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Abstract. This paper aims to teach the basics of the theory of elliptic integrals.
The motivation, resolution techniques and some applications will be talked about.
It will require knowledge in calculus. It is also going to include a fair amount of
rigorosity, since it is aimed mostly at pure mathematicians.

1. Brief History

[Roy11a] and [Roy11b] give a thorough exposition to the history of the elliptic
integrals. To put it shortly, Jakob and Johann Bernoulli worked on the lemniscatic
integral, namely ∫

1√
1− x4

,

which can be used to compute the arc length of a lemniscate. Then, Faganano
went on to work out the curve geometrically, which sparked Euler’s interested, who
then proved the addition formulae. Then, Legendre spent a lot of time writing his
treatise [Leg26], on which he reduces a general expression for elliptic integrals to his
three canonical forms. Posteriorly, with Jacobi [Jac29] and Weierstrass, there was a
revolution in the field, on which it had been started to think on elliptic functions,
that are inverses of elliptic integrals and also have lots of nice properties, such as
double periodicity, which will be discussed here.

2. Elliptic Integrals

Now, we shall get to the elliptic integrals themselves.

Definition 2.1 (Elliptic Integral). An elliptic integral is a function in the form

f(x) =

∫ x

c

R(t,
√
p(t))dt

with R being a rational function in R, (that is, it can be expressed as the quotient
of two real polynomial functions, constant or not) and p(t) being a real polynomial
of degree three or four.

Legendre and Jacobi described some common forms of them, and they shall be
shown here.
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2.1. Incomplete Elliptic Integrals. The Incomplete Elliptic Integrals of the first,
second and third kind are, respectively:

(2.1) F (k, x) =

∫ x

0

dt√
(1− t2)(1− k2t2)

(2.2) E(k, x) =

∫ x

0

√
1− k2t2

1− t2
dt

(2.3) Π(n, k, x) =

∫ x

0

dt

(1− nx2)
√
(1− x2)(1− k2x2)

Legendre also derived trigonometric forms of them, as [BF71] states:

(2.4) F (ϕ | k) =
∫ ϕ

0

dθ√
1− k2sin2θ

(2.5) E(ϕ | k) =
∫ ϕ

0

dθ
√

1− k2 sin2 θ

(2.6) Π(ϕ | α, k) =
∫ ϕ

0

dθ

(1− α2 sin2 θ)
√
1− k2 sin2 θ

Proposition 2.2. The algebraic and trigonometric forms of the elliptic integrals are
equivalent.

Proof. We’ll use the change of variable formula from calculus:∫
f(u)du =

∫
f(g(x))g′(x)dx for u = g(x).

By taking t = sin θ, we have∫
1√

1− t2(1− k2t2)
dt =

∫
1√

(1− sin2 θ)(1− k2 sin2 θ)
· cos θdθ

=

∫
1

cos θ
√

1− k2 sin2 θ
cos θdθ =

∫
1√

1− k2 sin2 θ
dθ,

∫ √
1− k2t2

1− t2
dt =

∫ √
1− k2 sin2 θ

1− sin2θ
· cos θdθ =

∫ √
1− k2 sin2 θdθ,

and
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∫
1

(1− nt2)
√

(1− t2)(1− k2t2)
dt =

∫
1

(1− n sin2 θ)
√
(1− sin2 θ)(1− k2 sin2 θ)

cos θdθ

=

∫
1

(1− n sin2 θ)
√
1− k2 sin2 θ

dθ.

Then, one only has to adjust the limits of integration to show the equality of the
definite forms. ■

The former list may also be referred to as Jacobi’s algebraic form, while the latter
is called, well, Legendre’s trigonometric forms. An important result is

Theorem 2.3 (Legendre). Any elliptic integral can be described as a linear combi-
nation of the canonical forms. In other words,∫ x

c

R
(
t,
√
p(t)

)
dt = c1F (k, x) + c2E(k, x) + c3Π(n, k, x) + c4f(x),

with c1, c2 and c3 being real constants, and f(x) being a combination of elementary
functions.

Proof. Labahn and Mutrie [LMoWDoCS97] describe algorithms for explicitly finding
the combination. ■

2.2. Complete Elliptic Integrals. Some specific values are notable in the solu-
tion of problems that involve elliptic integrals, therefore, we call those specific cases
”complete”:

(2.7) K(k) = F (k, 1) = F
(π
2
| k
)

(2.8) E(k) = E (k, 1) = E
(π
2
| k
)

(2.9) Π(n, k) = Π (n, k, 1) = Π
(π
2

∣∣α, k) ;
Now, we’ll see how those forms can tackle some problems from the previous section.

Example (Arc length of an ellipse).
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Definition 2.4 (Ellipse). An ellipse is defined in R2 (cartesisan plane) as the locus
(i.e. the set of all points that satisfy a condition) of all points (x, y) such that

x2

a2
+
y2

b2
= 1

where a and b are called the semi-major and semi-minor axes, respectively.

x

y

Figure 1. An ellipse.

Definition 2.5 (Parametric Curve). A parametric curve γ : R → R2 is a function
that maps a real number to a point in the plane. One can write:

γ(t) =

(
x(t)
y(t)

)
for t ∈ R, x, y : R → R.

Mixing both definitions, we have

γ(t) =

(
A cos t
B sin t

)
for A,B ∈ R. This will be the parametric equation for an ellipse, with A being the

semi-major axis and B being the semi-minor axis. One can substitute it into 2.4 and
see that

A2 cos2 t

A2
+
B2 sin2 t

B2
= 1

cos2t+ sin2t = 1

which is a well-known fact. Thus, both ways to write it are equivalent.
As you should know from basic calculus, if one has a parametric curve γ(t) =

(x(t), y(t)), the arc length L of the curve at an interval I ⊂ R, sup I = a and
inf I = b,
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L =

∫ b

a

√
x′2(t) + y′2(t)dt.

Taking the theorem and the previously derived parametric equation, one may at-
tempt to compute the arc length of an ellipse γ:

(2.10) L[γ] =
∫ 2π

0

dt
√
A2 sin2 t+B2 cos2 t

which is, at the very least, difficult to compute directly. In fact, this integral does
not have a closed-form expression in terms of elementary functions (trigonometric
functions, exponentials, logarithms, etc). Of course, if one only wants the arc length
of the ellipse, the easier way to do so would be to approximate it numerically; however,
we will see that integrals like that are very interesting for studying certain behaviors
of functions that have nothing to do directly with ellipses.

We will take 2.10 and generalize it for any arc inside the ellipse:

L(ϕ) =
∫ ϕ

0

dt
√
A2 sin2 t+B2 cos2 t.

Let’s do some work on the integrand:√
A2 sin2 t+B2 cos2 t

= B

√
cos2 t+

A2

B2
sin2 t

= B

√
1− sin2 t+

A2

B2
sin2 t

= B

√
1− B2 − A2

B2
sin2 t,

and for k =

√
B2 − A2

B
, we attain√
A2 sin2 t+B2 cos2 t = B

√
1− k2 sin2 t,

which takes the exact same form of the integrand of the second kind elliptic integral
(eq. 2.5) up to a constant. Therefore, it becomes clear that

L(ϕ) = B · E
(
ϕ;

√
B2 − A2

B

)
is the expression for the length of an elliptic arc in terms of, well, elliptic integrals.

Example (Arc length of a lemniscate). We’ll take a look at the lemniscate. More
about it can be found on [Roy11a].
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Definition 2.6 (Lemniscate). A lemniscate is a type of curve that resembles an
”eight” (8) or an infinity symbol (∞). In polar coordinates, it can be described as

r2 = a2 cos 2θ.

x

y

Figure 2. A lemniscate.

The arc length of the polar curve in 2.6 is given by

L =

∫ β

α

dθ

√(
dr

dθ

)2

+ r2.

We can compute it:

r =
√
a2 cos 2θ = a

√
cos 2θ(

dr

dθ

)2

=

(
a

sin 2θ√
cos 2θ

)2

= a2
sin2 2θ

cos 2θ

L =

∫ 2π

0

dθ

√
a2

sin2 2θ

cos 2θ
+ a2 cos 2θ

L = a

∫ 2π

0

dθ

√
1

cos 2θ

(2.11) L = a

∫ 2π

0

dθ

√
1

1− 2 sin2 θ
,

which is, again, difficult.
Let’s now take equation 2.11. First, we note that the right lobe of the lemniscate

is located on the interval θ ∈
[
−π
4
,
π

4

]
, and since both lobes are symmetric, the total



A TOUR THROUGH ELLIPTIC INTEGRALS 7

arclength may be calculated by multiplying the length of the right lobe by two. Thus
the formula can be put together in a more convenient manner, it being

L = 2a

∫ π
4

−π
4

dθ
1√

1− 2 sin2 θ
,

but we also have that∫ π
4

−π
4

dθ
1√

1− 2 sin2 θ
= 2

∫ π
4

0

dθ
1√

1− 2 sin2 θ
due to the symmetry in the top and bottom parts of the lobe, so

L = 4a

∫ π
4

0

dθ
1√

1− 2 sin2 θ
.

Now, we’ll use the substitution

2 sin2 θ =
1

2
sin2 ψ,

which can be trivially checked to be valid for all θ ∈
[−π

4
, π
4

]
. Then, note that ψ is

valid when (though not only when) it’s in the range
[
0, π

2

]
. Therefore,

L = 4a

∫ π
2

0

dψ√
1− 1

2
sin2 ψ

,

which clearly fits equation 2.4, by having k = 1√
2
, so

L = 4a · F
(
π

2
;
1√
2

)
,

and by taking the form F (π
2
; k) = K(k), we have

(2.12) L = 4a ·K
(

1√
2

)
.

2.3. Series expansions. Let’s take a known result, which won’t be proven here to
shorten the text:

1√
1− x2

=
∞∑
n=0

xn(−1)n
(
−1/2

n

)
=

∞∑
n=0

xn(−1)2n
(2n− 1)!!

(2k)!!

=
∞∑
n=0

xn
(2n− 1)!!

(2n)!!

We can put it into 2.4 to get
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∫ ϕ

0

dθ√
1− k2sin2θ

=

∫ ϕ

0

dθ

∞∑
n=0

k2n sin2n θ
(2n− 1)!!

(2n)!!
,

thus

(2.13) F (ϕ; k) =
∞∑
n=0

∫ ϕ

0

k2n sin2n θ
(2n− 1)!!

(2n)!!
dθ

is the elliptic integral of the first kind in its trigonometric form expressed as a power
series. This type of representation is specially useful for the sake of computation, since
one can pick an n-th order approximation by simply picking the appropriate amount
of terms, which are much easier integrals. The series expands to

(2.14) F (ϕ; k) =

∫ ϕ

0

(
1 +

1

2
k2 sin2 θ +

3

8
k4 sin4 θ +

5

16
k6 sin6 θ + . . .

)
dθ

in its first three terms, for instance. For the second kind, we’ll use

(1− x)1/2 = 1−
∞∑
n=0

(2n+ 1)!!

(2n+ 2)!!
xn+1.

Take x = k2 sin2 θ, and we have

E(ϕ; k) =

∫ ϕ

0

dθ
∞∑
n=0

(2n+ 1)!!

(2n+ 2)!!
k2(n+1) sin2(n+1) θ,

which can be expanded to its first few terms:

(2.15) E(ϕ; k) =

∫ ϕ

0

(
1− 1

2
k2 sin2 θ − 1

8
k4 sin4 θ − 1

16
k6 sin6 θ − . . .

)
dθ.

For the third kind, we don’t really have a nice general expression.

2.4. Extending the domain. In the real numbers, the elliptic integrals are really
only well defined for 0 ≤ k < 1. However, mathematicians do not like to be limited
by domains, so we can extend our definition.

Definition 2.7 (Residue). For an analytic complex functions whose Laurent series
representation is given by

f(z) =
∞∑

n=−∞

an(z − z0)
n,

its residue at z0 is
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Res
z=z0

f(z) = a−1,

that is, the coefficient of the −1 term.

Theorem 2.8 (Cauchy’s Residue Theorem). For an analytic complex function, if a
countour γ encloses a set of poles A = {a1, a2, . . . , an},∫

γ

f(z)dz = 2πi
∑
a∈A

Res
z=a

f(z),

that is, the integral through the countour is equal to the sum of the residues enclosed
by it times 2πi.

With those two powerful tools, we can extend our integrals to the complex domain.
But first, we need to make some treatment on our square root.

The function
√
z is multi-valued, that is, there are always two values ±ω that

satisfy; such behavior is undesirable, since it prevents the formation of poles, which
are fundamental for the usage of the residue theorem. To solve that, we will use a
technique called Riemann surfaces. Let’s take a variable w, then define

S = {(z, w) ∈ C2 | w2 = z}.
With that in mind, we can make a mapping

S → C,

(z, w) 7→ w

that is bijective. By taking w = w(z) =
√
z, we have

√
z 7→ w,

which is single valued.
This will be the definition used for square root from now, unless specified otherwise.

Proposition 2.9. y = 1√
(1−t2)(1−k2t2)

is analytic with branch points t = ±1 and

t = ± 1
k
.

Proof. Analyticity can be easily checked with Cauchy-Riemann equations. Then, we
check when the denominator vanishes, which is clearly when

t = ±1 or t = ±1

k
.

■
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With those poles, we can apply the residue theorem:

F (k, x) =

∫
γ

1√
(1− t2)(1− k2t2)

dt

= 2πi

(
Res
z=1

f(z) + Res
z=−1

f(z) + Res
z= 1

k

f(z) + Res
z=− 1

k

f(z)

)
,

with

γ(t) = x · e2πit for t ∈ [0, 1),

that is, the complex circle centered at the origin that passes through x.

3. Elliptic Functions

An interesting approach for elliptic integrals is inverting them. We’ll check out
how Jacobi did so and how we can solve problems with this technique, as taught
by [BF71], too.

Definition 3.1 (Jacobi’s Elliptic Functions). For

u = F (ϕ | k),
am is defined as

ϕ = F−1(u, k) = am(u, k)

and sn as

(3.1) sn(u, k) = sin(am(u, k)) = sinϕ.

This function is called Jacobi’s Elliptic Sine.
Analagously,

(3.2) cn(u, k) = cos(am(u, k)) = cosϕ

is Jacobi’s Elliptic Cosine. Finally, the delta amplitude (a new function with no
trigonometric analogous) is

(3.3) dn(u, k) =
√

1− k2 sn2(u, k) =
√
1− k2 sinϕ.

It is easy to check that sn(u, 0) = sinu, cn(u, 0) = cosu. An interesting property
is that both functions also satisfy an identity analogous to the fundamental trigono-
metric identity: sn2(u, k) + cn2(u, k) = sin2 ϕ+ cos2 ϕ = 1.
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Definition 3.2. The complementary modulus k′ of k is

k′ =
√
1− k2,

and
K ′ = K(k′).

3.1. Double-periodicity.

Definition 3.3 (Doubly periodic function). A complex function f : C → C is doubly
periodic if there exists two complex numbers ω1, ω2 such that f(x+ω1) = f(x+ω2) = 0

and
ω1

ω2

̸∈ R, that is, both complex numbers are not linearly dependent.

Definition 3.4 (Period lattice). A doubly periodic function f : C → C with periods
ω1 and ω2 describes a period lattice at each point z of its domain, namely

Λ(z) = z + Zω1 + Zω2 = {z + nω1 +mω2 | (m,n) ∈ Z2}.
We’ll also notate Λ = Λ(0).

Definition 3.5 (Tiling). A tiling of C is the union of an arbitrary number of con-
nected regions Rn ⊂ C with n ∈ N, such that

∞⋃
n=0

Rn = C

and

Rn ∩Rm ⊆ ∂Rn for n ̸= m,

that is, all regions are non-overlapping except at their boundaries.

Re

Im

ω1

ω2

Figure 3. The two periods of a doubly-periodic function.
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Re

Im

ω1

ω2

Figure 4. Period lattice at z = 0 of a doubly-periodic function

ω1

ω2 Re

Im

Figure 5. Tiling the complex plane with period parallelograms

From now on, we’ll supress the parameter k, except when a different one is used.
First, let’s take a look at the addition formulae described by Jacobi in [Jac29][p. 35-
38]:

(3.4) sn(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1− k2 sn2(u) sn2(v)
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(3.5) cn(u+ v) =
cn(u) cn(v)− sn(u) sn(v) dn(u) dn(v)

1− k2 sn2(u) sn2(v)

(3.6) dn(u+ v) =
dn(u) dn(v)− k2 sn(u) sn(v) cn(u) cn(v)

1− k2 sn2(u) sn2(v)

With that in mind, we can prove some results.

Proposition 3.6. sn(iu, k) = i tan am(u, k′).

Proof. Let’s use the substitution

sin θ = i tanψ =⇒ θ = arcsin(i tanψ)

∫
dθ√

1− k2 sin2 θ
=

∫
dψ√

1 + k2 tan2 ψ
· i secψ =

∫
dψ

cosψ
√

cos2 ψ+k2 sin2 ψ
cos2 ψ

=

∫
dψ√

1 + k2 sin2 ψ
.

Then, the proposition follows with not much hard work. ■

Proposition 3.7. sn has two periods: 4K and 2iK ′.

Proof. First, we have

sn(K) = sin
π

2
= 1

by definition. Then, with 3.4,

sn(2K) = sn(K +K) =
2 sn(K) cn(K) dn(K)

1− 2k2 sn2(K)

= 0,

sn(4K) = sn(2K + 2K) =
sn(2K) cn(2K) dn(2K) + sn(2K) cn(2K) dn(2K)

1− sn2(2K) sn2(2K)
= 0,

sn(u+ 4K) =
sn(u) cn(4K) dn(4K) + sn(4K) cn(u) dn(u)

1− k2 sn2(4K) sn2(u)
= sn(u) cn(4K) dn(4K)

= sn(u)
√

1− k2 sn2(4K)
2
= sn(u).

For the imaginary period, we first have that
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F (π | k) =
∫ π

0

dθ√
1− k2 sin2 θ

=

∫ π

0

dθ√
1− k2 sin2 θ

+

∫ π

π
2

dθ√
1− k2 sin2 θ

,

but it is easy to check that, due to the symmetry of the integrand, both integrals
have the same value, which implies

F (π | k) = 2K(k).

Then, by 3.6,

sn(2iK ′) = i tan am(2K ′, k′) = i tanπ = 0

sn(u+ 2iK ′) =
sn(u) cn(2iK ′) dn(2iK ′) + sn(2iK ′) cn(u) dn(u)

1− k2 sn2(u) sn2(2iK ′)
= sn(u).

■

Proposition 3.8. cn has periods 4K and 2iK ′, too.

Proof.

cn(4K) =
√
1− sn2(4K) = 1.

Then, we can simply apply 3.5:

cn(u+ 4K) =
cn(u) cn(4K)− sn(u) sn(4K) cn(u) cn(4K)

1− k2 sn2(u) sn2(4K)
= cn(u) cn(4K) = cn(u).

Analogously,

cn(2iK ′) =
√

1− sn2(2iK ′) = 1,

cn(u+2iK ′) =
cn(u) cn(2iK ′)− sn(u) sn(2iK ′) cn(u) cn(2iK ′)

1− k2 sn2(u) sn2(2iK ′)
= cn(u) cn(2iK ′) = cn(u).

■

Proposition 3.9. dn has periods 2K and 2iK ′.

Proof.

dn(2K) =
√

1− k2 sn2(2K) = 1,

dn(2iK ′) =
√

1− k2 sn2(2iK ′) = 1,

dn(u+ 2K) =
dn(u) dn(2K)− k2 sn(u) sn(2K) cn(u) cn(2K)

1− k2 sn2(u) sn2(2K)
= dn(u) dn(2K)

= dn(u),

dn(u+ 2iK ′) =
dn(u) dn(2iK ′)− k2 sn(u) sn(2iK ′) cn(u) cn(2iK ′)

1− k2 sn2(u) sn2(2iK ′)
= dn(u) dn(2iK ′)

= dn(u).

■
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Re

Im

2iK ′

4K

Figure 6. Illustration of the periods of Jacobi’s sn and cn.

Re

Im

2iK ′

2K

Figure 7. Illustration of the periods of Jacobi’s dn.

These results have quite interesting properties, as it will be shown below.

3.2. The Complex Torus.

Definition 3.10 (Quotient Group). The quotient group G/H is the set of all left
cosets gH = {gh | h ∈ H}, with g being iterated over the elements of G.

Definition 3.11 (Torus). The ”canonical” torus is the cartesian product S1 × S1,
with S1 being the real unit circle. We’ll denote by ”torus” any topological space that
is homeomorphic to the canonical one.
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Figure 8. Embedding of a torus in R3 (it looks like a doughnut)

Definition 3.12 (Complex Torus). The quotient group C/Λ, with Λ being a lattice,
is called a complex torus.

Theorem 3.13. C/Λ is a torus.

Proof. Miranda [Mir95][p. 8-10] gives a comprehensive explanation and formal proof.
■

Considering the period parallelograms described, we can have some geometric in-
tuition behind the construction of the torus, as shown visualy in fig. 9.

Figure 9. Diagram showing how to construct a torus from a rectangle
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