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Abstract

This expository paper will delve into basic ZFC set theory, elemen-
tary measure theory, and group actions, in order to present a clear proof
to how a solid three-dimensional ball can be “duplicated” via the Ba-
nach—Tarski Paradox. In particular, we trace how the Axiom of Choice
enables paradoxical decompositions, leading to results that defy classical
intuition about volume and congruence. Our goal is to demystify what
makes Banach—Tarski possible, showcase its far-reaching implications, and
provide readers with a gateway to one of mathematics’ most baffling and
beautiful results.

1 Introduction

The Banach—Tarski Paradox, first announced by Stefan Banach and Alfred Tarski
in 1924 [BT24], proclaims that a solid unit ball in R® can be partitioned into
finitely many disjoint pieces and, by rigid motions alone, reassembled into two
solid balls congruent to the original. This seems to contradict any notion of
volume preservation, yet that intuition relies on the pieces being Lebesgue-
measurable. The paradox instead employs non-measurable subsets, for which
the classical idea of volume simply does not apply. The theorem’s origins
reach back nearly two decades. Giuseppe Vitali’s 1905 construction of a non-
measurable subset of R [Vit05] provided the first spark.

In 1914 Felix Hausdorff extended the idea to the sphere S?, partitioning it
into four congruent parts plus a countable remainder[Haul4]. Banach’s 1923
paper on paradoxical decompositions, followed by the joint Banach—Tarski pub-
lication a year later, transferred these insights to the solid ball. All such results
hinge on Zermelo’s Axiom of Choice (AC), which asserts that the Cartesian
product of a family of non-empty sets is non-empty. AC ensures the existence
of the non-measurable sets used in every paradoxical decomposition and is often
viewed as fundamentally intertwined with the Banach—Tarski phenomenon.

The argument presented here will be similar to the one proposed by Hen-
drickson. We will construct a paradoxical decomposition of the free group on
two generators, showing that the group can be duplicated using only its own
operation. We then embed a copy of this free group into the rotation group



SO(3); this allows us to duplicate almost every point of the unit ball via rota-
tions alone. Finally, we adapt the construction to cover the remaining points,
producing a full paradoxical decomposition of the solid ball.

However, before we prove the Banach-Tarski Paradox, we must lay the foun-
dation of our proof by first proving the Axiom of Choice.

2 Axiom of Choice

Let’s take a look at a widely popular logic problem many have seen before.

2.1 Finite Ten-Hat Variant

Ten prisoners each receive a hat, either red or blue. Everyone sees the other
nine hats but not his own, and all must shout their guesses simultaneously. No
information can pass once the hats are placed. The challenge, known as the
“ten-hat variant without hearing,” asks for a plan that always frees the largest
possible number of prisoners.

Proof. The famous solution to this problem is as follows.

1. We first divide them into two arbitrary teams of five. Call them Team
Even and Team Odd.

2. Let Team FEwven pretend that the total number of red hats is even; Team
Odd pretends it is odd.

3. Then each prisoner counts the red hats they see.

say red  if the count is odd,
If you are on Team Even: . .
say blue if the count is even;

bl if th t is odd
If you are on Team Odd: say blue 1 ¢ coutt %s 0ae
say red  if the count is even.

Because exactly one parity assumption matches reality. Every member of
the correct team has (total parity) = (seen parity) @ (own hat), so he deduces
his colour with certainty; all five survive. Naturally, the other team will guess
wrong completely and thus will lead to a total number of 5 correct guesses. By
using expected value assuming a random probability of guessing the jailer’s hat,
we also get a maximal value of 5 correct guesses and hence know our solution
is optimal.

|

Let’s now add a slight twist to the problem. What happens if we have a
countably infinite number of prisoners, what’s the maximum number of correct
guesses in total?



One would think that the answer is simply infinite, as it’s likely impossible to
guess correctly a ”consistently” in order to achieve an infinite number of correct
guesses.

However, with the Axiom of Choice, we can actually come to the baffling
conclusion that the prisoners can guess in such a way that there will be a finite
number of incorrect guesses.

2.2 Axiom of Choice Concept

Imagine an endless supply of boxes, each containing at least one marble. The
Axiom of Choice (AC) states that somehow one can pick exactly one marble
from every box, even when the collection of boxes is so large or so unstruc-
tured that no explicit rule for choosing is available. In daily life we rarely face
such “rule-less” situations: if the set of boxes is countable we may index them
By, Bs, ... and define “always take the leftmost marble.” Problems arise only
when the family of sets is so vast (say, uncountably many boxes, each with
no distinguished elements) that no uniform picking rule exists inside ordinary
Zermelo-Fraenkel (ZF) set theory; AC can be used to assert a choice function
anyway.

Theorem 2.1 (Axiom of Choice). Let {X;}ic; be a family of non-empty
sets. Then there exists a choice function

FIT—Jx
i€l
such that f(i) € X; for everyi € I.
Because this is an axiom, we are unable to prove it within ZF set theory.

However, we can show it is equivalent to other well-known theorems or lemmas.
To do this, we shall introduce some new ideas and finally state our claim.

2.2.1 Background

Definition 2.2 (Indexed family). A collection {X;};er obtained by mapping
each index i in some set I to a non-empty set X;.

Definition 2.3 (Cartesian product). HXi ={f:1 —>U X;| fi) e X;}. A
i€l i
choice function (see AC) is simply an element of this product.

Definition 2.4 (Partial order (poset)). A relation < that is reflexive (x < x),
antisymmetric (x <y and y < x force x = y), and transitive (x <y < z implies
x < z). A sel equipped with such a relation is called a poset.

Definition 2.5 (Chain). A subset of a poset in which any two elements are
comparable: for all x,y in the chain, x <y ory < z.



Definition 2.6 (Upper bound & maximal element). An upper bound u for a
set C satisfies ¢ < u for all ¢ € C. A maximal element m has no strict larger
neighbour (m < x implies x = m).

Definition 2.7 (Ordinal). An abstract label for the position of an element in a
well-order, extending the counting numbers into the transfinite.

2.2.2 AC Equivalence

From the background, we find define the following Lemma and Principle which
are widely accepted by mathematicians.

Theorem 2.8 (Zorn’s Lemma|Zor3d]). Let (P, <) be a non-empty partially
ordered set such that every chain in P has an upper bound in P. Then P
contains a maximal element; that is, some m € P satisfies m < x = = =m

for all x € P.

Theorem 2.9 (Well-Ordering Theorem). For any set S there exists a binary
relation < on S such that (S, <) is a well-ordered set; that is, < is a total order
and every non-empty subset of S has a least element under <.

Proposition 2.10. The Aziom of Choice, Well-Ordering Princinple, and Zorn’s
Lemma are logically equivalent statements.

Proof. We shall break the proof into different cases to show equivalence.

(i) Aziom of Choice Implies Well-Ordering Theorem: Fix an arbitrary set
S. For every non—-empty subset 7' C S use AC to choose a designated
element ¢(T") € T. Define a relation < by recursion:

(a) At stage 0 set ag := ¢(5).

(b) Given the set of already chosen elements A, = {ag : < a} at
ordinal stage «, if S\ A, # & let a, := ¢(S\ Ay ); otherwise terminate.

Because exactly one element is removed at each stage, the process stops
after |S| stages or fewer. Declare ag = a, precisely when § < ~. By con-
struction, every non—empty subset of S contains the least—indexed element
ag, hence (S, <) is a well-ordered copy of S.

(ii) Well-Ordering Theorem Implies Zorn’s Lemma: Assume every set can
be well-ordered. Let (P, <) be any poset where each chain has an upper
bound. Choose a well-order < of P. Build, by transfinite recursion on
<rank, a new chain C C P:

Include an element p € P whenever it is <-least among those >
all earlier members of C.



Because every chain in P has an upper bound, the union u :=\/ C exists
and dominates C. Suppose u is not maximal; then some ¢ > u exists.
But ¢ ¢ C (otherwise ¢ < u), so by the construction rule ¢ could have
been added to C, contradicting its definition. Hence v is maximal, proving
Zorn’s Lemma.

(iii) Zorn’s Lemma Implies Aziom of Choice:  Given a family {X;}ier of
non—empty sets, consider the poset (P, C) of partial choice functions, i.e.

P={f:J—=JXi|JCI f(j)eX; (Vie )}

Any chain of partial functions has an upper bound obtained by taking
the union of their graphs, so Zorn’s conditions hold. A maximal element
fmax therefore exists. If its domain were a proper subset of I, choose
io ¢ dom fuax and extend by setting f := fumax U {(io,2i,)} with some
Z;, € Xj,; this contradicts maximality. Thus dom finax = I and frnax is a
full choice function. AC follows. |

We now have the proper tools required to derive a baffling answer to our
modified hat problem.

2.3 Countably Infinite Hat Variant

Imagine prisoners indexed by all integers ..., —2,—1,0,1,2,...; prisoner k sees
every hat with index > k. They speak simultaneously. Can a plan guarantee
only finitely many errors?

Proof. A color sequence is a point in {0,1}4 (0 = blue, 1 = red). Declare
x~y <= 1z and y differ at only finitely many indices.

Each ~-class is huge and has no natural “first” element.
For example:

r=...00000000...
¥ =...00001000... (flip at index 0)
"' =...00100000 ... (flips at indices — 2,3)

The three rows belong to the same class because only finitely many entries
differ. A different class might start with an alternating pattern:

a=...01010101 ...
a’=...010101001 ... (finite tweak at one spot)

Again, a ~ a’ since they differ finitely often, but a ~ r because the disagreement
set is infinite.

Solving the puzzle would be easy if we could pick one representative sequence
from every ~-class: prisoner k would



1. Observe the tail of hats with index > k,
2. Find the unique class containing that tail,
3. Speak the bit in position k of the chosen representative.

Because each representative differs from the true sequence at only finitely many
indices, at most finitely many prisoners guess wrong. Selecting those represen-
tatives requires a global choice function—precisely what AC guarantees.
Assuming AC, fix a representative for each class once and for all. Each
prisoner applies the three-step rule above. Only the finitely many indices where
the actual sequence and its representative disagree are guessed incorrectly, so

all but finitely many prisoners survive |. |

In summary, elementary parity saves exactly five lives in the finite puzzle,
while the infinite puzzle achieves near-perfect survival only under the Axiom of
Choice.

3 Free Groups

The algebraic engine of what drives the paradoxical result of decomposing a
three-dimensional ball into two copies relies on the paradoxical nature of what
is known as free groups.

3.1 The Paradoxical Nature

We shall first introduce what free groups are.

Definition 3.1 (Free Monoid). Let A be a non-empty set, called the alphabet.
The free monoid A* is the collection of all finite strings (words) in the letters
of A, including the empty word £, with concatenation as the operation.

Definition 3.2 (Free Group). To obtain the free group on A, denoted F(A), we
adjoin for every letter a € A a formal inverse a=' and then declare the relations
aa”! = e = a"ta. The resulting quotient of the free monoid on AU A™" is a
group; if |A| = n we also write F,.

The adjective “free” comes from the following universal property: any map ¢
from A into an arbitrary group G extends to a unique homomorphism F(A) —
G. Intuitively, F(A) contains all words one can spell with A, subject only to
the cancellations aa~! and a~'a and nothing else. This minimalism is what
grants the group its enormous flexibility.

Definition 3.3 (Reduced word). A word in the symbols a*! (a € A) is reduced
if no letter stands immediately next to its inverse. A single rewriting rule,

VT a— £, P — g,

successively applied, removes every such pair and produces a reduced word.



Proposition 3.4 (Normal form). Every element of F(A) can be represented by
a unique reduced word. In particular, two reduced words are equal in F(A) iff
they are identical as strings.

Proof. Repeatedly canceling adjacent xz~! or 27!z terminates, because each

step shortens the word; the result is reduced and represents the same group
element.

Conversely, if two distinct reduced words could represent the same element,
their juxtaposition would reduce to e while containing no canceling neigh-
bours—a contradiction. |

The smallest non-trivial free group is F1, which is isomorphic to Z by sending
the generator to 1; each reduced word is a* or =%, encoding an integer k.
The group F» on two generators a,b is already vastly richer: it is non-abelian,
infinitely generated by its reduced words, and—most crucially for us—admits a
paradoxical decomposition.

Before describing that decomposition we need a few lines of vocabulary about

how groups may act on sets.

Definition 3.5 (Group action, free action). A group action of G on a set X
is a map G x X — X, (g,x) — gz satisfying lx = x and g(hx) = (gh)x. The
action is free if gx = x implies g = 1.

Definition 3.6 (Paradoxical subset). Let G act on X. A subset Z C X is
paradoxical if there are pairwise disjoint sets Ay, ..., An, B1,...,Bm C Z and
group elements g1,...,9n, 1, .., hm € G such that

. =1

In words, two disjoint selections of pieces—moved around by group elements—each
cover the whole of Z. If some action of G contains a paradozical set, we call G
itself paradozical.

Armed with these notions we return to F» = (a,b). Partition its elements
into five blocks:

Fy = {e} UW(a) U W uwem uwo?),

where, for instance, W(a) is the set of all reduced words beginning with a.
Because every reduced word starts either with a,a=!,b, or b=! (or is empty),
the union is indeed F5.

Next observe that left-multiplication by a strips the initial a~' from any
word in W(a~1), producing a word that starts with not a; more precisely,

aW(a™') = {reduced words not starting with a}.
Similarly bW (b~!) is the set of words not starting with b. Consequently
F, = W(a) U aW(a™") and F, = W(b) U bW (b ).



We have manufactured two disjoint unions of subsets whose images under the
shifts a and b each reassemble into the entire group. Unfortunately, this does
cause problems with the identity element, e, which we will have to tackle when
mapping this into R3.

Theorem 3.7 (Paradoxical decomposition of Fy). The five pieces
{e}, W(a),W(a=1),W(b),W(b~1) create a paradoxical decomposition of Fs.

Proof. Both equalities displayed above are unions of pairwise disjoint sets, be-
cause left-multiplication is a bijection. Thus F5 contains two rearrangements of
itself built from fewer than all of its parts, certifying paradoxicality. |

This paradoxical logic in F5 will serve as the crux of our proof of the Banach-
Tarski Paradox going forward.

3.2 Embedding F; in SO(3)

Our algebraic five-piece paradox for the free group F» = (a,b) is still only a
concept until we can translate it into physical motions of space. The natural
setting for rigid motions that preserve the origin is the special orthogonal group

SO(3) = {A € Matsxs(R) ‘ ATA =1, det A= 1}.

Elements of SO(3) are (proper) rotations: each fixes a unique axis through the
origin and acts as an ordinary planar rotation on the perpendicular plane. To
embed F3 in this group we must choose two rotations A and B whose non-trivial
combinations never collapse to the identity.
Set
1

0 = arccos(3) = c=cosf =1

_ainf — 2V2
3 3, s=sinf ===

With the usual right-handed coordinate axes, we can denote the transfor-
mation matrices of A and B as

10 0 L2 0

A=10 ¢ —s] = 3 0 1 —2v2 (rotate by 6 around the z-axis),
0 s ¢ 0 22 1
¢ —s 0 1 —2v2 0

B=1s ¢ 0] ==>[2v2 1 0 (rotate by 6 around the z-axis).
0 0 1 0 0 3

One checks directly that ATA = B'B = I and det A = det B = 1, s0 A, B €
SO(3).

At first sight these matrices look innocent, yet they already encode a vast
amount of information. The key observation is that both A and B send the
“lattice”

S = {(.Z‘l,xg,xg)T S R3 r1,rx3 €Z, 9 € \/§Z}



to itself: multiplying by ¢ = % or s = 23ﬁ either keeps an integer an integer
or turns v/2 into ++v/2 or 2¢/2. That simple fact lets us track the effect of any
word in A, B on the coordinate values of a point.

Proposition 3.8. Let w be a reduced word of length n in the generators A*!, B+1
of the free subgroup G = (A, B) C SO(3). Acting on the vector (1,0,0) one
obtains

a
1
w-(1,0,0)0 = 3n 2|, with a,b,c € Z and 31b.
c

Proof. We proceed with simple induction on the addition of each additional rota-
tion. For the base case, we let n = 1 and do casework on if w = A, B, A~!, B~1.
With simple algebraic bashing, we can prove that the base case works.
Similarly, for the inductive step, we do casework on whether the additional
rotation is A, B, A=, or B~!. The details of the algebra will be omitted, but
can be found in [Wan24]. |

As an example of Prop S validity, consider the case when w = AB~'AB
and vy = (1,0,0).

k | word prefix wy 3k

0 B (1,0,0)

1 A (3,0,0)

2 AB™1 (1,-2v/2,0)
3 AB71A (3,-2v/2,2)
4 AB™'AB (1,-2v/2,2)

At k = 4 the vector is 374(1, —2v/2,2); here by = —2 # 0 (mod 3).

Proposition 3.9 (Free Rotation Lemma). The subgroup (A, B) C SO(3) is
isomorphic to the free group Fy; that is, no non-trivial reduced word in A*', B*!
equals the identity.

Proof. Suppose some reduced, non-empty word w in A*!, B*! were the identity.
Acting on vy would return vy, yet by Proposition [3.8

w(UO) = 37“(0%; bn\@, Cn)T = (]-a 0, O)Tv

s0 by, would have to be 0—contradicting 3 1 b,,. Therefore no non-trivial reduced
word collapses. |

Now, we have gained an explicit isomorphism:

(A,B) & Fy inside SO(3).



4 Measurability

Because the paradox is seemingly able to double the volume of a sphere, it begs
the question of what volume is. The aim of this section is to not only define
what volume is, but also show a similar consequence of the Axiom of Choice
relating to “volume” in R.

4.1 Background

It’s important to follow rigorous definitions when proving such a paradox.

Definition 4.1 (Equidecomposable sets). Let G be a group of rigid motions
of R® (we take G = Iso(R3), all rotations and translations). Two bounded sets
E,F C R3 are equidecomposable if there exist finitely many pairwise disjoint
pieces Eq, ..., By C E and motions g1,...,9x € G such that

k
E=||E, F=|]|gE.
3 =1

Proposition 4.2 (Transitivity of Equidecomposability). For bounded sets E, F,G C
R3 let G =1s0(R®). If E ~g F and F ~¢g G, then E ~g G.

Proof. Assume E = |_|f:1 E; and, by applying motions gi1,...,gx € G, the
pieces form F = |_|f:1 giF;. Next, write F' = |_|§:1 F; and move those pieces
with hy,...,he € G to obtain G = | [_, h;F}.

Trace each original piece F; through the two stages: first g; takes it into F;
afterwards some h; (the one assigned to the F; containing g;E;) moves it into
G. The composition h; o g; is still a rigid motion, and only finitely many such
compositions arise.

Re-declare the pieces to be Fy,. .., E; and use the composed motions h; g;.
These finitely many pieces now build G directly, so E and G are equidecompos-
able. |

The Banach-Tarski theorem asserts that a solid ball B? is equidecomposable
with two disjoint copies of itself.

To be more rigorous, for the rest of our paper, we will be using Lebesgue
measure rather than volume as it is applicable in all subsets of R™.

Definition 4.3 (Lebesgue measure on R*[Hal05]). For every bounded set E C
R? the value \(E) is uniquely determined by the three properties

(i) Translation invariance: \(E + x) = A(E) for all vectors z € R3.

(i1) Countable additivity: if {Ey,}n>1 are pairwise disjoint, then

)\(|_| En) = 3" ME).

n>1 n>1

10



(i1i) Normalisation on boxes: for every axis-aligned box [a1,b1] X [ag,bs] X
[a37b3]7

)\([al,bl] X [02,62} X [ag,b3]) = (bl — al)(bz — az)(bg — ag).

Observe that the Banach-Tarski Paradox relies on splitting the sphere into
pieces that aren’t Lebesgue-measurable, for otherwise A(B?) would equal 2 \(B3).
A concept tangent to unmeasurable sets in R? are the Vitali Sets, which are un-
measurable sets in R. In the next section, we will go over the construction of
such a set in order to grasp the nature of unmeasurable sets in further detail.

4.2 Vitali Set

The Lebesgue measure A on R is translation- invariant and countably additive
on its domain of measurable sets. Vitali’s construction shows that these two
properties cannot be extended to every subset of an interval when the Axiom
of Choice (AC) is available.

Definition 4.4. A relation ~ on a set X is an equivalence relation if it is
reflexive (x ~ x), symmetric (x ~y =y ~ x) and transitive (x ~yANy ~ z =
x~z)

Proposition 4.5. The relation
r~y = z—yeqQ.
on the interval [0,1) is an equivalence relation.
Proof. We shall go through each property of Definition 4.4.
(i) Reflexive: For every x € [0,1) one hasz —x=0€ Q, so z ~ z.

(ii) Symmetric: If x ~ y then x —y € Q; taking negatives gives y — z =
—(x —y) €Q, hence y ~ x.

(iii) Transitive: Assume z ~ y and y ~ z. Then x —y € Q and y — z € Q.
Adding, x —z=(x—y)+(y—2) €Q, 80 x ~ z. [ |

Definition 4.6. For x € [0,1) write [z] for its equivalence class [z] = {y €
[0,1) : @ ~y}. The set of all classes is the quotient [0,1)/~.

For example, take the number 2 = 0.2 in [0, 1).

[0.2] = {0.2+¢ (mod1) : g is rational}.

A few concrete members are

0.2, 02+4=05333, 024+1=07 02-2=-06=04 (mod]l).

11



All of these differ from 0.2 by a rational number, so they belong to the same
class. By contrast 0.25 is not in [0.2] because 0.25 — 0.2 = 0.05 is irrational in
lowest terms, so the two numbers fall into different classes.

Similarly, starting with y = v/2 — 1 ~ 0.4142 gives another class

V2-1]={V2—-1+¢ (mod1):qeQ},

and no number from [0.2] can be in [v/2— 1] because any two numbers chosen
one from each set differ by an irrational amount.

Proposition 4.7 (Choice set). There exists a set V. C [0,1) that contains
exactly one element of every equivalence class [z].

Proof. Think of the interval [0,1) as being divided into disjoint groups, each
group consisting of all numbers that differ by a rational. Call these groups the
classes.

Apply the Axiom of Choice to the family of classes. The result is a “selection
rule” that, for each class, designates one distinguished number in that class.
Collect all the selected numbers into a single set and call it V. By construction
V meets every class, and it meets each class only once, because the rule never
chooses two different numbers from the same set. |

Lemma 4.8. For every rational ¢ with 0 < g < 1 set V; = V 4+ ¢ (mod 1).
Then the family {Vy} has two key features:

(i) No overlaps: a point of [0,1) belongs to at most one translate V,
(i1) Full coverage: every point of [0,1) belongs to at least one translate V.
Proof. Let us prove each property individually.

(i) Why they cannot overlap: Suppose that some number z € [0,1) sat in
two different translates, say Vg, and Vg, with g1 # ¢2. Thenz = v, +¢1 =
vy + g2 (working “mod 1” if we leave the interval), where v; and vq are
members of the choice set V. Rearranging gives v; — vo = g2 — q1. The
right—-hand side is rational, so v; and v2 belong to the same equivalence
class. But V was constructed to contain only one representative from each
class, forcing v; = v9 and hence ¢; = g2. Our initial assumption that the
two shifts were different fails; therefore no overlap is possible.

(ii) Why they cover [0,1): Take any number z in the interval. Look at the
class to which x belongs and pick its unique representative v inside V.
The difference z — v is rational, and after reducing it modulo 1 we obtain
a rational ¢ with 0 < ¢ < 1. By construction z = v + ¢ (mod1), so x lies
in the translate V;. Thus every point of [0, 1) falls into some V.

With no overlaps and no gaps, the family {V,} is both disjoint and has full
coverage, as claimed. |

12



Theorem 4.9 (Vitali). The choice set V described in Proposition is not
Lebesgue-measurable.

Proof. For every rational ¢ € [0, 1) the translate V, =V + ¢ (mod 1) is just V
slid along the line. Because Lebesgue measure is unchanged by such slides,

AMVy) = A(V) for every q.

Lemma tells us two facts at once: no two different translates overlap,
and taken together they fill the whole interval [0,1). With these facts in mind,
consider the only three numerical possibilities for A\(V).

1. AM(V) =0. Adding up the measures of all the disjoint translates would give
A([0,1)) =04+04+0+--- =0, contradicting the known value A([0,1)) = 1.

2. 0 < A(V) < oo. Every translate has the same positive length, so sum-
ming A(V) + A(V) + A(V) + ... over infinitely many rationals would blow
past every finite bound. That would force A([0,1)) to be infinite—again
contradicting A([0,1)) = 1.

3. A(V) = oco. Impossible, because V' C [0,1) and the whole interval has
length 1.

Every case leads to a contradiction, so the assumption that V' is measurable
must be false. [

Thus, Vitali’s example reveals a fundamental limit of measurability under
the Axiom of Choice. His result parallels the Banach-Tarski Paradox, only that
the latter shows unmeasurability in R? instead of R. Using the content so far,
we will now attempt to prove the Banach-Tarski Paradox.

5 Proof of Banach-Tarski Paradox

We will follow [Rob14]’s transitive proof, which breaks the dramatic duplication
of a sphere into more basic steps.

(i) Remove a set of points from B? to ultimately form L”.
(ii) Prove that L” ~ L" U L".
(ii) Prove that L"” ~ B3.

By Proposition this is logically equivalent to proving B3 ~ B3 LI B3.

13



5.1 Removing Points

Let
L={(z,y,2) €R®| 2 +y*+ 2% <1}, L' =L\ {(0,0,0)}.

Throughout G = (A, B) C SO(3) is the free subgroup already constructed; its
elements act on L’ by matrix multiplication.

Definition 5.1 (Orbit). For p,q € L' write p ~ q if ¢ = gp for some g € G.
The equivalence class Gp = {gp| g € G} is the orbit of p.

Because ~ is an equivalence relation, its easy to see:

U= || o

OcL! Jm
as a disjoint union of orbits.

Proposition 5.2 (Choice set). There exists a subset M C L' that contains
exactly one point of each orbit.

Proof. Apply the Axiom of Choice to the family {O C L' : O is an orbit}. W

Fix one such M for the remainder of the proof. Because the Banach-Tarski
Paradox relies on mapping each point of a sphere, we will have to exploit the
one-to-one bijection between m <= pm for a point m and p € G. However, this
is not always the case for a subset of points, which we must accurately quantify.

Definition 5.3. For a point p € L' the stabiliser is

Gp={9€Glgp=p}
If G, = {e} we say p has trivial stabiliser.

The matrices A and B each fix every point on one line through the origin: A
fixes the z-axis, B fixes the z-axis. For example, take p = (1,0,0) on the z-axis.
If m € M and p € G sends m to p then (Ap) m = p as well, since A fixes p. The
two words p and Ap give two different first letters, so uniqueness fails at p.

Moreover, any conjugate gAg~' fixes the image of the x-axis under g, and
similarly for B. Therefore the set of points with non-trivial stabiliser lies on the
countable family of these axis lines.

For instance, let p = (%, %, %), which is not on any axis. Write p = gm. If
another pair (h,n) also satisfies p = hn then n = h='gm. Since m,n belong
to the same orbit and M chooses exactly one point per orbit, m = n. The
stabiliser of p is trivial, so h~'¢g = 1 and h = g. Thus point p exists in only one
orbit.

Definition 5.4. Let
D={pel'|G,#{1}}.

14



Lemma 5.5. D is contained in countably many straight lines; hence \(D) = 0.

Proof. Each non-identity element of GG is a rotation about one line through the
origin. Because G is countable, there are countably many such lines; a line has
Lebesgue measure zero, and a countable union of measure-zero sets still has
measure zero. |

By definition, for every p € L' \ D there is g € G with p = gm for a unique
m € M. Injectivity of the map

GxM— L\D, (g,m) — gm,
holds away from the rotation axes; on an axis one finds distinct g1, ge with
g1p = g2p-

Proposition 5.6 (Disjoint cover by translates). The collection {gM : g € G }
1s pairwise disjoint and

L\D= ] gMm.
geG

Proof. Surjectivity is immediate from the definition of M. If gy M Ngo M # &
with mq, mo € M, then gymy = gams. Since M contains at most one point per
orbit, m; = mo and so g1 = go- | |

We now attempt to duplicate L' \ D with our free group paradoxical logic.

5.2 Duplicating an Incomplete Sphere

We work inside the full-measure set L = L'\ D; on L” each point carries a
unique label gm with ¢ € G, m € M. To group points by the first letter of g
introduce

Definition 5.7. For o € {A*! B!} define
S(o)={g€eCG | g =ow withw a (possibly empty) reduced word}.
The family {S(A),S(A™1),S(B),S(B~1)} is a disjoint cover of G\ {e}. In

the free-group paradox one additional singleton {¢} was needed; here that role
is played by an infinite set built from negative powers of A:

X = U AT'M  (points reached from M by repeated A™1).
i=1

Because A" M NM = @ for i > 1, X is disjoint from M.

Lemma 5.8. The sets M and X are disjoint and X N A™'M = &.
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Proof. Disjointness from M follows by construction. If z € X NA~'M then z =
A7'my; = A ms for some i > 1 and mq, ms € M. Freeness of G and uniqueness
of labels imply i = 1 and my; = ma, hence x = A='m; ¢ X (contradiction).
For example, let mg € M and consider p = A™2mg € X C P;. Left mul-
tiplication by A sends p to A™'mg € Ps; a second multiplication by A reaches
mo € P;. Thus the three consecutive points {my, A~ my, A‘zmo} occupy Py,
P,, and P; respectively, illustrating how the definition of X eliminates what
would otherwise be a leftover “fifth piece” analogous to the identity element in
the free—group model. [ |

We now split L” into 4 pieces.
Pr=SAM U M U X, Py=S(A™HM\ X,
Py = S(B)M, P, =S(B™Y)M.
Lemma 5.9. The sets Py, P>, P3, P, are pairwise disjoint and
L' = P UPUP;UP,.

Proof. Every g # 1 lies in exactly one S(co); the label representation p = gm
therefore places p in exactly one of the four sets. Lemma guarantees that
inserting M and X into P; does not create overlaps with P;. | |

Proposition 5.10 (Two disjoint unions each equal L").
AP,=P,UPsUP,, BP,=P UP,UP,.

Proof. Take p = gm € Py so the reduced word for g begins with A~!. Multi-
plying by A on the left deletes that first letter; the new word therefore begins
with A, B or B™!, placing Ap into P,, P; or P, respectively. The mapping
p — Ap is injective on Py, so the three images are disjoint. A similar argument
holds for B P;. | |

Theorem 5.11 (Duplication of L”). L =P, UAP, = P3UBP,.

Proof. Using Lemma [5.9] and Proposition [5.10}
PLUAP, =P UP,UPsUP,=1L",
PsUBP ,=PsUPUP,UP,=L".

The unions are disjoint because all sets involved are disjoint. |

With L” now duplicated by the four sets {P;}j_; and their rotated images,
we must now prove the equidecomposability between L” and L.To show this,
we shall first prove L ~ L’ and then L' ~ B3.

16



5.3 Proving L ~ [/

Definition 5.12 (Null set). A subset N C R? is called null (or measure-zero)
if its Lebesgue measure satisfies A(N) = 0.

Definition 5.13 (Null Swap). A null swap is a rigid motion that moves a
measure-zero set disjointly off itself while leaving its complement unchanged.

Proposition 5.14. Because D has Lebesgue measure 0, we can perform a null
swap.

Proof. Choose a line £ through the origin that meets none of the axis lines; such
an / exists because only countably many directions are forbidden. Rotate about
¢ through an angle 6 whose ratio with = is irrational, and denote this rotation
by p. Irrationality implies that the sets p™(D) (n € Z) are pairwise disjoint: the
only points fixed by a power of p lie on ¢, which avoids D.
Define
E=Jp"(D), p(E)=E\D.
n>0

Both F and p(F) are still null sets, and they are congruent via the single motion
p- |

A reader may wonder why the rotation p must have an irrational angle. If
6 /7 were rational, some power of p would be the identity, and the corresponding
iterate p™(D) would land back on D, defeating the disjointness required for the
swap. The irrational choice guarantees that no such overlap occurs.

Take a point py on an axis of A, e.g. po = (1,0,0). Under successive applica-
tions of p the point traces a countable spiral of locations, none of which lie on a
rotation axis because £ misses every axis. The union of these images is part of
the set E. After the swap pg is replaced by p(pg), freeing py from any stabiliser
without changing the shape of L'.

Theorem 5.15. The punctured ball without axzes, L" = L'\ D, is equidecom-
posable with the full punctured ball L.

Proof. Write
L'=FEU(L\E) and L' =p(E)U (L'\E).

The set L' \ FE appears unchanged in both decompositions, while E and p(F)
are rigid-motion copies of each other. By the definition of equidecomposable
sets this suffices to conclude that (L’ \ E)UE = L' and (L' \ E) Up(E) = L"
stand in the same equidecomposability class, hence L' ~ L”. |

Since Theorem identifies L” with L’ in the equidecomposability sense,
the four-piece duplication previously constructed for L” now applies to L' as
well.
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5.4 Proving L' ~ B3

The origin is the final point still outside our duplication. Its situation is anal-
ogous to the axis set D: both are null and both must be translated into the
partition without disturbing any other piece. For D we performed a null swap
by rotating the whole ball about a carefully chosen line. Here we carry out the
same idea in two dimensions and then promote it to three.

Draw any circle C of radius r < 1 lying in the horizontal plane z = zy and
passing through the origin. Removing the center leaves C'\ {0}. The next lemma
provides a planar null-swap for that missing point.

Lemma 5.16 (Circle minus a point). A circle S is equidecomposable with
ST\ {p} for any point p on the circle.

Proof. Use the unit circle and take p = (1,0). Define A = {(cosn,sinn) : n €
N}. Because 7 is irrational, the points of A are distinct, so A is countably
infinite and does not contain p. Let B = S\ {p}\ A.

Rotate S* anticlockwise by one radian; call the rotation p and set A’ = p(A).
Then p sends p to p(p) = (cos 1,sin 1) and permutes A. Hence S = AU B and
S\ {p} = A’ U B, with A congruent to A’ via p. The two partitions use the
same finite family {A, B}, establishing equidecomposability. |

Proposition 5.17 (Ball without center versus full ball). The punctured ball
L' = B3\ {0} is equidecomposable with the full ball B3.

Proof. Choose a Euclidean circle C C B? that passes through the center and
lies entirely inside the ball.

Remove the center to obtain C'\ {0}. Lemma tells us that C is equide-
composable with C'\ {0}: the circle can swap its missing point with a rotated
copy of a countable set of points without changing the rest of the circle.

View the circle’s two pieces—as given by the lemma—as lying inside the
ball. Everything outside the circle stays fixed. Replace the missing center by
the rotated copy of those circle—pieces; no other part of the ball is modified.
Thus one decomposition of the ball contains the center, the other does not, yet
both decompositions use the same finite family of sets (the two circle—pieces
and the ball minus the circle). By definition of equidecomposability these two
versions of the ball are equivalent. Hence B3 ~ B3\ {0} = L'. |

Now that we have proved L' ~ B®, we have all the steps to prove the
Banach-Tarski Paradox.

5.5 Putting It All Together

Theorem 5.18 (Banach-Tarski Paradox). Let B3 = {(z,y,2z) € R3 | 22 + ¢y +
22 < 1} be the solid unit ball. There exist finitely many pairwise disjoint sets
Ei,...,Ey C B? and rigid motions g1, ..., gk, b1, ..., hi € Iso(R%) such that

k k k
B =| | E;, B* =| | g:E;, B*=| | hiE:.
A =1 =1
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Equivalently, the unit ball is equidecomposable with two disjoint copies of itself
by rotations (and, if desired, translations).

Proof. Let D be the countable union of rotation axes of the free subgroup G =
(A, B). Removing both the center and the axes leaves the set L = B*\ (D U
{O}) The four—piece construction in Proposition duplicates precisely this
regular region: L” can be partitioned into finitely many pieces that rotate,
under elements of G, into two full copies of L"”.

Although L” omits the axis lines, the null-swap Theorem shows that
inserting those lines does not change the equidecomposability type; more con-
cretely L” is equidecomposable with the punctured ball L' = B3\ {0}. Applying
the duplication obtained for L” therefore yields a duplication of L’ itself.

The only omission now is the center point. Proposition observes that one
may choose a circle inside the ball passing through the center, replace the missing
point by a congruent planar arc, and thereby swap the center back in without
altering any other piece; this establishes that L’ and B? are equidecomposable.

Using Proposition since B3 ~ L' and L' ~ L' UL’ (by the duplication
just obtained), it follows that B3 ~ B3I B3, In other words, the solid unit ball
can be cut into finitely many disjoint pieces which, when reassembled by rigid
motions, form two balls each congruent to the original. |

6 Conclusion

The Banach-Tarski Paradox is a bizarre consequence of the Axiom of Choice.
Without it, both this paradox and the Vitali Set would crumble.

For readers who were wondering if the Banach-Tarski Paradox works in R
or R2, the answer is no, as there are no 2 or more generators that can be used
to split the figure into more than 2 parts, which is a necessity to exploit the
paradoxical nature of free groups. However, this paradox does work in any
dimension higher than R3 because it has more than 1 generator.

The journey from axioms to paradoxes reminds us that rigorous reasoning
can lead to results at odds with everyday models. In this case, we exploited the
fact that a sphere had infintely many points however that isn’t true in a real
real-life model.

As a closing remark, in the words of my mentor, Ethan Martirosyan: “Don’t
trust math!”.
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