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Preliminaries

Definition
A real polynomial P (x1, x2, . . . xn) of degree D is a continuous map of
form

∑
α1+α2+···+αn≤D cix

α1
1 xα2

2 . . . xαn
n with ci ∈ R.
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Preliminaries

Definition
A real polynomial P (x1, x2, . . . xn) of degree D is a continuous map of
form

∑
α1+α2+···+αn≤D cix

α1
1 xα2

2 . . . xαn
n with ci ∈ R.

Definition
Let PolyD(Rn) be the space of real polynomials in n variables.

Definition
If P is a polynomial, let Z(P ) denote the zero set of of P (i.e. where P
vanishes).
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Background

General Ham Sandwich Theorem
Let V be a vector space of continuous functions on Rn.
Let U1, . . . , UN ⊂ Rn be finite-volume open sets
Let N < dimV .
Suppose that for every nonzero f ∈ V , the zero set Z(f) has
Lebesgue measure zero.

Then there exists a nonzero function f ∈ V \ {0} that bisects each set
Ui.
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Background

General Ham Sandwich Theorem
[...] There exists a nonzero function f ∈ V \ {0} that bisects each set Ui.

Corollary (Finite Polynomial Ham Sandwich)
Let S1, . . . , SN ⊂ Rn be finite sets of points in Rn with

N <

(
D + n

n

)
= dimPolyD(Rn).

Then there exists a non-zero P ∈ PolyD(Rn) that bisects each set Si.
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Polynomial Partitioning

Theorem (Polynomial Partitioning)
For any dimension n, we can choose C(n) such that the following holds.
If X is any finite subset of Rn and D is any degree, then there is a
non-zero polynomial P ∈ PolyD(Rn) such that (Rn\Z(P )) ∩X =

⋃
Oi

with |Oi| ≤ C(n)|X|D−n.
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Polynomial Partitioning

Each Oi is bounded above by C(n)|X|D−n.
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Polynomial Partitioning

Proof of |Pr(L)| ≤ C(n)|X|D−n

Using the Polynomial Ham Sandwich Theorem, repeatedly bisect
X with j polynomials P1, . . . Pj of degree ≤ C(n)2j/n

Pick j such that deg(P1 . . . Pj) ≤ C(n)
∑j

i=1 2
j/n ≤ D

This yields 2j different cells, with each containing at most
|X|/2j ≤ C(n)|X|D−n, as desired.
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The Szemerédi-Trotter Bound

Definition
If L is a set of lines, a point x is called an r-rich point of L if x lies in
at least r lines of L. The set of r-rich points of L is denoted Pr(L).
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The Szemerédi-Trotter Bound

Definition
If L is a set of lines, a point x is called an r-rich point of L if x lies in
at least r lines of L. The set of r-rich points of L is denoted Pr(L).

Theorem (Szemerédi-Trotter, 1983)
Suppose that L is a set of L lines in R3, P ∈ PolyD(R3), and that Z(P )
contains at most B lines of L. Then

|Pr(L) ∩ Z(P )| ≲ DLr−1 +B2r−3.
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The Szemerédi-Trotter Bound

Expected for random lines.
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Bounding |Pr(L)|

Lemma
If L is a set of L lines in Rn and r > 2L1/2, then

|Pr(L)| ≤ 2Lr−1.
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Bounding |Pr(L)|

Lemma
If L is a set of L lines in Rn and r > 2L1/2, then

|Pr(L)| ≤ 2Lr−1.

Theorem (Guth-Katz, 2014)
For any ε > 0, there exists a degree D = D(ε) and a constant C(ε) such
that the following holds. Suppose that L is a set of L lines in R3 with
at most B lines in any algebraic surface of degree ≤ D. Then for any
2 ≤ r ≤ 2L1/2,

|Pr(L)| ≤ C(ε)B
1
2
−εL

3
2
+εr−2.
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A Potential Better Bound

Theorem (Guth-Katz, 2014)
For any ε > 0, there exists a degree D = D(ε) and a constant C(ε) such
that the following holds. Suppose that L is a set of L lines in R3 with
at most B lines in any algebraic surface of degree ≤ D. Then for any
2 ≤ r ≤ 2L1/2,

|Pr(L)| ≤ C(ε)B
1
2
−εL

3
2
+εr−2.

Small B (i.e. B ≲ logL) yields |Pr(L)| ≲ε L
3/2+εr−2, suggesting a

sharper bound.
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A Shaper Bound By Induction on L

Theorem (Guth-Katz, 2014)
For any ε > 0, there are constants D(ε) and C(ε) such that the
following holds. If L is a set of L lines in R3 with at most L1/2+ε lines
in any algebraic surface of degree ≤ D(ε), then

|Pr(L)| ≤ C(ε)L3/2+εr−2 + 2Lr−1.
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A Shaper Bound By Induction on L

Proof Sketch of |Pr(L)| ≤ C(ε)L3/2+εr−2 + 2Lr−1

Induct on L, partition with polynomials, and collect the lines into
subfamilies Li by cell.
We run into an issue: even though no low-degree surface carries
too many lines overall, it’s possible that one cell’s lines all lie on a
single small-degree surface.
To resolve this, we first peel off and control any such “bad” surfaces
before applying the inductive bound to the remaining lines.
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Sufficiently Rich Points on Algebraic Curves

Theorem (Sharir-Solomon, 2018)
Let P be a set of m points and C a set of n irreducible algebraic curves
of constant degree E, from a constructible family C0 with k degrees of
freedom and multiplicity µ in R3, such that no surface infinitely ruled
by curves of C0 contains more than q curves of C, and assume C0 has
reduced dimension s. Then,

I(P,C) = O

(
mkn3k−3

(3k − 2)
+m2/3n1/3q1/3 +

m2sn3s−4q2s−2

5s− 4
+ ε+m+ n

)
,

for any ε > 0.

Aligns with Guth-Katz (E = 1, k = 2, µ = 1, s = 4)
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Takeaways

A Special Case (The Cutting Method)
Split the plane by D auxiliary lines and reduce the problem to smaller
cells.

Lines per cell ∼ logL, not L/D

Polynomial Partitioning and induction are often useful when
intuition about the cutting method fails.
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