic Functions)

Jacobi described inverses of elliptic integrals in [Jac29]. For

u = F (ϕ | k),

ϕ = F−1(u, k) = am(u, k),

we have
sn(u, k) = sin(am(u, k)) = sinϕ. (2.1)

cn(u, k) = cos(am(u, k)) = cosϕ (2.2)

dn(u, k) =
√
1− k2 sn2(u, k) =

√
1− k2 sinϕ. (2.3)

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 16 / 23



Addition Formulae

From now on, we’ll supress the parameter k , except when a different one is
used. First, let’s take a look at the addition formulae described by Jacobi
in [Jac29][p. 35-38]:

Theorem

sn(u + v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1− k2 sn2(u) sn2(v)
(2.4)

cn(u + v) =
cn(u) cn(v)− sn(u) sn(v) dn(u) dn(v)

1− k2 sn2(u) sn2(v)
(2.5)

dn(u + v) =
dn(u) dn(v)− k2 sn(u) sn(v) cn(u) cn(v)

1− k2 sn2(u) sn2(v)
(2.6)
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Double periodicity

Definition (Doubly periodic function)

A function f : C → C is doubly periodic if there exists two complex ω1 and
ω2 such that

f (z + ω1) = f (z + ω2) = f (z)

and ω1
ω2

̸ ∈R.

Theorem

sn and cn are doubly periodic with periods 4K and 2iK ′. dn is doubly
periodic with periods 2K and 2iK ′.
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Period parallelograms

Re

Im

2iK ′

4K

Figure: Illustration of the periods of Jacobi’s sn and cn.
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Period parallelograms

Re

Im

2iK ′

2K

Figure: Illustration of the periods of Jacobi’s dn.
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Tori

Definition (Quotient Group)

The quotient group G/H is the set of all left cosets gH = {gh | h ∈ H},
with g being iterated over the elements of G .

Definition (Torus)

The ”canonical” torus is the cartesian product S1 × S1, with S1 being the
real unit circle. We’ll denote by ”torus” any topological space that is
homeomorphic to the canonical one.

Figure: Embedding of a torus in R3 (it looks like a doughnut)
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The Complex Torus

Theorem

C/Λ is a torus.

Considering the period parallelograms described, we can have some
geometric intuition behind the construction of the torus, as shown visualy
in fig. 3.

Figure: Diagram showing how to construct a torus from a rectangle

Arthur Vieira Silva (Euler Circle) A Tour Through Elliptic Integrals 2025 21 / 23



The Complex Torus

Theorem

C/Λ is a torus.

Proof.

Miranda [Mir95][p. 8-10] gives a comprehensive explanation and formal
proof.

Considering the period parallelograms described, we can have some
geometric intuition behind the construction of the torus, as shown visualy
in fig. 3.

Figure: Diagram showing how to construct a torus from a rectangle
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Thank you!

Thanks for watching!

Any questions?
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