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Banach–Tarski Paradox

Theorem (Banach–Tarski 1924)

A solid unit ball B3 ⊂ R3 can be partitioned into finitely many
pairwise-disjoint sets B3 = P1 ⊔ · · · ⊔ Pk such that rigid motions
g1, . . . , gk ∈ Isom(R3) rearrange them into

g1P1 ⊔ . . . ⊔ gkPk = B3 ⊔ B3,

producing two unit balls congruent to the original.

Why is this shocking?

It appears to “duplicate” volume, clashing with conservation-of-mass
intuition.

The construction crucially invokes the Axiom of Choice, making the
result both powerful and controversial.
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Axiom of Choice (AC)

Definition (Formal statement)

For every family of non-empty sets {Xi}i∈I there exists a choice function
f : I→

⋃
i∈I Xi with f (i) ∈ Xi for each i .

In plain language:

Given any collection of bins—no matter how many, and even if you
cannot describe what’s inside—you are allowed to pick one item from
each bin simultaneously.

The axiom asserts such a global “picking rule” exists, even when
listing or describing it explicitly is impossible.

Why AC is indispensable for Banach–Tarski

The proof needs a set containing exactly one point from each orbit of
a free-group action on the ball. Finding those representatives requires
a choice function on an uncountable family of orbits → AC.
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Free Groups — Quick Overview

Definition

A free group on generators G (denoted F (G)) is the group with no
relations except those forced by the group axioms.

Concrete realisation
F (G) is isomorphic to the set of all reduced words built from the symbols
G ∪ G−1, with multiplication “write the words back-to-back, then cancel
adjacent inverse pairs.”

Example
For two generators a, b,

F2 = ⟨a, b⟩ ∼= {reduced words in a±1, b±1}.

Typical elements: b−1a, a2b−3a−1, and the identity (empty word) e.
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Why F2 is Paradoxical

The key combinatorial fact (already noted by Hausdorff) is that F2 can be
split into five disjoint pieces which duplicate under left multiplication:

F2 = {e} ∪ S(a) ∪ S(a−1) ∪ S(b) ∪ S(b−1),

where S(a) means “words whose first letter is a” and so on. A quick
calculation shows

F2 = S(a) ∪ aS(a−1) and F2 = S(b) ∪ bS(b−1).

Thus F2 is paradoxical: it is equidecomposable with two copies of
itself—an algebraic analogue of the geometric duplication we seek.
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Rotations that Generate F2

We embed the free group F2 into the rotation group SO(3). Recall

SO(3) =
{
R ∈ R3×3

∣∣ RTR = I , detR = 1
}
,

the set of all orientation-preserving rotations of R3.

Choose

θ = arccos
1

3
≈ 1.23096 rad.

Define the rotations

A : rotate by θ about the x-axis, B : rotate by θ about the z-axis.

Theorem (Free-Rotation Lemma)

The subgroup ⟨A,B⟩ ⊂ SO(3) is isomorphic to the free group F2; that is,
no non-trivial reduced word in A±1,B±1 equals the identity.
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Explicit Rotation Matrices

Choose θ = arccos
1

3
so that cos θ = 1

3 and sin θ =
√

1− 1
9 = 2

√
2

3 .

A =
1

3

3 0 0

0 1 −2
√
2

0 2
√
2 1

 , B =
1

3

 1 −2
√
2 0

2
√
2 1 0

0 0 3

 .

Their inverses (rotations by −θ) are obtained by sin θ 7→ − sin θ:

A−1 = AT, B−1 = BT.

Note every entry is an integer multiple of 1
3 ; this 3-adic structure drives

the proof that ⟨A,B⟩ is free.
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Lemma 1 – Behaviour on (1, 0, 0)T

Lemma

Let w be a reduced word of length n in A±1,B±1. Then

w ·(1, 0, 0)T =
1

3 n

 a

b
√
2

c

 , a, b, c ∈ Z, 3 ∤ b.

Idea. Each factor of A±1 or B±1 introduces one extra denominator 3. The
y -coordinate always carries the factor

√
2; modulo 3 its integer coefficient

is never divisible by 3.
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Proof of Lemma 1 (Induction Sketch)

Base case n = 0. With w = e we have (1, 0, 0)T; the formula gives
a = 1, b = c = 0.

Inductive step. Assume statement true for length n. Append one
generator, say A:

A· 1
3 n

 a

b
√
2

c

 =
1

3 n+1

 3a

(a+ 2c)
√
2

(2b + a)

 .

Because 3 ∤ b, the new y -coefficient a+ 2c is still not divisible by 3.
Similar calculations hold for A−1,B,B−1.

Thus the property propagates from length n to n + 1, completing the
induction.
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Free-Rotation Lemma – Conclusion

Theorem

The subgroup G = ⟨A,B⟩ ⊂ SO(3) is free on two generators; i.e. no
non-trivial reduced word in A±1,B±1 equals the identity.

Proof.

Suppose a reduced word w ̸= e satisfied w = I . Apply both sides to
(1, 0, 0)T:

(1, 0, 0)T = w(1, 0, 0)T =
1

3 n

 a

b
√
2

c

 (3 ∤ b).

Equality forces 3 n = 1 ⇒ n = 0, contradicting w ̸= e. Hence no
non-trivial reduced word is the identity and G ∼= F2. ■
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Overview of Proof

Transitive Proof (Robinson 2015):

1 Part A: Show that the punctured ball L′ = B3\{0} (centre removed)
can be duplicated with finitely many pieces.

2 Part B: Prove that L′ is itself equidecomposable with the full ball B3.
=⇒ the original ball duplicates too.

L′ = B3 \ {0}

Part A

two copies of L′

Part B

two copies of B3
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Part A: Step 1 – Orbits and a Choice Set

Let L = {(x , y , z) : x2 + y2 + z2 ≤ 1} be the unit ball and
L′ = L \ {(0, 0, 0)} its punctured version.

Definition (Orbit)

For the rotation group G = ⟨A,B⟩ acting on L′, two points p, q ∈ L′ are in
the same orbit if q = ρ(p) for some ρ ∈ G .

By the Axiom of Choice pick one point from every orbit. Call the
resulting set of representatives M.

Every point of L′ is some rotation of a unique element of M.

Symbolically: L′ =
⋃
ρ∈G

ρM.
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Part A: Step 2 – Fixed Axes and the Set D

Points lying on any rotation axis could be reached by more than one
element of G , breaking uniqueness.

Definition

Let D ⊂ L′ be the set of points fixed by some non-trivial element of G .

D is small:

D = countably many lines =⇒ Lebesgue measure(D) = 0.

We first partition L′ \ D (almost the whole ball) and tackle D later.
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Part A: Step 3 – A Four-Piece Partition of L′ \ D

Define

X =
∞⋃
i=1

A−iM
(
all points reached by repeated A−1

)
.

P1 = S(A)M ∪ M ∪ X ,

P2 = S(A−1)M \ X ,

P3 = S(B)M,

P4 = S(B−1)M,

where S(A) means “rotations whose reduced word starts with A”, etc.

Using the identities AP2 = P2 ∪ P3 ∪ P4 and BP4 = P1 ∪ P2 ∪ P4, we
obtain two disjoint unions, each equal to L′ \ D:
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Part B: Step 1 - Fixed Points Equidecomposability

Theorem

Let D be the countable union of rotation axes in G = ⟨A,B⟩. Then L′ \ D
and L′ are equidecomposable.

ℓ

ρ

Gray lines = the countable set D of rotation
axes.

Pick a red line ℓ that avoids all gray axes.

Rotate by ρ (irrational angle) about ℓ: copies
ρn(D) never intersect each other.

The disjoint union E = D ∪ ρ(D) ∪ ρ2(D) ∪ · · ·
lets us swap E with ρ(E ),

Both L′ \ E and ρ(E ) ∪ (L′ \ E ) equal L′.
Hence L′ = (L′ \ E ) ⊔ E is equidecomposable
with (L′ \ E ) ⊔ ρ(E ) = L′ \ D. ■
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Part B: Step 2 - Circle Without a Point

Lemma

A circle S1 is equidecomposable with S1 \ {p} (remove one point).

Proof.

WLOG use the unit circle and remove p = (1, 0). Let A be the set
{(cos n, sin n) : n ∈ N}. The angle 1 rad is an irrational multiple of π, so
the points of A are distinct and countably infinite. Rotate S1 by −1 radian
to get A′. This sends p back onto the circle, but every point of A moves
to a new location still in S1 \ {p}. Hence

S1 = A ∪ B, S1 \ {p} = A′ ∪ B,

where B = S1 \ A. The two partitions use the same finite set of pieces,
proving equidecomposability. ■

Application to the ball
Place such a circle through the centre of B3. Because the circle can
absorb a missing point, the centre of the ball can be absorbed too, making
the punctured ball equidecomposable with the full ball.
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Part B: Step 3 - Center Equidecomposability

Theorem

A unit ball with its centre removed is equidecomposable with the full ball.

Proof. Draw any circle through the centre that lies completely inside the
ball. The circle is equidecomposable with itself minus that point
(“circle–minus–a–point lemma”). Replace the missing centre by the
circle’s pieces; the rest of the ball stays unchanged, so the two balls are
equidecomposable. ■

0
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Putting It All Together

Duplication. Four AC–constructed pieces duplicate the punctured
ball L′ \ D.

Axes are negligible. The countable union D of rotation axes can be
“spiralled” away, so L′ \ D ∼ L′.

Centre absorbed. A circle through the centre is equidecomposable
with the same circle minus that point, hence L′ ∼ B3.

B3 ∼ L′ ∼ (L′ \ D) ⊔ (L′ \ D) =⇒ B3 duplicates.

Does this work in 1 D or 2 D?
The construction hinges on a free group on two generators sitting inside
SO(3); SO(2) and SO(1) are abelian, so no such free subgroup—and
therefore no Banach–Tarski paradox—exists in the plane or on the line.
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