Incidence Geometry in \mathbb{R}^3 Via Polynomial Partitioning

Amrit Kandasamy TA: Rachana Madhukara

 $\mathrm{July}\ 2025$

Preliminaries

Definition

A real polynomial $P(x_1, x_2, \dots x_n)$ of degree D is a continuous map of form $\sum_{\alpha_1+\alpha_2+\dots+\alpha_n < D} c_i x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$ with $c_i \in \mathbb{R}$.

Preliminaries

Definition

A real polynomial $P(x_1, x_2, \dots x_n)$ of degree D is a continuous map of form $\sum_{\alpha_1+\alpha_2+\dots+\alpha_n < D} c_i x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$ with $c_i \in \mathbb{R}$.

Definition

Let $\operatorname{Poly}_D(\mathbb{R}^n)$ be the space of real polynomials in n variables.

Preliminaries

Definition

A real polynomial $P(x_1, x_2, \dots x_n)$ of degree D is a continuous map of form $\sum_{\alpha_1+\alpha_2+\dots+\alpha_n< D} c_i x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$ with $c_i \in \mathbb{R}$.

Definition

Let $\operatorname{Poly}_D(\mathbb{R}^n)$ be the space of real polynomials in n variables.

Definition

If P is a polynomial, let Z(P) denote the zero set of P (i.e. where P vanishes).

Background

General Ham Sandwich Theorem

- Let V be a vector space of continuous functions on \mathbb{R}^n .
- Let $U_1, \ldots, U_N \subset \mathbb{R}^n$ be finite-volume open sets
- Let $N < \dim V$.
- Suppose that for every nonzero $f \in V$, the zero set Z(f) has Lebesgue measure zero.

Then there exists a nonzero function $f \in V \setminus \{0\}$ that bisects each set U_i .

Background

General Ham Sandwich Theorem

[...] There exists a nonzero function $f \in V \setminus \{0\}$ that bisects each set U_i .

Corollary (Finite Polynomial Ham Sandwich)

Let $S_1, \ldots, S_N \subset \mathbb{R}^n$ be finite sets of points in \mathbb{R}^n with

$$N < \binom{D+n}{n} = \dim \operatorname{Poly}_D(\mathbb{R}^n).$$

Then there exists a non-zero $P \in \operatorname{Poly}_D(\mathbb{R}^n)$ that bisects each set S_i .

Polynomial Partitioning

Theorem (Polynomial Partitioning)

For any dimension n, we can choose C(n) such that the following holds. If X is any finite subset of \mathbb{R}^n and D is any degree, then there is a non-zero polynomial $P \in \operatorname{Poly}_D(\mathbb{R}^n)$ such that $(\mathbb{R}^n \backslash Z(P)) \cap X = \bigcup O_i$ with $|O_i| \leq C(n)|X|D^{-n}$.

Polynomial Partitioning

Each O_i is bounded above by $C(n)|X|D^{-n}$.

Polynomial Partitioning

Proof of $|P_r(\mathfrak{L})| \le C(n)|X|D^{-n}$

- Using the Polynomial Ham Sandwich Theorem, repeatedly bisect X with j polynomials $P_1, \ldots P_j$ of degree $\leq C(n)2^{j/n}$
- Pick j such that $deg(P_1 \dots P_j) \leq C(n) \sum_{i=1}^j 2^{j/n} \leq D$
- This yields 2^j different cells, with each containing at most $|X|/2^j \le C(n)|X|D^{-n}$, as desired.

The Szemerédi-Trotter Bound

Definition

If \mathfrak{L} is a set of lines, a point x is called an r-rich point of \mathfrak{L} if x lies in at least r lines of L. The set of r-rich points of \mathfrak{L} is denoted $P_r(\mathfrak{L})$.

The Szemerédi-Trotter Bound

Definition

If \mathfrak{L} is a set of lines, a point x is called an r-rich point of \mathfrak{L} if x lies in at least r lines of L. The set of r-rich points of \mathfrak{L} is denoted $P_r(\mathfrak{L})$.

Theorem (Szemerédi-Trotter, 1983)

Suppose that \mathfrak{L} is a set of L lines in \mathbb{R}^3 , $P \in \operatorname{Poly}_D(\mathbb{R}^3)$, and that Z(P) contains at most B lines of \mathfrak{L} . Then

$$|P_r(\mathfrak{L}) \cap Z(P)| \lesssim DLr^{-1} + B^2r^{-3}.$$

The Szemerédi-Trotter Bound

Expected for random lines.

Bounding $|P_r(\mathfrak{L})|$

Lemma

If \mathfrak{L} is a set of L lines in \mathbb{R}^n and $r > 2L^{1/2}$, then

$$|\mathcal{P}_r(\mathfrak{L})| \le 2Lr^{-1}$$
.

Bounding $|P_r(\mathfrak{L})|$

Lemma

If \mathfrak{L} is a set of L lines in \mathbb{R}^n and $r > 2L^{1/2}$, then

$$|\mathcal{P}_r(\mathfrak{L})| \le 2Lr^{-1}$$
.

Theorem (Guth-Katz, 2014)

For any $\varepsilon > 0$, there exists a degree $D = D(\varepsilon)$ and a constant $C(\varepsilon)$ such that the following holds. Suppose that $\mathfrak L$ is a set of L lines in $\mathbb R^3$ with at most B lines in any algebraic surface of degree $\leq D$. Then for any $2 \leq r \leq 2L^{1/2}$,

$$|\mathcal{P}_r(\mathfrak{L})| \le C(\varepsilon)B^{\frac{1}{2}-\varepsilon}L^{\frac{3}{2}+\varepsilon}r^{-2}.$$

A Potential Better Bound

Theorem (Guth-Katz, 2014)

For any $\varepsilon > 0$, there exists a degree $D = D(\varepsilon)$ and a constant $C(\varepsilon)$ such that the following holds. Suppose that $\mathfrak L$ is a set of L lines in $\mathbb R^3$ with at most B lines in any algebraic surface of degree $\leq D$. Then for any $2 \leq r \leq 2L^{1/2}$,

$$|\mathcal{P}_r(\mathfrak{L})| \le C(\varepsilon)B^{\frac{1}{2}-\varepsilon}L^{\frac{3}{2}+\varepsilon}r^{-2}.$$

• Small B (i.e. $B \lesssim \log L$) yields $|P_r(\mathfrak{L})| \lesssim_{\varepsilon} L^{3/2+\varepsilon} r^{-2}$, suggesting a sharper bound.

A Shaper Bound By Induction on L

Theorem (Guth-Katz, 2014)

For any $\varepsilon > 0$, there are constants $D(\varepsilon)$ and $C(\varepsilon)$ such that the following holds. If $\mathfrak L$ is a set of L lines in $\mathbb R^3$ with at most $L^{1/2+\varepsilon}$ lines in any algebraic surface of degree $\leq D(\varepsilon)$, then

$$|\mathcal{P}_r(\mathfrak{L})| \leq C(\varepsilon)L^{3/2+\varepsilon}r^{-2} + 2Lr^{-1}.$$

A Shaper Bound By Induction on L

Proof Sketch of $|\mathcal{P}_r(\mathfrak{L})| \leq C(\varepsilon)L^{3/2+\varepsilon}r^{-2} + 2Lr^{-1}$

- Induct on L, partition with polynomials, and collect the lines into subfamilies \mathfrak{L}_i by cell.
- We run into an issue: even though no low-degree surface carries too many lines overall, it's possible that one cell's lines all lie on a single small-degree surface.
- To resolve this, we first peel off and control any such "bad" surfaces before applying the inductive bound to the remaining lines.

Sufficiently Rich Points on Algebraic Curves

Theorem (Sharir-Solomon, 2018)

Let P be a set of m points and C a set of n irreducible algebraic curves of constant degree E, from a constructible family C_0 with k degrees of freedom and multiplicity μ in \mathbb{R}^3 , such that no surface infinitely ruled by curves of C_0 contains more than q curves of C, and assume C_0 has reduced dimension s. Then,

$$I(P,C) = O\left(\frac{m^k n^{3k-3}}{(3k-2)} + m^{2/3} n^{1/3} q^{1/3} + \frac{m^{2s} n^{3s-4} q^{2s-2}}{5s-4} + \varepsilon + m + n\right),$$

for any $\varepsilon > 0$.

• Aligns with Guth-Katz $(E=1, k=2, \mu=1, s=4)$

Takeaways

A Special Case (The Cutting Method)

Split the plane by D auxiliary lines and reduce the problem to smaller cells.

Lines per cell $\sim \log L$, not L/D

• Polynomial Partitioning and induction are often useful when intuition about the cutting method fails.

Acknowledgments

The author would like to thank Rachana Madhukara for her help and feedback during the process of writing the paper, and also thank Simon Rubinstein-Salzedo for recommending insightful resources. We finally thank Euler Circle for making this paper possible.