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Overview of the formula

Consider a function f (x) and find it’s sum for integers between a and b, or
∑b

x=a f (x).

Next consider it’s integral between a and b, or
∫ b
a f (x)

Question

Which is bigger, the integral or the discrete sum?
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Overview of the formula

The answer is the integral is always lesser than the discrete sums thus you can write the
sum as the integral plus correction terms, or

b∑
x=a

f (x) =

∫ b

a
f (x)dx + c

where c are the correction terms
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Overview of the formula

Firstly, to make it more accurate, we can find the average of the value of f (x) at it’s
endpoints. Next the correction terms are in terms of the sum of the bernoulli numbers
multiplied by the difference in higher order derivatives evaluated at it’s endpoints, the
whole divided by i !. or

b∑
x=a

f (x) =

∫ b

a
f (x)dx +

1

2
(f (a) + f (b)) +

n∑
i=1

bi
i !

(
f (i−1)(b)− f (i−1)(a)

)
+ Rn

where Rm is an error term.
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Stirling’s Formula

Consider f (x) = x!
taking the natural log on both sides we get

ln x! = ln x + ln(x − 1) + · · ·+ ln 2 + 0

or

ln(x!) =
x∑

i=1

ln i
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Stirling’s Formula

Plugging in the formula for the sum where f (x) = ln x gives us

n∑
k=2

ln k =

∫ n

1
ln x dx +

1

2
(ln 1 + ln n) +

m∑
i=2

bi
(i)!

(
f (i−1)(n)− f (i−1)(1)

)
+ Rm

where the second sum involving the higher order derivatives simplifies to

m∑
i=2

bi (i − 2)!

i !ni−1
(−1)i−2 =

1

6n
− 1

30n3
+ · · ·
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Further simplification and then exponentiating gives us

n! ∼ nne−n√ne
1
6n
− 1

30n
+···

where e
1
6n
− 1

30n
+···

This value actually converges to exactly
√
2π Therefore, putting it all together gives us

n! ∼
√
2πn

(n
e

)n
Which is Stirling’s Formula.
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Faulhaber’s Formula

Consider the sum of the first n whole numbers squared. Now consider the sum of the first
n whole numbers cubed. What about raised to the power 5? What about raised to the
power p?
Faulhaber’s formula allows us to find the power sum of the first n whole numbers raised
to some power p.
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Faulhaber’s Formula

Consider the sum
∑n

k=1 k
p.

plugging in the formula we get

n∑
k=1

kp =

∫ n

1
xpdx +

1

2
(f (n) + f (1)) +

k∑
i=2

bi
i !
(f i−1(n)− f i−1(1)) + Rm

Simplification gives us

n∑
k=1

kp =
np+1 − 1

p + 1
− 1

2
(np + 1) +

k∑
i=2

bi
i !

(
p!

(p − i + 1)!
np−i+1 − p!

(p − i + 1)!

)
+ Rm

or

n∑
k=1

kp = A0n + A1n + A2n
2 + · · ·+ Apn

p + Ap+1n
p+1
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Faulhaber’s Formula

Therefore, we can conclude that

n∑
k=1

kp =
1

p − 1

p∑
i=1

(
p + 1

i

)
bin

p+1−i

Which is Faulhaber’s Formula
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Euler’s Constant

Consider the harmonic series
∑n

k=1
1
k . As n → ∞ this value actually diverges. Now

consider ln x . These two graphs look pretty similar.
If you find the difference between the two graphs as n → ∞ we get a constant value
which is called Euler’s Constant!
We can write Euler’s Constant (denoted by γ) as

γ = lim
n→∞

(
n∑

k=1

1

k
− ln x

)
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Euler’s Constant

Plugging the harmonic series into the formula gives us

n∑
k=1

1

k
=

∫ n

1

1

x
dx +

1

2

(
1

n
+ 1

)
+

k∑
i=1

bi
i !

(
(−1)i (i !)n−(i+1) + (−1)i

)
+ Rm

Further simplification gives us

n∑
k=1

1

k
= ln n +

1

2n
− 1

12n2
+

1

120n4
+ · · ·+ γ
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Euler’s Constant

With a bit of rearranging we can work out eulers constant to be

γ =
n∑

k=1

1

k
− ln n − 1

2n
+

1

12n2
− 1

120n4
+ · · ·

We do this as with a finite small value of n we can calculate γ to be γ = 0.5772156649 . . .
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Riemann zeta function

The Basel problem is the sum of the reciprocals of the whole numbers squared, or∑∞
n=1

1
n2
. Euler proved this converges to precisely π2

6 .
What about the sum of the reciprocals of the whole unmbers cubed? What about raised
to the power 4. What about raised to a fraction or even a complex number?
The Riemann Zeta function (ζ(s))is the sum to infinity of the reciprocals of the whole
numbers raised to some power s. It can be written as

ζ(s) =
∞∑
n=1

1

ns
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Riemann Zeta Function

Let f (x) = 1
xs . plugging the Riemann Zeta function into the Euler Maclaurin Summation

Formula we get

N∑
n=1

1

ns
=

∫ N

1

1

x s
dx +

1

2Ns
+

k∑
i=2

bi
i !

(
npi ·

1

Nk−i

)
Upon further simplification we can write the function as

N∑
n=1

1

ns
=

N1−s − 1

1− s
+

1

2Ns
+

s

12Ns−1
+

s(s − 1)(s − 2)

720N
+ · · ·

if we split the sum to infinity into a sum from 1 to N and a sum from N to infinity we can
rearrange the integral and the formula to get

ζ(s) =
N∑

n=1

1

ns
+

N1−s

s − 1
+

1

2Ns
+

s

12Ns−1
+

s(s − 1)(s − 2)

720N
+ · · ·

This means we can approximate the Zeta function using large values of N 16 / 17



The End
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