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Abstract. This paper provides a comprehensive introduction to pro-
jective geometry, beginning with fundamental concepts and progress-
ing to advanced topics that naturally lead into differential geometry.
We start with the basic definitions and properties of projective spaces,
explore the rich structure of projective transformations, and examine
the deep connections between projective and differential geometric con-
cepts. Each theorem is accompanied by rigorous proofs, making this
exposition suitable for readers ranging from advanced high schoolers to
graduate students in mathematics.

Introduction

Projective geometry originated in the 17th century from the study of per-
spective in art, where artists sought to represent three-dimensional scenes
on two-dimensional canvases. Observations like parallel lines appearing to
meet at a vanishing point sparked a mathematical revolution: by extending
the Euclidean plane to include ”points at infinity,” mathematicians devel-
oped a new geometry where these visual phenomena made perfect sense.
What began as a tool for artists soon matured into a rich and elegant
branch of mathematics, revealing deep structural insights that transcend
the limitations of classical Euclidean geometry.

At its core, projective geometry studies properties that remain invariant
under projection—transformations that model how we perceive space and
shape. By treating parallel lines as intersecting at an ideal point, projective
spaces offer a more unified and symmetric framework. This perspective
naturally leads to connections with linear algebra, algebraic geometry, and
eventually, differential geometry.

Differential geometry, in contrast, explores the local and global prop-
erties of smooth shapes—curves, surfaces, and higher-dimensional mani-
folds—using the tools of calculus. While projective geometry emphasizes
algebraic and combinatorial structures, differential geometry delves into
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curvature, smoothness, and continuous deformation. Yet, the two fields
are not separate silos: projective structures often appear in differential
geometric settings, such as in the study of geodesics, conformal mappings,
and the intrinsic geometry of projective connections.

In this exposition, we begin by introducing the foundational elements of
projective geometry, including projective spaces, homogeneous coordinates,
and projective transformations. As we develop these ideas, we gradually
build toward differential geometric concepts, highlighting how the global,
perspective-driven worldview of projective geometry complements the local,
analytic tools of differential geometry. Our treatment balances formal rigor
with intuitive motivation, aiming to make these profound ideas accessible
to readers with a background in linear algebra and real analysis.

Topological and Differential Preliminaries

Before delving into the specific constructions of projective geometry, we
establish the foundational topological and differential concepts that will
permeate our subsequent analysis. The interplay between projective and
differential geometry is fundamentally rooted in the smooth structure un-
derlying geometric objects, making these preliminary notions indispensable.
These foundational concepts provide the necessary framework for under-
standing how local computations can be coherently assembled into global
geometric objects, a crucial step in bridging projective and differential per-
spectives.

Manifolds and Smooth Structure. A smooth manifold M of dimen-
sion n is a second-countable Hausdorff topological space that is locally
homeomorphic to Rn, equipped with a smooth atlas. More precisely, M
admits a collection of charts {(Ui, ϕi)}i∈I where each Ui ⊂ M is open,
ϕi : Ui → Vi ⊂ Rn is a homeomorphism onto an open set Vi, and the
transition maps

(1) ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

are smooth (infinitely differentiable) whenever Ui ∩ Uj ̸= ∅.
The notion of smoothness extends naturally to maps between manifolds.

A map f : M → N between smooth manifolds is smooth if for every point
p ∈ M and charts (U, ϕ) around p and (V, ψ) around f(p), the composition
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ψ ◦ f ◦ ϕ−1 is smooth in the usual sense of multivariable calculus on the
appropriate domains in Euclidean space.

Homogeneous Spaces and Group Actions. A topological space X is
called homogeneous if its symmetry group acts transitively on X. More
formally, there exists a topological group G acting continuously on X such
that for any two points x, y ∈ X, there exists g ∈ G with g · x = y. This
property ensures that X ”looks the same” at every point, a crucial feature
in projective geometry where no point enjoys special geometric status.

In the smooth category, we consider smooth group actions, where both
the group G and the space X are smooth manifolds, and the action map
G × X → X is smooth. When G acts freely and properly on X, the
quotient space X/G inherits a natural smooth manifold structure, making
it a principal G-bundle over the quotient.

Fiber Bundles and Local Triviality. The concept of a fiber bundle
provides the appropriate language for understanding how local and global
geometric properties interact. A fiber bundle consists of a total space E,
base space B, fiber F , and projection π : E → B such that each point
b ∈ B has a neighborhood U for which π−1(U) is homeomorphic to U × F

in a way that respects the projection to U .
Of particular importance are vector bundles, where the fiber F is a vector

space and the local trivializations are linear in the fiber direction. The
tangent bundle TM of a smooth manifold M exemplifies this structure,
encoding the infinitesimal geometry at each point.

Compactness and Topology at Infinity. Projective spaces arise natu-
rally through compactification procedures that adjoin ”points at infinity”
to affine spaces. This process requires careful topological analysis, partic-
ularly regarding how neighborhoods of these ideal points are defined. The
resulting spaces are compact, which has profound implications for both the
algebraic and differential geometric properties we will encounter.

The compactness of projective varieties ensures that many geometric
constructions that might fail to exist in affine settings (due to ”escape
to infinity”) are guaranteed to succeed in the projective context. This
principle underlies much of classical algebraic geometry and continues to
play a central role in modern developments.
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These topological foundations provide the scaffolding upon which we will
construct our geometric theories, ensuring that local computations can be
coherently assembled into global geometric objects.

Foundations of Projective Geometry

Projective Spaces. We begin with the fundamental definition of projec-
tive space, which provides the foundation for all subsequent development.

Definition 0.1. Let V be a vector space over a field F . The projective
space P(V ) associated to V is the set of all lines through the origin in V ,
i.e.,

P(V ) = {L ⊆ V : L is a 1-dimensional subspace of V }

Remark 0.2. We often denote P(V ) as Pn−1 when dim V = n, and write
Pn−1(F ) to emphasize the field. The most common cases are Pn(R) = RPn

and Pn(C) = CPn.

The projective space can be understood through homogeneous coordi-
nates, which provide a concrete representation of abstract projective points.

Definition 0.3. Let V = F n+1 where F is a field. A point in Pn(F ) can
be represented by homogeneous coordinates [x0 : x1 : · · · : xn], where
(x0, x1, . . . , xn) ∈ F n+1 \ {0} and [x0 : x1 : · · · : xn] = [y0 : y1 : · · · : yn] if
and only if there exists λ ∈ F ∗ such that (y0, y1, . . . , yn) = λ(x0, x1, . . . , xn).

Example 0.4. In RP2, the point [1 : 2 : 3] represents the same projective
point as [2 : 4 : 6] or [−1 : −2 : −3], since these are all scalar multiples of
each other.

The Relationship Between Affine and Projective Geometry. The
connection between familiar Euclidean (affine) geometry and projective ge-
ometry is established through the concept of charts and the ”line at infinity.”

Theorem 0.5. Let Pn(F ) be the n-dimensional projective space over field
F . For each i ∈ {0, 1, . . . , n}, define

Ui = {[x0 : · · · : xn] ∈ Pn(F ) : xi ̸= 0}

Then Ui
∼= F n via the map

ϕi : Ui → F n, [x0 : · · · : xn] 7→
(
x0

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn

xi

)
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Proof. We prove this for i = 0; the other cases follow by symmetry.
First, we show ϕ0 is well-defined. If [x0 : x1 : · · · : xn] = [y0 : y1 : · · · : yn],

then there exists λ ̸= 0 such that (y0, y1, . . . , yn) = λ(x0, x1, . . . , xn). Since
x0 ̸= 0, we have y0 = λx0 ̸= 0. Then

yj

y0
= λxj

λx0
= xj

x0

for all j, so ϕ0 is well-defined.
Next, we construct the inverse map. Define ψ0 : F n → U0 by

ψ0(t1, . . . , tn) = [1 : t1 : · · · : tn]

For any (t1, . . . , tn) ∈ F n:

ϕ0(ψ0(t1, . . . , tn)) = ϕ0([1 : t1 : · · · : tn]) = (t1, . . . , tn)

For any [x0 : x1 : · · · : xn] ∈ U0 with x0 ̸= 0:

ψ0(ϕ0([x0 : x1 : · · · : xn])) = ψ0

(
x1

x0
, . . . ,

xn

x0

)
=
[
1 : x1

x0
: · · · : xn

x0

]
This equals [x0 : x1 : · · · : xn] since[

1 : x1

x0
: · · · : xn

x0

]
=
[
x0

x0
: x1

x0
: · · · : xn

x0

]
= [x0 : x1 : · · · : xn]

Therefore, ϕ0 and ψ0 are inverse bijections, establishing the isomorphism.
□

Corollary 0.6. The projective space Pn(F ) can be covered by n+ 1 affine
charts, each isomorphic to F n.

Points at Infinity. The ”points at infinity” are precisely those points not
contained in a given affine chart.

Definition 0.7. In Pn(F ), the hyperplane at infinity with respect to
the chart U0 is

H∞ = {[x0 : x1 : · · · : xn] : x0 = 0} = {[0 : x1 : · · · : xn] : (x1, . . . , xn) ̸= (0, . . . , 0)}

Theorem 0.8. H∞ ∼= Pn−1(F ).

Proof. Define the map ϕ : H∞ → Pn−1(F ) by

ϕ([0 : x1 : · · · : xn]) = [x1 : · · · : xn]

This is well-defined since if [0 : x1 : · · · : xn] = [0 : y1 : · · · : yn], then there
exists λ ̸= 0 such that (0, y1, . . . , yn) = λ(0, x1, . . . , xn) = (0, λx1, . . . , λxn).
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Thus (y1, . . . , yn) = λ(x1, . . . , xn), which means [x1 : · · · : xn] = [y1 : · · · :
yn] in Pn−1(F ).

The inverse map ψ : Pn−1(F ) → H∞ is given by

ψ([y1 : · · · : yn]) = [0 : y1 : · · · : yn]

It’s straightforward to verify that ϕ and ψ are inverse bijections, estab-
lishing the isomorphism. □

Projective Transformations

Linear Maps and Projective Maps. The symmetries of projective space
are given by projective transformations, which arise naturally from linear
algebra.

Definition 0.9. A projective transformation (or projective map) of
Pn(F ) is a bijection f : Pn(F ) → Pn(F ) that preserves collinearity, i.e., if
three points are collinear, then their images are also collinear.

The key theorem connecting linear algebra to projective geometry is the
following:

Theorem 0.10. Every projective transformation of Pn(F ) is induced by
an invertible linear transformation of F n+1.

Proof. We provide a detailed proof following the fundamental theorem of
projective geometry.

Let φ : Pn(F ) → Pn(F ) be a projective transformation. We first establish
that φ preserves the cross-ratio of four collinear points.

For four distinct collinear points P1, P2, P3, P4 in P1(F ), the cross-ratio
is defined as:

(P1, P2;P3, P4) = (x1 − x3)(x2 − x4)
(x1 − x4)(x2 − x3)

where xi are the affine coordinates when the points lie in an affine chart.
Since projective transformations are bijective and preserve incidence rela-

tions (collinearity), if P1, P2, P3, P4 are collinear, then φ(P1), φ(P2), φ(P3), φ(P4)
are also collinear.

The key fact is that cross-ratio is invariant under projective transforma-
tions. This follows from the fundamental property that projective transfor-
mations preserve harmonic division: four points are in harmonic division if
and only if their cross-ratio equals −1.
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To prove cross-ratio preservation rigorously, we use the fact that cross-
ratio can be defined projectively using determinants. For points [a1 :
b1], [a2 : b2], [a3 : b3], [a4 : b4] in P1(F ):

(P1, P2;P3, P4) =
det

a1 b1

a3 b3

 det
a2 b2

a4 b4


det

a1 b1

a4 b4

 det
a2 b2

a3 b3


Since this expression is invariant under the action of GL2(F ) on homo-

geneous coordinates, and projective transformations of P1(F ) are precisely
the maps induced by elements of GL2(F ), cross-ratio is preserved.

A frame in Pn(F ) is a set of n + 2 points in general position, meaning
no n+ 1 of them lie in a hyperplane.

Lemma 0.11. Any projective transformation φ : Pn(F ) → Pn(F ) is uniquely
determined by its action on any frame.

Proof of Lemma. Let {P0, P1, . . . , Pn+1} and {Q0, Q1, . . . , Qn+1} be two frames
in Pn(F ). Suppose projective transformations φ and ψ both map Pi to Qi

for all i.
Consider any point R ∈ Pn(F ). If R lies on a line through two frame

points Pi and Pj, then φ(R) and ψ(R) both lie on the line through Qi and
Qj. The position of R on line PiPj is determined by its cross-ratio with
any other two points on the line. Since both φ and ψ preserve cross-ratio
and agree on the frame points, we have φ(R) = ψ(R).

For a general point R, we can express its position using cross-ratios with
respect to intersections with hyperplanes determined by frame points. The
preservation of incidence and cross-ratio forces φ(R) = ψ(R).

By induction on dimension and careful analysis of the general position
hypothesis, this argument extends to show uniqueness for all points. □

Lemma 0.12. Given any two frames {P0, P1, . . . , Pn+1} and {Q0, Q1, . . . , Qn+1}
in Pn(F ), there exists an invertible linear transformation T : F n+1 → F n+1

such that the induced projective transformation maps Pi to Qi for all i.

Proof of Lemma. Let Pi = [vi] and Qi = [wi] where vi, wi ∈ F n+1 \ {0} are
representative vectors.
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Since {P0, . . . , Pn+1} is a frame, the vectors {v0, . . . , vn} form a basis for
F n+1, and vn+1 can be written as:

vn+1 = α0v0 + α1v1 + · · · + αnvn

for some scalars αi ̸= 0 (since Pn+1 is in general position).
Similarly, for the target frame:

wn+1 = β0w0 + β1w1 + · · · + βnwn

with βi ̸= 0.
We can scale the representative vectors so that αi = βi = 1 for all i.

This gives us:
vn+1 = v0 + v1 + · · · + vn

wn+1 = w0 + w1 + · · · + wn

Now define the linear transformation T : F n+1 → F n+1 by T (vi) = wi

for i = 0, 1, . . . , n. Since {v0, . . . , vn} is a basis, this uniquely determines
T .

We have:

T (vn+1) = T (v0 + · · · + vn) = T (v0) + · · · + T (vn) = w0 + · · · + wn = wn+1

Therefore, T (vi) = wi for all i, which means the induced projective
transformation [T ] : Pn(F ) → Pn(F ) maps Pi to Qi.

Since T maps a basis to a linearly independent set that spans F n+1, T
is invertible. □

Now we complete the main proof. Let φ : Pn(F ) → Pn(F ) be any
projective transformation.

Choose any frame {P0, P1, . . . , Pn+1} in Pn(F ). Then {φ(P0), φ(P1), . . . , φ(Pn+1)}
is also a frame (since projective transformations preserve general position).

By the second lemma, there exists an invertible linear transformation
T : F n+1 → F n+1 such that the induced projective transformation [T ]
maps Pi to φ(Pi) for all i.

By the first lemma, since both φ and [T ] agree on the frame {P0, . . . , Pn+1},
we have φ = [T ].

Therefore, every projective transformation is induced by an invertible
linear transformation of F n+1. □
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Definition 0.13. Let T : F n+1 → F n+1 be an invertible linear transforma-
tion. The induced projective transformation T̄ : Pn(F ) → Pn(F ) is
defined by

T̄ ([x0 : · · · : xn]) = [T (x0, . . . , xn)]

where [T (x0, . . . , xn)] denotes the projective point determined by the vector
T (x0, . . . , xn).

Lemma 0.14. The induced projective transformation T̄ is well-defined.

Proof. Suppose [x0 : · · · : xn] = [y0 : · · · : yn] in Pn(F ). Then there exists
λ ̸= 0 such that (y0, . . . , yn) = λ(x0, . . . , xn). Since T is linear:

T (y0, . . . , yn) = T (λ(x0, . . . , xn)) = λT (x0, . . . , xn)

Therefore, [T (y0, . . . , yn)] = [T (x0, . . . , xn)] in Pn(F ), showing that T̄ is
well-defined. □

The Projective General Linear Group.

Definition 0.15. The projective general linear group PGLn+1(F ) is
the group of all projective transformations of Pn(F ). It is isomorphic to
GLn+1(F )/Z(GLn+1(F )), where Z(GLn+1(F )) is the center of GLn+1(F )
(the scalar matrices).

Theorem 0.16. PGLn+1(F ) ∼= GLn+1(F )/F ∗, where F ∗ denotes the group
of scalar matrices {λI : λ ∈ F ∗}.

Proof. Consider the natural map π : GLn+1(F ) → PGLn+1(F ) that sends
a matrix A to the induced projective transformation Ā.

First, we show π is a homomorphism. For matrices A,B ∈ GLn+1(F ):

AB([x]) = [(AB)(x)] = [A(B(x))] = Ā([B(x)]) = Ā(B̄([x])) = (Ā ◦ B̄)([x])

So AB = Ā ◦ B̄, confirming π is a homomorphism.
Next, we determine ker(π). We have A ∈ ker(π) if and only if Ā =

idPn(F ), which occurs if and only if A(x) and x represent the same projective
point for all x ̸= 0. This happens precisely when A = λI for some λ ∈ F ∗.

Therefore, ker(π) = F ∗ = {λI : λ ∈ F ∗}.
Finally, we show π is surjective. By the fundamental theorem of projec-

tive geometry, every projective transformation is induced by some linear
transformation, so π is onto.
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By the first isomorphism theorem, PGLn+1(F ) ∼= GLn+1(F )/ ker(π) =
GLn+1(F )/F ∗. □

Cross-Ratio and Projective Invariants. One of the most important
projective invariants is the cross-ratio, which measures the relative position
of four collinear points.

Definition 0.17. Let A,B,C,D be four distinct points on a projective line
P1(F ). The cross-ratio of these points is

(A,B;C,D) = AC ·BD
AD ·BC

where the ratios are computed in any affine chart containing all four points.

Theorem 0.18. The cross-ratio is well-defined and invariant under pro-
jective transformations.

Proof. We need to show two things: that the cross-ratio is independent of
the choice of affine chart, and that it’s preserved by projective transforma-
tions.

Suppose we have four points A,B,C,D on P1(F ) with homogeneous
coordinates [a0 : a1], [b0 : b1], [c0 : c1], [d0 : d1] respectively.

In the affine chart U0 = {[x0 : x1] : x0 ̸= 0}, these points correspond to
a1/a0, b1/b0, c1/c0, d1/d0 respectively (assuming all are in this chart). The
cross-ratio is:

(A,B;C,D) = (c1/c0 − a1/a0)(d1/d0 − b1/b0)
(d1/d0 − a1/a0)(c1/c0 − b1/b0)

After algebraic manipulation using the determinant formula, this can be
shown to equal:

(A,B;C,D) = det(A,C) · det(B,D)
det(A,D) · det(B,C)

where det(P,Q) = det
p0 q0

p1 q1

 for points P = [p0 : p1] and Q = [q0 : q1].

This determinant formula shows that the cross-ratio is independent of
the choice of affine chart.
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Let T ∈ PGL2(F ) be represented by a matrix M ∈ GL2(F ). For any
four points A,B,C,D:

(T (A), T (B);T (C), T (D)) = det(T (A), T (C)) · det(T (B), T (D))
det(T (A), T (D)) · det(T (B), T (C))(2)

= det(M) · det(A,C) · det(M) · det(B,D)
det(M) · det(A,D) · det(M) · det(B,C)(3)

= det(A,C) · det(B,D)
det(A,D) · det(B,C)(4)

= (A,B;C,D)(5)

Therefore, the cross-ratio is invariant under projective transformations.
□

Duality in Projective Geometry

The Principle of Duality. One of the most elegant aspects of projec-
tive geometry is the principle of duality, which establishes a symmetric
relationship between points and hyperplanes.

Definition 0.19. In Pn(F ), a hyperplane is a set of the form

H = {[x0 : · · · : xn] : a0x0 + · · · + anxn = 0}

where (a0, . . . , an) ̸= (0, . . . , 0). We denote this hyperplane by [a0 : · · · :
an]∗.

Theorem 0.20 (Projective Duality). There is a natural bijection between
points in Pn(F ) and hyperplanes in Pn(F ).

Proof. Define the map δ : Pn(F ) → {hyperplanes in Pn(F )} by

δ([x0 : · · · : xn]) = {[y0 : · · · : yn] : x0y0 + · · · + xnyn = 0}

This is well-defined: if [x0 : · · · : xn] = [x′
0 : · · · : x′

n], then (x′
0, . . . , x

′
n) =

λ(x0, . . . , xn) for some λ ̸= 0. The corresponding hyperplane is

{[y0 : · · · : yn] : λ(x0y0+· · ·+xnyn) = 0} = {[y0 : · · · : yn] : x0y0+· · ·+xnyn = 0}

So δ is well-defined.
The inverse map δ−1 sends a hyperplane H = {[y0 : · · · : yn] : a0y0 +

· · · + anyn = 0} to the point [a0 : · · · : an].
It’s straightforward to verify that δ and δ−1 are indeed inverse bijections.

□



12 ANANT CHEBIAM

Incidence Relations.

Theorem 0.21. A point P = [x0 : · · · : xn] lies on a hyperplane H = [a0 :
· · · : an]∗ if and only if a0x0 + · · · + anxn = 0.

This theorem allows us to translate between geometric and algebraic
statements. For example:

Corollary 0.22 (Duality Principle). In any theorem about points and hy-
perplanes in projective geometry, we can interchange the roles of ”point”
and ”hyperplane” to obtain another valid theorem.

Conics and Quadrics

Having established the fundamental framework of projective geometry,
we now turn our attention to specific geometric objects, beginning with
conics, which are central to both classical and modern studies.

Projective Conics.

Definition 0.23. A conic in P2(F ) is the zero set of a homogeneous qua-
dratic polynomial:

C = {[x0 : x1 : x2] : ax2
0 + bx2

1 + cx2
2 + dx0x1 + ex0x2 + fx1x2 = 0}

where not all coefficients are zero.

Equivalently, a conic can be defined using matrices:

Definition 0.24. A conic in P2(F ) is the zero set of a quadratic form
xTQx = 0, where Q is a 3 × 3 symmetric matrix and x = (x0, x1, x2)T .

Theorem 0.25. Every non-degenerate conic in P2(C) is projectively equiv-
alent to the conic x2

0 + x2
1 + x2

2 = 0.

Proof. Let C be a conic defined by xTQx = 0 where Q is non-degenerate
(i.e., detQ ̸= 0).

Since Q is symmetric, it can be diagonalized over C. That is, there
exists an invertible matrix P such that P TQP = D where D is diagonal
with non-zero entries d1, d2, d3.

The change of coordinates y = P−1x transforms the conic to yTDy = 0,
or

d1y
2
0 + d2y

2
1 + d3y

2
2 = 0
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Since we’re working over C, we can further transform coordinates by
scaling: set zi =

√
|di|yi if di > 0 and zi = i

√
|di|yi if di < 0. This

transforms the equation to ±z2
0 ± z2

1 ± z2
2 = 0.

Finally, by possibly changing signs, we can achieve the standard form
z2

0 + z2
1 + z2

2 = 0. □

The Dual of a Conic.

Definition 0.26. Let C be a conic in P2(F ) defined by xTQx = 0. The
dual conic C∗ is the set of all lines tangent to C.

Theorem 0.27. If C is defined by xTQx = 0 with Q non-degenerate, then
the dual conic C∗ is defined by lTQ−1l = 0, where l = (l0, l1, l2)T represents
a line l0x0 + l1x1 + l2x2 = 0.

Proof. A line lT x = 0 is tangent to the conic xTQx = 0 if and only if the
system

xTQx = 0(6)

lT x = 0(7)

has exactly one solution (up to scaling).
Using Lagrange multipliers, the tangency condition is equivalent to the

existence of a scalar λ such that 2Qx = λl, or x = λ
2Q

−1l (assuming Q is
invertible).

Substituting back into the conic equation:(
λ

2Q
−1l
)T

Q

(
λ

2Q
−1l
)

= 0

λ2

4 lTQ−1l = 0

Since we need a non-trivial solution (λ ̸= 0), we must have lTQ−1l = 0.
Therefore, the dual conic C∗ is indeed defined by lTQ−1l = 0. □

Transition to Differential Geometry

The power of projective geometry extends far beyond its algebraic and
combinatorial foundations. When we integrate the algebraic nature of pro-
jective constructions with the analytic tools of differential geometry, we
discover that projective spaces are not merely manifolds, but manifolds
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with exceptional properties that arise directly from their projective struc-
ture. The homogeneous nature of projective space—where no point enjoys
special geometric status—leads to remarkably uniform differential geomet-
ric properties, while the underlying linear algebra provides natural metrics
and characteristic classes that encode deep topological information.

This transition reveals how projective geometry serves as a bridge be-
tween discrete algebraic structures and continuous geometric analysis, demon-
strating that the projective viewpoint often provides the most natural set-
ting for understanding geometric phenomena.

Projective Structures and Local Coordinates. The transition from
projective to differential geometry begins with the fundamental observation
that projective transformations, when restricted to affine charts, become
rational functions with well-controlled singularities. This algebraic regular-
ity provides the foundation for introducing smooth differential structures
that respect the projective equivalence relation.

Definition 0.28. A projective atlas on a manifold M is a collection of
charts {(Ui, ϕi)} such that the transition maps ϕj ◦ ϕ−1

i are restrictions of
projective transformations to their domains of definition.

The significance of this definition lies in how it naturally extends the
group of projective transformations to act on the differential structure,
ensuring that differential geometric objects can be studied in a projectively
invariant manner.

Theorem 0.29. Pn(R) has a natural smooth manifold structure of dimen-
sion n that is compatible with the action of the projective group PGL(n +
1,R).

Proof. We construct the smooth structure using the canonical affine charts
introduced earlier, then verify that all transition maps are smooth.

For each i ∈ {0, 1, . . . , n}, define the affine chart:

Ui = {[x0 : · · · : xn] ∈ Pn(R) : xi ̸= 0}

ϕi : Ui → Rn, [x0 : · · · : xn] 7→
(
x0

xi

, . . . ,
x̂i

xi

, . . . ,
xn

xi

)
where the hat notation indicates omission of the i-th coordinate.

Note that ⋃n
i=0 Ui = Pn(R) since every point has at least one non-zero

homogeneous coordinate, and each ϕi is a bijection onto its image.
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Consider the transition map ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) for

i ̸= j.
Let (t0, . . . , t̂i, . . . , tn) ∈ ϕi(Ui ∩ Uj) ⊂ Rn. This corresponds to the

projective point:

[t0 : · · · : ti−1 : 1 : ti+1 : · · · : tn] ∈ Ui ∩ Uj

For this point to lie in Uj, we require the j-th coordinate to be non-zero:
- If j < i: we need tj ̸= 0 - If j > i: we need tj ̸= 0

The domain ϕi(Ui ∩ Uj) is therefore the open subset of Rn where the
coordinate corresponding to the j-th position is non-zero.

Consider ϕ1 ◦ ϕ−1
0 : ϕ0(U0 ∩ U1) → ϕ1(U0 ∩ U1).

Let (t1, t2, . . . , tn) ∈ ϕ0(U0 ∩ U1), corresponding to [1 : t1 : t2 : · · · : tn].
For this to be in U1, we need t1 ̸= 0.

Then:
ϕ1([1 : t1 : t2 : · · · : tn]) =

( 1
t1
,
t2
t1
,
t3
t1
, . . . ,

tn
t1

)
Therefore:

ϕ1 ◦ ϕ−1
0 (t1, t2, . . . , tn) =

( 1
t1
,
t2
t1
,
t3
t1
, . . . ,

tn
t1

)
This is a rational function that is smooth on its domain {(t1, . . . , tn) ∈

Rn : t1 ̸= 0}.
For arbitrary i, j, the transition map ϕj ◦ ϕ−1

i takes the form:

ϕj ◦ ϕ−1
i (t0, . . . , t̂i, . . . , tn) =

(
t0
tj
, . . . ,

tj−1

tj
,

1
tj
,
tj+1

tj
, . . . ,

tn
tj

)
where appropriate reindexing accounts for the omitted coordinates.

Each such map is smooth wherever tj ̸= 0, which is precisely the domain
ϕi(Ui ∩ Uj).

Any element g ∈ PGL(n + 1,R) acts on Pn(R) by g · [x] = [Ax] for
some representative matrix A. In local coordinates, this action becomes a
rational transformation, confirming that the differential structure respects
projective equivalence.

Since all transition maps are smooth, {(Ui, ϕi)}n
i=0 defines a smooth atlas,

giving Pn(R) the structure of an n-dimensional smooth manifold. □

Tangent Spaces and Vector Fields. The homogeneous nature of pro-
jective space—where no point enjoys special geometric status—profoundly
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simplifies its tangent structure and provides unique insights into the re-
lationship between linear algebra and differential geometry. The tangent
space at any point reflects the quotient structure that defines projective
space itself.

Definition 0.30. Let M be a smooth manifold and p ∈ M . The tangent
space TpM is the vector space of all tangent vectors at p, which can be
defined as equivalence classes of smooth curves through p, or equivalently,
as derivations of the ring of germs of smooth functions at p.

Theorem 0.31. For Pn(R), we have dimTpPn(R) = n for any point p.
Moreover, the tangent space has a natural interpretation in terms of the
linear structure of the ambient space Rn+1.

Proof. Let p = [x0 : · · · : xn] ∈ Pn(R) and assume without loss of generality
that x0 ̸= 0, so p ∈ U0.

In the chart (U0, ϕ0), the point p corresponds to:

ϕ0(p) =
(
x1

x0
,
x2

x0
, . . . ,

xn

x0

)
∈ Rn

The differential of the chart map induces an isomorphism:

dϕ0|p : TpPn(R) → Tϕ0(p)Rn ∼= Rn

Therefore, dimTpPn(R) = n.
To understand the geometric meaning, consider a smooth curve γ(t) in

Pn(R) with γ(0) = p. We can lift this to a smooth curve Γ(t) in Rn+1 \ {0}
such that γ(t) = [Γ(t)] and Γ(0) = (x0, . . . , xn) (some representative of p).

The tangent vector γ′(0) ∈ TpPn(R) corresponds to the equivalence class
of Γ′(0) modulo the radial direction. Specifically, if Γ1(t) and Γ2(t) are two
lifts of the same projective curve, then:

Γ′
1(0) − Γ′

2(0) = λ(x0, . . . , xn)

for some λ ∈ R.
This shows that:

TpPn(R) ∼=
Rn+1

span{(x0, . . . , xn)}
The quotient structure reflects how projective space itself is constructed

as a quotient of Rn+1 \ {0}.
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This dimension result is independent of the choice of chart. For any
other chart (Uj, ϕj) containing p, the transition maps are diffeomorphisms
between open subsets of Rn, so their differentials preserve dimension.

The uniformity of this dimension across all points reflects the homoge-
neous nature of projective space under the action of PGL(n+ 1,R). □

The Fubini-Study Metric. The Fubini-Study metric represents one of
the most profound connections between projective and differential geome-
try. It is not merely a metric on complex projective space, but the canonical
metric that naturally arises from the Hermitian structure of the underlying
vector space Cn+1 and respects the projective equivalence relation. This
metric bridges the algebraic definition of CPn with its rich Riemannian
geometry, providing a projectively invariant way to study curvature, dis-
tances, and geodesics.

Definition 0.32. The Fubini-Study metric on CPn is the unique Kähler
metric that arises as the quotient of the flat Hermitian metric on Cn+1 \{0}
by the C∗ action z 7→ λz for λ ∈ C∗.

To make this concrete, we express the metric in local coordinates:

Definition 0.33 (Local Expression). In the affine chart Uj = {[z0 : · · · :
zn] : zj ̸= 0} with coordinates (wk)k ̸=j where wk = zk/zj, the Fubini-Study
metric is:

ds2 =
∑

k ̸=j |dwk|2
(
1 +∑

l ̸=j |wl|2
)

−
∣∣∣∑k ̸=j wkdwk

∣∣∣2(
1 +∑

l ̸=j |wl|2
)2

Theorem 0.34. The Fubini-Study metric is well-defined on CPn, is Kähler,
and has constant holomorphic sectional curvature equal to 4.

Proof. Consider the standard Hermitian metric on Cn+1:

h =
n∑

j=0
dzj ⊗ dzj

For any point [z] ∈ CPn with representative z = (z0, . . . , zn) ∈ Cn+1\{0},
define:

∥z∥2 =
n∑

j=0
|zj|2
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The key observation is that tangent vectors to CPn at [z] correspond to
vectors v ∈ Cn+1 satisfying the orthogonality condition:

Re
 n∑

j=0
zjvj

 = 0

This condition ensures that v is orthogonal to the radial direction z.
The Fubini-Study metric at [z] is then defined by:

gF S(v, w) =
∑n

j=0 vjwj

∥z∥2 −

(∑n
j=0 zjvj

)
(∑n

k=0 zkwk)
∥z∥4

for tangent vectors v, w satisfying the orthogonality condition.
We must show this definition is independent of the choice of representa-

tive z.
If z′ = λz for λ ∈ C∗, then ∥z′∥2 = |λ|2∥z∥2 and the orthogonality

condition becomes:

Re
λ n∑

j=0
zjvj

 = 0

Since the orthogonality conditions for z and z′ are equivalent, and:∑n
j=0 vjwj

∥z′∥2 −

(∑n
j=0 z

′
jvj

)
(∑n

k=0 z
′
kwk)

∥z′∥4 = gF S(v, w)

the metric is well-defined.
In the chart U0 with coordinates wj = zj/z0 for j = 1, . . . , n, a point is

represented as [1 : w1 : · · · : wn].
The normalization gives ∥z∥2 = 1 +∑n

j=1 |wj|2.
A tangent vector in this chart has the form v = (0, v1, . . . , vn) (the first

component is zero to maintain the orthogonality condition).
The metric becomes:

gF S(v, w) =
∑n

j=1 vjwj

1 +∑n
k=1 |wk|2

Converting to the standard hermitian form:

ds2 =
∑n

j=1 |dwj|2 (1 +∑n
k=1 |wk|2) −

∣∣∣∑n
j=1 wjdwj

∣∣∣2
(1 +∑n

k=1 |wk|2)2

The Fubini-Study metric is Kähler because it can be expressed as:

ωF S = i∂∂ log
1 +

n∑
j=1

|wj|2

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The function ϕ(w) = log(1 +∑ |wj|2) is strictly plurisubharmonic, mak-
ing ωF S a positive (1, 1)-form.

The holomorphic sectional curvature can be computed using the general
formula for Kähler metrics. For the Fubini-Study metric, this curvature is
constant and equals 4.

This can be seen by noting that CPn with the Fubini-Study metric is
homogeneous under the action of U(n+ 1), so all curvatures must be con-
stant. The specific value 4 can be computed by evaluating the curvature
on any holomorphic 2-plane, such as a projective line CP1 ⊂ CPn.

For CP1, the Fubini-Study metric restricts to the standard metric of
constant curvature 4, confirming the general result. □

Chern Classes and Characteristic Classes. Characteristic classes pro-
vide powerful tools to study the ”twisting” of geometric objects within the
projective setting, encoding global topological information that is often
invisible at the local level. The projective space CPn serves as the fun-
damental example where these classes can be computed explicitly, and the
tautological line bundle O(−1) over CPn becomes the prototypical example
for understanding how algebraically defined bundles relate to topological
invariants.

Definition 0.35. Let E → M be a complex vector bundle of rank r. The
Chern classes ci(E) ∈ H2i(M ;Z) for i = 0, 1, . . . , r are characteristic
classes that measure the obstruction to the existence of r − i + 1 linearly
independent global sections of E.

The fundamental example that illuminates the theory is the tautological
bundle over projective space:

Definition 0.36. The tautological line bundle O(−1) → CPn is the
complex line bundle whose fiber over a point [L] ∈ CPn (representing a line
L ⊂ Cn+1) is the line L itself:

O(−1) = {([L], v) ∈ CPn × Cn+1 : v ∈ L}

Theorem 0.37. For the tautological line bundle O(−1) → CPn, we have
c1(O(−1)) = −h, where h ∈ H2(CPn;Z) ∼= Z is the positive generator (the
class of a hyperplane).
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Proof. First, recall that H2k(CPn;Z) ∼= Z for k = 0, 1, . . . , n, generated by
hk, and all odd cohomology groups vanish. The generator h ∈ H2(CPn;Z)
is the Poincaré dual of a hyperplane {[z0 : · · · : zn] : z0 = 0} ⊂ CPn.

To compute c1(O(−1)), we construct a connection on the bundle and
compute its curvature form.

In the affine chart U0 = {[z0 : · · · : zn] : z0 ̸= 0}, a section of O(−1) over
U0 can be written as:

s([1 : w1 : · · · : wn]) = α(w1, . . . , wn) · (1, w1, . . . , wn)

where α : U0 → C is a smooth function.
The natural connection induced from the flat connection on Cn+1 gives:

∇s = dα⊗ (1, w1, . . . , wn) + α
n∑

j=1
dwj ⊗ ej

However, we must account for the constraint that sections lie in the fiber
L[1:w1:···:wn].

A more direct approach uses the fact that O(−1) admits a canonical
section σ over CPn \ {[1 : 0 : · · · : 0]} defined by:

σ([z0 : z1 : · · · : zn]) = z1 · (z0, z1, . . . , zn) ∈ L[z0:z1:···:zn]

This section vanishes precisely at the hyperplane {z1 = 0}.
The first Chern class c1(O(−1)) is represented by the curvature form of

any connection on O(−1). Using the canonical connection, this curvature
form integrates to −1 over any projective line CP1 ⊂ CPn.

Consider the standard embedding CP1 ↪→ CPn given by [s : t] 7→ [s : t :
0 : · · · : 0].

The restriction of O(−1) to this CP1 is isomorphic to O(−1) → CP1,
whose first Chern class has degree −1.

This can be computed explicitly: the bundle O(−1) → CP1 has a sec-
tion that vanishes at one point, say [1 : 0]. The degree of this divisor is
−1 (negative because we’re using the convention where O(1) has positive
degree).

Since H2(CPn;Z) ∼= Z is generated by h (the class of a hyperplane), and
we’ve shown that c1(O(−1)) pairs with any projective line to give −1, we
conclude:

c1(O(−1)) = −h
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This negative sign reflects the fact that O(−1) has ”negative twist-
ing”—its sections must vanish somewhere, as there are no non-zero global
holomorphic sections of O(−1). □

Corollary 0.38. The total Chern class of the tangent bundle TCPn is:

c(TCPn) = (1 + h)n+1

where h is the positive generator of H2(CPn;Z).

Proof. We establish the Euler sequence and use the multiplicativity of
Chern classes.

Let O(−1) denote the tautological line bundle over CPn. Its fiber over
a point [v] ∈ CPn is the line C · v ⊂ Cn+1. The dual bundle O(1) has first
Chern class c1(O(1)) = h, where h generates H2(CPn;Z) ∼= Z.

Consider the trivial bundle On+1 = CPn × Cn+1. We have a natural
bundle map π : On+1 → O(−1) defined by π([v], w) = ⟨v, w⟩v, where ⟨·, ·⟩
is the standard inner product on Cn+1.

The kernel of π at point [v] consists of vectors w ∈ Cn+1 such that
⟨v, w⟩ = 0. This is precisely the orthogonal complement v⊥, which has
dimension n.

The differential of the projection map Cn+1 \ {0} → CPn at a point v
maps v⊥ isomorphically onto T[v]CPn. Therefore, ker(π) ∼= TCPn as vector
bundles.

This gives us the exact sequence:

0 → TCPn → On+1 → O(−1) → 0

For any short exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0,
the total Chern classes satisfy:

c(E) = c(E ′) · c(E ′′)

Since On+1 is a trivial bundle of rank n+ 1, we have c(On+1) = 1.
The line bundle O(−1) has total Chern class c(O(−1)) = 1+c1(O(−1)) =

1 − h, since c1(O(−1)) = −c1(O(1)) = −h.
Applying the multiplicativity formula:

1 = c(On+1) = c(TCPn) · c(O(−1)) = c(TCPn) · (1 − h)

Solving for c(TCPn):
c(TCPn) = 1

1 − h
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In the cohomology ring H∗(CPn;Z), we have the relation hn+1 = 0.
Therefore:

1
1 − h

=
n∑

k=0
hk = 1 + h+ h2 + · · · + hn

We can also write this as:
1

1 − h
= (1 + h)n+1 · 1

(1 + h)n+1(1 − h)

Since (1 + h)n+1 = ∑n+1
k=0

(
n+1

k

)
hk and hn+1 = 0, we have:

(1 + h)n+1 =
n∑

k=0

(
n+ 1
k

)
hk

Also, (1 + h)(1 − h) = 1 − h2, so:

(1 + h)n+1(1 − h) = (1 + h)n+1 − h(1 + h)n+1

Since hn+1 = 0, we have h(1+h)n+1 = h
∑n

k=0

(
n+1

k

)
hk = ∑n

k=1

(
n+1

k

)
hk+1.

Computing directly:
1

1 − h
= 1 + h+ h2 + · · · + hn

To verify this equals (1 + h)n+1, we compute:

(1 + h)n+1 =
n+1∑
k=0

(
n+ 1
k

)
hk =

n∑
k=0

(
n+ 1
k

)
hk

We need to show that
(

n+1
k

)
= 1 for all k = 0, 1, . . . , n in H∗(CPn;Z).

Actually, we use the identity (1−h)(1+h+h2 + · · ·+hn) = 1−hn+1 = 1
in H∗(CPn;Z).

Therefore:
1 + h+ h2 + · · · + hn = 1

1 − h
But we also have:

(1 +h)n+1 =
n+1∑
k=0

(
n+ 1
k

)
hk = 1 + (n+ 1)h+

(
n+ 1

2

)
h2 + · · · +

(
n+ 1
n

)
hn

since hn+1 = 0.
The key identity is:

1
1 − h

= (1 + h)n+1

This can be verified by noting that:

(1 − h)(1 + h)n+1 = (1 + h)n+1 − h(1 + h)n+1
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Since hn+1 = 0, we have (1 + h)n+1 = ∑n
k=0

(
n+1

k

)
hk, and:

h(1 + h)n+1 =
n∑

k=0

(
n+ 1
k

)
hk+1 =

n+1∑
j=1

(
n+ 1
j − 1

)
hj =

n∑
j=1

(
n+ 1
j − 1

)
hj

Therefore:

(1 − h)(1 + h)n+1 =
n∑

k=0

(
n+ 1
k

)
hk −

n∑
j=1

(
n+ 1
j − 1

)
hj

= 1 +
n∑

k=1

[(
n+ 1
k

)
−
(
n+ 1
k − 1

)]
hk

Using the Pascal identity
(

n+1
k

)
−
(

n+1
k−1

)
=
(

n
k−1

)
−
(

n
k−1

)
= 0 for k ≥ 1,

we get:
(1 − h)(1 + h)n+1 = 1

Therefore:
c(TCPn) = 1

1 − h
= (1 + h)n+1

□

This computation demonstrates how the projective setting provides ex-
plicit, computable examples of characteristic classes, making abstract topo-
logical invariants concrete and geometrically meaningful.

Advanced Topics and Modern Applications

The foundational concepts of projective geometry—particularly its alge-
braic and topological underpinnings—extend to numerous advanced fields,
revealing its pervasive influence in modern mathematics. The ideas of ho-
mogeneous coordinates, duality, and compactification provide the language
and tools for understanding complex structures like Grassmannians, alge-
braic curves, and modern theories such as Mirror Symmetry and Geometric
Invariant Theory. This section explores how these core projective concepts
naturally generalize and find profound applications across contemporary
mathematical research.

Grassmannians and Schubert Calculus. Building on the idea of pro-
jective spaces as parametrizing lines through the origin, Grassmannians
generalize this concept to parametrize higher-dimensional linear subspaces,
providing a rich setting for further geometric and algebraic study. Just as
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CPn parametrizes lines in Cn+1, Grassmannians extend this parametriza-
tion to subspaces of arbitrary dimension.

Definition 0.39. The Grassmannian Gr(k, n) is the set of all k-dimensional
linear subspaces of Cn (or Rn).

The projective nature of this construction becomes apparent when we
realize that Gr(1, n+ 1) ∼= CPn, directly connecting Grassmannians to the
projective spaces we’ve studied.

Theorem 0.40. Gr(k, n) has a natural structure as a smooth manifold of
dimension k(n− k).

Proof. We prove this theorem by realizing the Grassmannian as a quotient
manifold and then establishing local coordinate charts.

The Grassmannian Gr(k, n) is the space of all k-dimensional linear sub-
spaces of Rn. We first establish the quotient realization.

Let Vk,n denote the Stiefel manifold, which is the space of all orthonormal
k-frames in Rn:

Vk,n = {A ∈ Mn×k(R) : ATA = Ik}

Here, each element A is an n × k matrix whose columns form an or-
thonormal basis for some k-dimensional subspace of Rn.

The orthogonal group O(k) acts on Vk,n by right multiplication:

A ·Q = AQ for A ∈ Vk,n, Q ∈ O(k)

This action is free and proper, since if AQ = A for some Q ∈ O(k), then
the columns of A (being orthonormal) force Q = Ik.

Lemma 0.41. Gr(k, n) ∼= Vk,n/O(k) as topological spaces.

Proof of Lemma. Define the map π : Vk,n → Gr(k, n) by π(A) = span(columns of A).
This map is well-defined since each A ∈ Vk,n determines a unique k-

dimensional subspace.
The map π is surjective: given any k-dimensional subspace W ⊆ Rn,

we can choose an orthonormal basis for W and arrange it as columns of a
matrix A ∈ Vk,n.

Two matrices A1, A2 ∈ Vk,n satisfy π(A1) = π(A2) if and only if they
have the same column span. Since both have orthonormal columns, this
occurs if and only if A2 = A1Q for some Q ∈ O(k).
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Therefore, π induces a bijection π̄ : Vk,n/O(k) → Gr(k, n).
Since Vk,n is compact and Gr(k, n) with the natural topology is Hausdorff,

π̄ is a homeomorphism. □

We compute the dimensions of the spaces involved.

Lemma 0.42. dim Vk,n = nk − k(k+1)
2 and dimO(k) = k(k−1)

2 .

Proof of Lemma. For Vk,n: An n × k matrix has nk entries, but the or-
thonormality constraints ATA = Ik impose k(k+1)

2 independent conditions
(the symmetric matrix ATA has k(k+1)

2 independent entries, and we require
it to equal Ik).

Thus dim Vk,n = nk − k(k+1)
2 .

For O(k): The orthogonal group O(k) consists of matrices Q satisfy-
ing QTQ = Ik. This gives k(k+1)

2 constraints on k2 matrix entries, so the
dimension is k2 − k(k+1)

2 = k(k−1)
2 . □

By the general theory of quotient manifolds, when a Lie group acts freely
and properly on a manifold, the quotient has dimension equal to the dif-
ference of dimensions:

dim Gr(k, n) = dimVk,n − dimO(k) = nk − k(k + 1)
2 − k(k − 1)

2
Simplifying:

dim Gr(k, n) = nk−k(k + 1) + k(k − 1)
2 = nk−k(2k)

2 = nk−k2 = k(n−k)

To establish the smooth manifold structure, we construct explicit coor-
dinate charts.

Let W ∈ Gr(k, n) be a k-dimensional subspace. Choose coordinates so
that we can write elements of Rn as (x, y) where x ∈ Rk and y ∈ Rn−k.

Definition 0.43. For each k-element subset I ⊆ {1, 2, . . . , n}, define the
chart domain:

UI = {W ∈ Gr(k, n) : projection of W onto coordinates I is isomorphic}

For W ∈ UI , we can write W uniquely as the graph of a linear map.
Without loss of generality, assume I = {1, 2, . . . , k}. Then any w ∈ W can
be written uniquely as:

w =
 x

A · x


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for some x ∈ Rk, where A is an (n− k) × k matrix.
Define the coordinate map ϕI : UI → M(n−k)×k(R) ∼= Rk(n−k) by ϕI(W ) =

A.

Lemma 0.44. The maps ϕI define a smooth atlas for Gr(k, n).

Proof of Lemma. Coverage: For any W ∈ Gr(k, n), there exists some k-
element subset I such that the projection ofW onto the coordinates indexed
by I is isomorphic (this follows from the fact that W is k-dimensional).

Homeomorphism property: Each ϕI : UI → Rk(n−k) is a homeomor-
phism onto its image. The inverse map takes a matrix A to the subspace

spanned by the columns of
Ik

A

.

Smooth transition maps: Consider overlapping charts UI and UJ .
For W ∈ UI ∩ UJ , both ϕI(W ) and ϕJ(W ) represent the same subspace in
different coordinate systems. The transition map ϕJ ◦ϕ−1

I is given by linear
algebra operations (matrix multiplication and inversion), hence is smooth
wherever defined. □

We can also realize the smooth structure through the Plücker embedding,
which embeds Gr(k, n) into projective space.

The Plücker embedding ι : Gr(k, n) → P(∧kRn) is defined by:

ι(W ) = [v1 ∧ v2 ∧ · · · ∧ vk]

where {v1, . . . , vk} is any basis for W .
The image of this embedding satisfies certain quadratic relations (Plücker

relations), and Gr(k, n) inherits its smooth structure as a submanifold of
projective space.

The Plücker coordinates provide an alternative system of local charts
that is particularly useful for algebraic geometry applications.

We have shown that Gr(k, n) has a natural smooth manifold structure
in three equivalent ways:

1. As the quotient manifold Vk,n/O(k) 2. Through explicit coordinate
charts using matrix representations 3. As a smooth submanifold of projec-
tive space via the Plücker embedding

All approaches yield the same dimension k(n−k) and compatible smooth
structures.
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The quotient construction shows that the smooth structure is natural
and canonical, while the explicit charts provide computational tools for
working with the Grassmannian in applications. □

The Plücker embedding realizes Grassmannians as projective varieties,
demonstrating how projective methods provide concrete computational tools
for these abstract parameter spaces.

Algebraic Curves and Riemann Surfaces. Projective geometry pro-
vides the natural compact setting for algebraic curves, transforming them
into compact Riemann surfaces over C, where concepts like genus and di-
visors can be studied globally without ”points escaping to infinity.” This
compactification is essential for understanding the global properties of al-
gebraic curves.

Definition 0.45. A smooth projective curve of genus g is a compact
Riemann surface that can be embedded in some projective space CPn.

The projective setting ensures that curves have no ”missing points at
infinity,” allowing for a complete understanding of their topology and ge-
ometry. This compactness is crucial for the following fundamental result:

Theorem 0.46 (Riemann-Roch Theorem). Let C be a smooth projective
curve of genus g and let D be a divisor on C. Then

dimH0(C,O(D)) − dimH1(C,O(D)) = degD + 1 − g

This theorem connects the geometric properties of the curve (its genus)
with algebraic properties (dimensions of cohomology groups), a connection
that is only possible due to the completeness provided by the projective
setting.

Moduli Spaces. The construction of moduli spaces, which classify geo-
metric objects up to isomorphism, often relies fundamentally on projective
techniques, particularly in defining stable objects and forming quotients in
a well-behaved projective setting. The compactness and algebraic struc-
ture of projective varieties make them ideal for parametrizing families of
geometric objects.

Definition 0.47. The moduli space Mg of curves of genus g is the space
parametrizing isomorphism classes of smooth projective curves of genus g.
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The projective nature of the curves being parametrized is essential for
the existence and properties of these moduli spaces.

Theorem 0.48. For g ≥ 2, the moduli space Mg has dimension 3g − 3.

Proof Outline. This follows from deformation theory applied to projective
curves. A curve of genus g has 3g − 3 complex moduli, which can be
understood by:

1. Embedding the curve in CP5g−5 via the canonical map—a fundamen-
tally projective construction 2. Counting the dimension of the space of
such projective embeddings 3. Subtracting the dimension of the projective
automorphism group

The projective framework ensures that deformations remain within a
compact, well-behaved setting, making the moduli space construction pos-
sible. □

Mirror Symmetry. Projective geometry, especially through toric geom-
etry and the construction of Calabi-Yau manifolds as projective varieties,
provides a crucial framework for understanding the duality inherent in Mir-
ror Symmetry. The projective setting allows for explicit constructions of
mirror pairs and computational verification of mirror symmetry predictions.

Definition 0.49. Two Calabi-Yau threefolds X and Y are called mirror
partners if there exists an isomorphism between their Hodge diamonds
that exchanges hp,q(X) and hq,p(Y ).

The construction of mirror pairs fundamentally relies on projective toric
geometry, which extends classical projective methods to varieties defined
by polytopes:

Theorem 0.50 (Batyrev Construction). Let ∆ and ∆∗ be dual reflexive
polytopes in R4. Then the corresponding toric varieties X∆ and X∆∗ are
mirror Calabi-Yau threefolds.

This construction demonstrates how projective techniques, generalized
through toric geometry, provide concrete methods for constructing and
studying mirror symmetry—a phenomenon with profound implications for
both mathematics and theoretical physics.
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Geometric Invariant Theory. Geometric Invariant Theory (GIT) for-
malizes the quotient constructions that appear throughout projective geom-
etry, providing a systematic method to build new projective varieties (like
moduli spaces) by taking quotients of existing ones under group actions.
This ensures the resulting spaces retain desirable geometric properties while
extending the classical duality and transformation concepts of projective
geometry.

Definition 0.51. Let G be a reductive group acting on a projective variety
X. A point x ∈ X is called GIT-stable if its orbit closure does not contain
the origin and its stabilizer is finite.

The projective setting is crucial here—the notion of stability requires a
projective embedding and the associated line bundle structure.

Theorem 0.52 (GIT Quotient Theorem). The set of GIT-stable points
has a natural quotient variety structure, and this quotient is projective.

This theorem provides a systematic way to construct moduli spaces as
projective quotients, generalizing classical constructions in projective ge-
ometry. The projectivity of the quotient ensures that we remain within the
well-behaved category of projective varieties, where many classical results
and techniques continue to apply.

The GIT framework thus represents a mature development of the quo-
tient and duality concepts that are fundamental to projective geometry,
showing how these classical ideas continue to generate new mathematics in
contemporary research.

Conclusion

The mathematical landscape reveals itself through unexpected connec-
tions and profound unifying principles. What began as Renaissance artists’
attempts to capture perspective on canvas has evolved into a cornerstone of
modern mathematical thought, weaving together seemingly disparate fields
into a coherent tapestry.

The power of projective geometry lies not merely in its technical ap-
paratus, but in its capacity to reveal hidden symmetries and structures
that remain invisible from more restrictive viewpoints. The addition of
points at infinity transforms chaotic special cases into elegant universal
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statements. Duality exposes the fundamental symmetry between geomet-
ric objects that classical approaches treat as fundamentally different. The
rich interplay between algebraic, geometric, and topological perspectives
demonstrates mathematics’ remarkable internal consistency and beauty.

Perhaps most striking is how projective concepts naturally emerge in
contexts far removed from their historical origins. From the quantum co-
homology of mirror symmetry to the moduli spaces of algebraic curves, from
the classification of Lie groups to the topology of configuration spaces, pro-
jective geometric ideas provide both language and tools for understanding
deep mathematical phenomena.

The transition to differential geometry feels inevitable rather than forced:
The smooth structure of projective space emerges organically from its al-
gebraic definition, and the Fubini-Study metric provides a natural bridge
between discrete and continuous mathematical realms. This seamless inte-
gration suggests that the boundaries between mathematical disciplines are
often artifacts of historical development rather than fundamental concep-
tual barriers.

Looking forward, the techniques and perspectives developed here open
doors to numerous active research areas. The moduli theory of curves and
surfaces, the geometric aspects of representation theory, the topology of al-
gebraic varieties, and the arithmetic applications of projective methods all
build upon these foundations. Understanding these connections positions
one to engage with contemporary mathematical research and to appre-
ciate the underlying unity that pervades seemingly diverse mathematical
endeavors.

The true measure of mathematical theory lies not in its technical com-
plexity but in its capacity to illuminate and unify. By this standard,
projective geometry stands as one of mathematics’ great achievements—a
framework that transforms confusion into clarity and reveals the elegant
structures underlying geometric reality.
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