Projective Geometry

Anant Chebiam

July 2025

Introduction and Scope

- These slides serve as an introduction and preface to my expository paper on projective geometry
- The full paper contains detailed proofs, lemmas, and in-depth analysis
- Advanced topics like Grassmannians and Characteristic Classes are covered extensively in the paper
- Here: Focus on intuition, foundational concepts, and proof sketches
- Goal: Build geometric intuition before diving into technical details

2/25

The Genesis of Projective Geometry

- Born from art: Study of perspective in Renaissance paintings
- Key observation: Parallel lines appear to meet at a "vanishing point"
- Mathematical insight: Add "points at infinity" to unify geometry
- Goal: Study properties invariant under projection

3/25

Bridging Two Worlds

Projective Geometry

- Algebraic structures
- Global perspective
- Symmetries
- Invariants

Differential Geometry

- Smooth manifolds
- Local properties
- Curvature
- Calculus tools

Connection: Projective structures appear in differential settings (geodesics, conformal mappings, characteristic classes)

What is a Projective Space? The Intuition

Physical Intuition:

- Imagine looking at the world through your eye
- Every point you see lies on a ray from your eye
- Different points on the same ray look identical
- A projective space captures this: points are directions, not locations

Mathematical Intuition:

- Start with vector space V (like \mathbb{R}^{n+1})
- Remove the origin (can't have zero direction)
- Identify points that differ by scaling: $v \sim \lambda v$ for $\lambda \neq 0$
- Result: $P(V) = (V \setminus \{0\})/\sim$

Anant Chebiam

Projective Space: The Mathematical Definition

Definition

Projective space P(V) is the set of all 1-dimensional subspaces of vector space V.

Equivalently: $P(V) = (V \setminus \{0\})/\mathbb{F}^*$

Homogeneous Coordinates:

- Points written as $[x_0 : x_1 : \cdots : x_n]$
- $[x_0: x_1: \cdots: x_n] = [\lambda x_0: \lambda x_1: \cdots: \lambda x_n]$ for $\lambda \neq 0$
- Example: $[1:2:3] = [2:4:6] = [\lambda:2\lambda:3\lambda]$

Anant Chebiam

Understanding \mathbb{RP}^2 : The Real Projective Plane

Construction: Start with \mathbb{R}^3 , remove origin, identify by scaling

Visualization: Points are lines through the origin in \mathbb{R}^3

Each colored line represents a point in \mathbb{RP}^2

Anant Chebiam Projective Geometry July 2025 7 / 25

Theorem: Structure of Real Projective Space

Theorem

 \mathbb{RP}^n can be covered by n+1 affine charts, each isomorphic to \mathbb{R}^n .

Proof Sketch:

- Define charts: $U_i = \{[x_0 : \cdots : x_n] : x_i \neq 0\}$
- Map $U_i \to \mathbb{R}^n$ by $[x_0:\dots:x_n] \mapsto \left(\frac{x_0}{x_i},\dots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\dots,\frac{x_n}{x_i}\right)$
- This is well-defined: scaling doesn't change ratios
- Charts cover all of \mathbb{RP}^n : every point has some non-zero coordinate

Anant Chebiam Projective Geometry July 2025 8 / 25

Working Through the Chart Construction

Example: \mathbb{RP}^2 with three charts

Chart U_0 : $x_0 \neq 0$

- $[x_0: x_1: x_2] \mapsto \left(\frac{x_1}{x_0}, \frac{x_2}{x_0}\right) = (u, v)$
- Covers "finite" points ordinary affine plane
- Inverse: $(u, v) \mapsto [1 : u : v]$

Chart U_1 : $x_1 \neq 0$

- $\bullet \ [x_0:x_1:x_2] \mapsto \left(\frac{x_0}{x_1},\frac{x_2}{x_1}\right)$
- Covers points where $x_1 \neq 0$

Chart U_2 : $x_2 \neq 0$

- $[x_0: x_1: x_2] \mapsto \left(\frac{x_0}{x_2}, \frac{x_1}{x_2}\right)$
- Covers points where $x_2 \neq 0$

The Line at Infinity: Where Parallel Lines Meet

In \mathbb{RP}^2 : "Line at infinity" is $H_{\infty} = \{[0: x_1: x_2]\}$ Why do parallel lines meet there?

my do paramer imes meet there:

- Consider parallel lines in affine plane: $y = mx + b_1$ and $y = mx + b_2$
- In homogeneous coordinates: $x_1 = mx_2 + b_1x_0$ and $x_1 = mx_2 + b_2x_0$
- As we go to infinity $(x_0 \to 0)$: both approach $x_1 = mx_2$
- They meet at [0:m:1] on the line at infinity!

Geometric Insight:

- Parallel lines have same "direction"
- This direction becomes their meeting point at infinity
- Different slopes *m* give different points [0 : *m* : 1]
- Vertical lines meet at [0:1:0]

Complex Projective Space: \mathbb{CP}^n

Construction: Same idea with \mathbb{C}^{n+1}

Theorem

 \mathbb{CP}^n has a natural structure as a compact complex manifold of complex dimension n.

Key Differences from \mathbb{RP}^n :

- Charts map to \mathbb{C}^n instead of \mathbb{R}^n
- Transition maps are holomorphic, not just smooth
- Compactness: \mathbb{CP}^n is compact (unlike \mathbb{C}^n)
- Rich complex structure enables powerful tools

Example: $\mathbb{CP}^1 \cong S^2$ (Riemann sphere)

- Chart U_0 : $[z:w] \mapsto z/w$ (finite complex plane)
- Chart U_1 : $[z:w] \mapsto w/z$ (neighborhood of infinity)
- Transition: $z/w \mapsto w/z = 1/(z/w)$

Projective Transformations: The Intuition

What should a "projective transformation" preserve?

- Lines should map to lines (perspective preserves straight edges)
- Collinearity: if points lie on a line, their images should too
- But distances and angles can change!

Linear Algebra Connection:

- Projective space P(V) comes from vector space V
- Natural transformations of V: invertible linear maps
- ullet These should induce transformations of P(V)

Key Insight: If $T: V \to V$ is linear and invertible, then T maps lines through origin to lines through origin

◆ロト ◆個ト ◆ 差ト ◆ 差 ・ 釣 へ ○

12 / 25

Definition of Projective Transformations

Definition

A projective transformation is a bijection $f: P^n(\mathbb{F}) \to P^n(\mathbb{F})$ that preserves collinearity.

Equivalently: Maps lines to lines

Matrix Representation:

- Given matrix $A \in GL_{n+1}(\mathbb{F})$
- Acts on $P^n(\mathbb{F})$ by: $[x_0 : \cdots : x_n] \mapsto [Ax]$
- Well-defined: $A(\lambda x) = \lambda(Ax)$, so $[A(\lambda x)] = [Ax]$

Scaling Invariance: A and λA ($\lambda \neq 0$) give same transformation

• Projective group: $PGL_{n+1}(\mathbb{F}) = GL_{n+1}(\mathbb{F})/\mathbb{F}^*$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Anant Chebiam Projective Geometry July 2025 13 / 25

Fundamental Theorem of Projective Geometry

Theorem (Fundamental Theorem)

Every projective transformation $f: P^n(\mathbb{F}) \to P^n(\mathbb{F})$ is induced by an invertible linear transformation of \mathbb{F}^{n+1} .

Proof Sketch:

- **1 Step 1**: Show that *f* preserves linear subspaces
- Step 2: Use preservation of lines to construct linear map
- **Step 3:** Verify this map induces *f*

Significance:

- Completely classifies projective transformations
- Connects projective geometry to linear algebra
- Enables computational approaches

Proof Details: Step 1 - Preserving Subspaces

Goal: Show f maps k-dimensional subspaces to k-dimensional subspaces **Key Lemma:** If f preserves collinearity, then it preserves linear dependence.

Proof of Lemma:

- ullet Points $[v_1], [v_2], [v_3]$ are collinear $\Leftrightarrow v_1, v_2, v_3$ are linearly dependent
- If v_1, v_2, v_3 are linearly dependent, then $[v_1], [v_2], [v_3]$ lie on a line
- Since f preserves collinearity: $[f(v_1)], [f(v_2)], [f(v_3)]$ lie on a line
- Therefore, $f(v_1), f(v_2), f(v_3)$ are linearly dependent

Consequence: *f* preserves all linear subspaces (by induction on dimension)

Proof Details: Step 2 - Constructing the Linear Map

Strategy: Use a basis to define linear map $T: \mathbb{F}^{n+1} \to \mathbb{F}^{n+1}$ Construction:

- Choose basis $\{e_0, e_1, \ldots, e_n\}$ of \mathbb{F}^{n+1}
- Choose "unit point" $u = e_0 + e_1 + \cdots + e_n$
- Apply f to get images $f([e_i])$ and f([u])
- Use the fact that f preserves linear relations to define T

Key Insight: The images $f([e_i])$ and f([u]) contain enough information to reconstruct T uniquely (up to scaling)

Technical Detail: Need to show T is well-defined and invertible

Anant Chebiam Projective Geometry

Proof Details: Step 3 - Verification

Goal: Show that T induces f on projective space **Verification:**

- For any $[v] \in P^n(\mathbb{F})$, need to show f([v]) = [T(v)]
- Use the fact that f preserves all linear relations
- Since T was constructed to preserve these relations, we get f([v]) = [T(v)]

Uniqueness: T is unique up to scaling

- If T_1 and T_2 both induce f, then $T_1 = \lambda T_2$ for some $\lambda \neq 0$
- This gives the quotient $PGL_{n+1}(\mathbb{F}) = GL_{n+1}(\mathbb{F})/\mathbb{F}^*$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Examples of Projective Transformations

Example 1: Translation in affine chart

- In \mathbb{RP}^2 , chart U_0 : $(x,y) \mapsto (x+a,y+b)$
- Matrix form: $\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$
- Maps $[1:x:y] \mapsto [1:x+a:y+b]$

Example 2: Inversion (swapping finite and infinite points)

- Matrix: $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- Maps $[x_0: x_1: x_2] \mapsto [x_1: x_0: x_2]$
- In chart U_0 : $(x,y) \mapsto (1/x,y/x)$

Example 3: Perspective transformation

- General form: $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$
 - Maps lines to lines, but changes angles and distances 🖘 🖘 💂 🔊 🤉 🗞

18 / 25

The Cross-Ratio: A Projective Invariant

Definition

For four distinct collinear points A, B, C, D on $P^1(\mathbb{F})$:

$$(A, B; C, D) = \frac{\det(A, C) \cdot \det(B, D)}{\det(A, D) \cdot \det(B, C)}$$

Theorem

The cross-ratio is invariant under projective transformations.

Significance:

- Only invariant of four collinear points
- Fundamental tool in projective geometry
- Connects to complex analysis (cross-ratios of complex numbers)

Projective Geometry

Duality in Projective Geometry

Key Idea: Symmetric relationship between points and hyperplanes

Theorem (Principle of Duality)

There's a natural bijection between points and hyperplanes in $P^n(\mathbb{F})$.

Example in \mathbb{RP}^2 :

- Point $[a:b:c] \leftrightarrow \text{Line } ax + by + cz = 0$
- Incidence preserved: point lies on line
 ⇔ dual line passes through dual point

Duality Principle: Every theorem has a dual where:

- Points ↔ Lines (in plane)
- "Lies on" ↔ "Passes through"

Anant Chebiam

Conics in Projective Geometry

Definition

A conic in $P^2(\mathbb{F})$ is the zero set of a homogeneous quadratic:

$$x^T Q x = 0$$

Theorem

Every non-degenerate conic in $P^2(\mathbb{C})$ is projectively equivalent to

$$x_0^2 + x_1^2 + x_2^2 = 0$$

Example: Circle $x^2 + y^2 = z^2$ in \mathbb{RP}^2

- Homogeneous form: $x_0^2 + x_1^2 x_2^2 = 0$
- Intersects line at infinity at [1:i:0] and [1:-i:0] (over \mathbb{C})
- These are the "circular points at infinity"

→□▶→□▶→□▶→□▶ □ ♥Q♥

Smooth Manifold Structure

Theorem

 $P^n(\mathbb{R})$ has a natural n-dimensional smooth manifold structure compatible with the action of $PGL(n+1,\mathbb{R})$.

Construction:

- Atlas: $\{U_i : i = 0, ..., n\}$ where $U_i = \{[x_0 : \cdots : x_n] : x_i \neq 0\}$
- Charts: $\phi_i: U_i \to \mathbb{R}^n$
- Transition maps $\phi_j \circ \phi_j^{-1}$ are smooth rational functions

Example: On \mathbb{RP}^1 , transition map $(x_1/x_0) \mapsto (x_0/x_1) = 1/(x_1/x_0)$

Significance: Bridges projective and differential geometry

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Advanced Topics in the Full Paper

The complete paper includes detailed treatments of:

- Grassmannians: Moduli spaces of linear subspaces
- Characteristic Classes: Chern classes and vector bundles
- Fubini-Study Metric: Canonical Kähler metric on \mathbb{CP}^n
- Moduli Spaces: Geometric parameter spaces
- Mirror Symmetry: Duality in string theory
- Geometric Invariant Theory: Quotient constructions

All proofs, lemmas, and technical details are provided in the full paper.

Conclusion: The Unifying Power

What we've seen:

- Projective geometry transforms complex problems into elegant statements
- Natural bridge between algebra and geometry
- Seamless integration with differential geometry
- Foundation for modern geometric research

Key Takeaways:

- Projective spaces compactify and unify
- Homogeneous coordinates provide computational tools
- Duality reveals hidden symmetries
- Invariants like cross-ratio capture essential geometry

Future Directions: Moduli theory, representation theory, algebraic geometry, arithmetic applications

See the full paper for complete proofs and advanced applications!

Anant Chebiam Projective Geometry July 2025 24 / 25

Questions?