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Abstract. We aim to study incidences in R3, and in particular bound them under various
conditions. To do this, we use polynomial partitioning. We present two bounds on r-rich
points, one by induction on the polynomial degree D, and one on the number of lines.
More generally than r-rich points, we discuss the classical Szemerédi-Trotter theorem on
incidences , as well as its extensions, much of which is the work of Guth and Katz from
2014. We also generalize this bound to algebraic curves in R3 using the work of Sharir and
Solomon.

1. Introduction

The polynomial method in combinatorics is a relatively new technique, often used to
describe the structure of combinatorial objects using the algebraic properties of polynomials.
The Polynomial Method saw major development in the past two decades, especially after a
series of groundbreaking results, after it trivialized the proofs of few infamous open problems.
These problems tend to have a very geometric structure:

Theorem 1.1 (Finite Field Kakeya). Define a Kakeya set in R2 to be any set which contains
a unit line segment in each direction, and let E ⊂ F n be a Kakeya set. Then

|E| > c(n)|F |n.

In 2008, Dvir [3] proved this theorem in 4 pages, resolving a long-standing conjecture
in finite field geometry. The Kakeya problem over Rn remains open in full generality, but
Dvir’s proof placed him as one of the pioneers of the Polynomial Method. Another seminal
result was by Guth and Katz [5], who applied polynomial partitioning to the Erdös distinct
distances problem. Erdös had conjectured that any set of n points in the plane determines
at least Ω(n/

√
log n) distinct distances. Guth and Katz nearly resolved this by showing that

the number of distinct distances is at least n1−o(1).

Prior to their work, the best known bound was only Ω(n0.8641) due to Solymosi and
Töth [12]. Guth and Katz’s approach introduced a geometric and algebraic perspective,
interpreting the distances as incidences between points and algebraic surfaces in R3. This
was one of the first major applications of the polynomial method.

Within the Polynomial Method, several tools exist. Arguably the most well known of these
tools is Alon’s Combinatorial Nullstellensatz [1], which gives conditions for the nonvanishing
of a polynomial over a finite field. However, in this paper, we will discuss a different tool,
namely, Polynomial Partitioning.
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Polynomial partitioning is especially effective for problems of this geometric type, where
we focus on the relationships between sets of points. In the late 1900s, these kinds of prob-
lems were unclassified, but today are part of a field known as incidence geometry. Essentially,
polynomial partitioning claims the existence of a polynomial whose zero set can split some
subspace X ⊂ Rn into bounded components. Choosing a polynomial of degree D imposes
roughly

(
D+n
n

)
conditions so we can enforce up to

(
D+n
n

)
constraints to balance point-sets

or line-sets across cells. This is what makes polynomial partitioning so much more effective
than random ad-hoc cuts.

Work of this type has led to many classical results such as the Szémerdi-Trotter theo-
rem [14]. The theorem claims a bound on the number of points at the intersection of r lines.
Before polynomial partitioning, one approach towards proving the Szemerédi-Trotter bound
was the cutting method. Namely, given L lines and S points, we expect that cutting a space
into D2 random cells should yield about L/D lines and S/D2 points per cell. However,
this is far from true. The intuition behind polynomial partitioning is the desire to reduce a
problem in X to smaller cells within X.

The paper is structured in the following way: in Section 2, relevant terminology and
notation is introduced. Additionally, we state some key properties relating to points in
projection theory, like critical or flat. In Section 3, we formalize and prove the idea of
polynomial partitioning. In Section 4 and 5, we show two different incidence bounds on
lines. In section 6, we provide a generalization to algebraic curves. One currently open
conjecture is that the number of incidences given n points and E dimensional algebraic
curves is bounded above by m2/3n2/3 +m + n. We show some theorems that come close to
this bound.

2. Definitions and Notation

First we introduce some notation that we use throughout the paper.

• For two quantities A,B, we write A ≲ B to mean there exists C = C(n) > 0
(depending only on the dimension n) so that A ≤ C B. We write A ∼ B if A ≲ B ≲
A.

• PolyD(Rn) denotes the vector space of real polynomials in n variables of total degree
at most D.

• If P ∈ PolyD(Rn), its zero set is Z(P ) = {x ∈ Rn : P (x) = 0}, and degP is the
total degree of P .

Next we introduce basic definitions needed for incidence geometry.

Definition 2.1 (r-rich Points). For r ∈ N, the r–rich points of L are

Pr(L) = {x ∈ Rn : x lies on at least r lines of L}.

Definition 2.2 (Incidence). Given a finite point set P ⊂ Rn and a finite line set L, the
incidence count is

I(P,L) =
∣∣{(p, ℓ) ∈ P × L : p ∈ ℓ}

∣∣.
Definition 2.3 (Algebraic surface). An algebraic surface is a two-dimensional algebraic
variety.
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Definition 2.4 (Flecnodes). Fix a constructible set C0 ⊂ C3
E of irreducible curves of degree

at most E in three-dimensional space, and let f be a trivariate polynomial. We call a point
p ∈ Z(f) a (t, C0, r)-flecnode if there exist at least t curves γ1, . . . , γt ∈ C0 such that, for each
i = 1, . . . , t:

(1) γi is incident to p,
(2) p is a non-singular point of γi, and
(3) γi osculates to Z(f) to order r at p.

This is a generalization of the notion of a flecnodal point, by Salmon [9]. The main intuition
is that a (t, C0, r)-flecnode is a marker where the algebraic surface aligns with many curves
to a very high order of tangency.

When we work with algebraic curves, we need the notion of constructibility. Informally, a
set Y ⊂ C is constructible if it is a Boolean combination of algebraic sets.

Formally, this means the following.

Definition 2.5 (Constructibility). For z ∈ C, define v(z) =

{
0, z = 0,

1, z ̸= 0.
A subset Y ⊂ Cd

is called a constructible set if there exist

• a finite collection of polynomials fj : Cd → C, for j = 1, . . . , JY , and
• a subset BY ⊂ {0, 1}JY ,

such that

x ∈ Y ⇐⇒
(
v(f1(x)), v(f2(x)), . . . , v(fJY (x))

)
∈ BY .

When we apply this to a set of curves, we think of them as points in some parametric
(complex) d-space, where ds is the number of parameters needed to specify a curve.

Now we will define a few properties of points in projection theory.

Definition 2.6 (Critical Points). A point x is a critical point of P if all the partial derivatives
of P vanish at x.

Definition 2.7 (Flat Points). A point x in a smooth surface in R3 is called a flat point if
there is a plane that is tangent to the surface at x to second order.

We say a point x ∈ Z(P ) is special if x is critical or flat. The following lemma is well
known.

Lemma 2.8 (Plane detection). Plane detection lemma. For any polynomial P ∈ R[x1, x2, x3],
we can associate a list of polynomials SP with the following properties.

(1) If x ∈ Z(P ) then SP (x) = 0 iff x is critical or flat.
(2) If x is contained in three lines in Z(P ), then SP (x) = 0.
(3) degSP ≤ 3 degP .
(4) If P is irreducible and SP vanishes on Z(P ) and Z(P ) contains a regular point, then

Z(P ) is a plane.

This will become useful when we deal with the non-planar parts of a zero set Z(P ) in
Theorem 5.5.
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3. Polynomial Partitioning

Now we will introduce the idea of polynomial partitioning, which relies on a theorem about
the existence of a polynomial whose zero set satisfies certain conditions. To prove this, we
need some preliminary claims.

Lemma 3.1 ( [2], Theorem 3). For every continuous map f : Sn → Rn, there is some x
with f(x) = f(−x).

Proof. Assume for the sake of contradiction f(x) ̸= f(−x) for all x. Then

g(x) =
f(x)− f(−x)

||f(x)− f(−x)||
defines a continuous odd map g : Sn → Sn−1, which cannot exist. Thus there exists x such
that f(x) = f(−x). ■

Lemma 3.2 ( [13], Theorem 2.1). Let V be a vector space of continuous functions on Rn.
Let U1, . . . , UN ⊂ Rn be finite-volume open sets with N < dimV . Suppose that for every
nonzero f ∈ V , the zero set Z(f) has Lebesgue measure zero. Then there exists a nonzero
function f ∈ V \ {0} that bisects each set Ui.

Proof. For each i = 1 to N define

ϕi(F ) = Vol({x ∈ Ui : F (x) > 0})− Vol({x ∈ Ui : F (x) < 0}),
so ϕi is antipodal and continuous on V \ {0}.

Assemble them into

Φ(F ) = (ϕ1(F ), . . . , ϕN(F )) : V \ {0} → RN .

Since dimV = N +1, identify SN ⊂ V as the unit sphere. Then Φ : SN → RN is continuous
and odd. By Lemma 3.1, there exists F ∈ SN with Φ(F ) = 0, hence each ϕi(F ) = 0. So F
bisects each Ui. It remains to show ϕ is continuous.

Let fk → f ∈ V . Then fk → f pointwise and uniformly off a set of arbitrarily small
measure. Given ε > 0, choose δ > 0 so that Vol({x ∈ U : |f(x)) < δ}) < ε/2. Then for large
k, |fk(x) − f(x)| < δ outside a set of volume less than ε/2. Hence Vol({x ∈ U : fk(x) >
0})− Vol({x ∈ U : f(x) > 0}) < ε.

■

In proving the polynomial partitioning theorem, will only employ a special case of Lemma
3.2, namely, the Finite Polynomial Ham Sandwich Theorem

Lemma 3.3 ( [7], Theorem 2.5). Let S1, . . . , SN ⊂ Rn be finite sets of points in Rn with

N <

(
D + n

n

)
= dimPolyD(Rn).

Then there exists a non-zero P ∈ PolyD(Rn) that bisects each set Si.

Proof. For each δ > 0, let

Ui,δ =
⋃
x∈Si

Bδ(x),

be the union of δ-balls around the points of Si. By Lemma 3.3, there exists a nonzero
polynomial Pδ of degree at most D that bisects each Ui,δ. Rescaling, we may assume Pδ ∈
SN ⊂ PolyD(Rn) \ {0}.
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Since SN is compact, choose a sequence δm → 0 so that Pδm → P ∈ SN . Uniform
convergence of coefficients implies Pδm → P uniformly on compact sets.

We show P bisects each finite set Si. Suppose for the sake of contradiction that for some
i, the set

S+
i = {x ∈ Si : P (x) > 0}

has more than half the points of Si. Then pick ε > 0 small enough that

• P > ε on the ε-ball around each x ∈ S+
i , and these balls are disjoint;

• for large m, |Pδm − P | < ε on all such balls;
• also δm < ε.

So for sufficiently large m, Pδm > 0 on each of those balls, hence on more than half of Ui,δm .
Contradiction. Therefore P bisects Si, as claimed. ■

We will repeatedly apply this in the proof of Polynomial Partitioning.

Theorem 3.4 (Polynomial Partitioning). For any dimension n, we can choose C(n) such
that the following holds. If X is any finite subset of Rn and D is any degree, then there is a
non-zero polynomial P ∈ PolyD(Rn) such that Rn\Z(P ) =

⋃k
i=1Oi with

|Oi ∩X| ≤ C(n)|X|D−n

Proof. To start, we find a polynomial P1 of degree at most 1 that bisects S. That is, the
number of points of S in the open sets {x : P1(x) > 0} and {x : P1(x) < 0} are each at most
|S|/2. Define

S+ = {x ∈ S : P1(x) > 0}, S− = {x ∈ S : P1(x) < 0}.
Now apply Lemma 3.3 to the sets S+ and S−: we obtain a polynomial P2 of controlled
degree that bisects both S+ and S−. This results in four open regions of Rn determined by
the sign patterns of (P1, P2). Each region contains at most |S|/4 points of S, and together
these regions cover Rn \ Z(P1P2).
Continuing inductively, at stage j, we have 2j−1 subsets of S, each associated with a

distinct sign condition on P1, . . . , Pj−1, and each with at most |S|/2j−1 points. By Lemma
3.3, we can find a polynomial Pj of degree at most C(n)2j/n that simultaneously bisects each
of these subsets. Then Rn \ Z(P1 · · ·Pj) decomposes into 2j open regions, and each region
contains at most |S|/2j points of S.
We iterate this process J times, yielding polynomials P1, . . . , PJ and a final polynomial

P = P1P2 · · ·PJ .

The zero set Z(P ) partitions Rn into 2J open cells, each of which contains at most |S|/2J
points of S.

To bound the degree of P , we see that

degP ≤
J∑

j=1

degPj ≤
J∑

j=1

C(n)2j/n.

This is a geometric sum whose final term is comparable to the whole sum, so

degP ≤ C(n)2J/n.

Solving for J such that degP ≤ D gives 2J ≤ (D/C(n))n. Hence, the number of points of
S in each open cell is at most

|S|/2J ≤ C(n)|S|D−n.
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This completes the construction. ■

We may strengthen Theorem 3.4 by bounding k

Theorem 3.5 ( [8] Theorem 2). If P ∈ PolyD(Rn), then Rn\Z(P ) has O(Dn) connected
components.

Proof. We proceed by induction on n. Let k = C(n,D) denote the maximum number of
connected components of Rn \ Z(P ) when degP ≤ D.

If n = 1, then P is a real univariate polynomial of degree at most D, so has at most D
real roots. Hence R \ Z(P ) is a union of at most D + 1 open intervals, and

C(1, D) ≤ D + 1 = O(D).

Now assume the result holds in dimension n − 1, so C(n − 1, D) ≤ Cn−1D
n−1. Let

P (x1, . . . , xn) be any real polynomial of degree at most D. Fix a generic unit vector v ∈ Sn−1

and write t = v ·x as the coordinate along v, and y for the orthogonal coordinates. Consider
the one-dimensional restriction in the t-direction

ft(y) = P (tv + y),

viewed as a family of polynomials in y ∈ Rn−1 parametrized by t ∈ R.
By generic choice of v, the projection of Z(P ) to the t-axis is a finite union of at most

D points (since any line intersects a real algebraic hypersurface of degree D in at most D
points). Let these critical values be t1 < t2 < · · · < tm, m ≤ D.
Between consecutive critical levels, i.e. for t ∈ (tj, tj+1), the slices {P (tv + y) = 0} form a

smooth hypersurface in each hyperplane {v · x = t}, and therefore the number of connected
components of its complement is constant on each open interval (tj, tj+1). Also, at each
“critical” tj, as t crosses tj, new components can only be created or destroyed when t = tj, and
their number is controlled by the local topology near a real singularity. At most C(n− 1, D)
new components appear or disappear at each crossing.

Therefore,

C(n,D) ≤ (m+ 1) · C(n− 1, D) + 2m

≤ (D + 1)Cn−1D
n−1 + 2D

≤ CnD
n,

for a suitable constant Cn depending only on Cn−1 and n. So we are done.
■

4. Bounding r-rich Points on Lines

Using polynomial partitioning, we aim to study points in R3, and notably estimate the
number of r-rich points in Z(P ) in two different ways. The first of these approaches employs
the Szemerédi-Trotter theorem.

Theorem 4.1 ( [14], Theorem 1.1). Suppose that L is a set of L lines in R3, P ∈ PolyD(R3),
and that Z(P ) contains at most B lines of L. Then

|Pr(L) ∩ Z(P )| ≲ DLr−1 +B2r−3.
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Proof. Write
LZ = { ℓ ∈ L : ℓ ⊂ Z(P )}, L¬Z = L \ LZ ,

so |LZ | ≤ B and |L¬Z | = L− |LZ |. Let S =
{
x ∈ Z(P ) : x lies on at least r lines of L} .

Each x ∈ S lies on r lines, and so either

(1) x lies on at least r
2
lines of L¬Z

(2) x lies on at least r
2
lines of LZ .

Case (1). A line not contained in Z(P ) meets it in at most D points, so the total number
of intersections of L¬Z with Z(P ) is at most D

∣∣L¬Z
∣∣ ≤ DL. Since each “case (i)” point is

counted at least r/2 times in that intersection count,∣∣{x ∈ S : (i)}
∣∣ ≤ DL

r/2
=

2DL

r
≲

DL

r
.

Case (2). There are at most
(|LZ |

2

)
≤ B2

2
intersection-points among the B lines in LZ . On

the other hand, each “case (ii)” point lies on at least r/2 of those lines, so it is counted by

at least
(
r/2
2

)
= (r/2)(r/2−1)

2
≳ r2

8
line pairs.

Hence ∣∣{x ∈ S : (ii)}
∣∣ ≤ B2/2

r2/8
=

4B2

r2
≲

B2

r2
≲

B2

r3

after absorbing the constants.

Combining the two bounds yields

|S| ≤ C1DL

r
+

C2B
2

r3
≲ DLr−1 + B2 r−3,

so we are done.
■

Lemma 4.2 ( [4], Proposition 2.2). If L is a set of L lines in Rn and r > 2L1/2, then

|Pr(L)| ≤ 2Lr−1.

Proof. List the r-rich points as Pr(L) = {x1, x2, . . . , xM}, so M = |Pr(L)|. We will show
M < r/2, and then the desired bound will follow.

Since x1 lies on at least r lines, we mark those r lines as used. Then x2 lies on at least r
lines in total, but at most one of them might already be used (the one through x1), so there
are at least r − 1 new lines to mark.
Continuing in this way, when we reach the jth point xj, at most (j − 1) lines have been

used up, so there are at least r− (j− 1) new lines through xj that we have not yet counted.
Since there are only L lines altogether,

L ≥
M∑
j=1

max
(
r − (j − 1), 0

)
.

IfM ≥ r
2
, then the first ⌊r/2⌋ terms in the sum are each at least r−(j−1) ≥ r−

(
r
2
−1

)
=

r
2
+ 1, so

L ≥
⌊r/2⌋∑
j=1

(r − (j − 1)) ≥ r

2

(r
2
+ 1

)
>

r2

4
.
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But since r > 2
√
L, we have r2 > 4L, a contradiction. Hence M < r/2.

From M < r/2 and the fact that each of the M points contributed at least r
2
new lines,

we get

L ≥ M · r
2

=⇒ M ≤ 2L

r
so we are done. ■

Theorem 4.3 ( [5], Theorem 1.2). For any ε > 0, there exists a degree D = D(ε) and a
constant C(ε) such that the following holds. Suppose that L is a set of L lines in R3 with at
most B lines in any algebraic surface of degree ≤ D. Then for any 2 ≤ r ≤ 2L1/2,

|Pr(L)| ≤ C(ε)B
1
2
−εL

3
2
+εr−2.

Proof. We proceed by induction. As the base case, if D is so small that there is no nontrivial
surface of degree ≤ D, then no more than B lines can lie in any such surface. By Lemma
4.2, ∣∣Pr(L)

∣∣ ≤ 2L r−1 ≤ 4L3/2 r−2,

and since B
1
2
−εL

3
2
+ε ≥ L3/2 this is of the desired form for C(ε) ≥ 4.

Now assume the bound holds for degree D − 1. Let L satisfy the hypotheses at degree
D.By Theorem 3.4, there is a nonzero P ∈ PolyD(R3) such that R3 \Z(P ) splits into O(D3)
open cells Oi, each containing at most C ′(3)LD−3 of the lines.

Every line not contained in Z(P ) meets it in ≤ D points, hence lies in at most D+1 cells.
If Li is the set of lines meeting Oi, then

∑
i |Li| ≤ (D + 1)L. By the inductive hypothesis

on each cell, ∣∣Pr(Li)
∣∣ ≤ C(ε)B

1
2
−ε |Li|

3
2
+ε r−2.

Summing it all up gives ∑
i

∣∣Pr(Li)
∣∣ ≲ C(ε)D

1
2
−ε B

1
2
−ε L

3
2
+ε r−2.

Let LZ ⊂ L be those lines lying entirely in Z(P ). Then |LZ | ≤ B. If we apply Lemma 4.2
on the surface, we get ∣∣Pr(LZ)

∣∣ ≤ 2B r−1 ≤ 2B
1
2
−ε L

3
2
+ε r−2.

Adding the contributions from the cells and from Z(P ) shows

I(B,D,L, r) ≤ C(ε)
[
D

1
2
−ε + 1

]
B

1
2
−ε L

3
2
+ε r−2.

Choosing D(ε) large enough so D
1
2
−ε ≤ 2 completes the induction. ■

5. Bounding Through Induction on L

When B is small (i.e. ≲ logL), Theorem 4.3 is close to the best known bound. But for
larger B, it it quite loose. We will first show this best known bound, then prove a bound on
the total number of incidences.
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5.1. The Best Known Bound on |Pr(L)|.
We first state a preliminary lemma.

Lemma 5.1 (Bézout’s Inequality). Let V ⊂ CN be a nonempty locally closed (constructible)
set, and let H1, . . . , Hr ⊂ CN be algebraic hypersurfaces of degrees deg(Hi). Then

deg
(
V ∩H1 ∩ · · · ∩Hr

)
≤ deg(V )

r∏
i=1

deg(Hi).

Proof. We proceed by induction on r. Write

W = V ∩H1 ∩ · · · ∩Hr−1,

so that we must show deg(W ∩Hr) ≤ deg(W ) deg(Hr).
We take r = 1 as the base case. If V is irreducible of dimension d, then we see

deg(V ∩H1) ≤ deg(V ) deg(H1).

If V = V1 ∪ · · · ∪ Vs is the decomposition into irreducible components of dimension d, then
deg(V ) =

∑s
j=1 deg(Vj) and deg(V ∩H1) ≤

∑s
j=1 deg(Vj ∩H1) ≤

∑s
j=1 deg(Vj) deg(H1) =

deg(V ) deg(H1).
Now assume the bound holds for r − 1 hypersurfaces. Then

deg
(
V ∩H1 ∩ · · · ∩Hr

)
= deg

(
W ∩Hr

)
≤ deg(W ) deg(Hr)

≤
[
deg(V )

r−1∏
i=1

deg(Hi)
]
deg(Hr),

where the first inequality is the base-case result applied to the pair (W,Hr), and the second
is the inductive hypothesis applied to V and H1, . . . , Hr−1. So we are done ■

Using Lemma 5.1, we bound the number of surfaces that contain many lines.

Lemma 5.2 ( [4], Lemma 3.2). Let L be a set of L lines in R3. Suppose Zj are irreducible
algebraic surfaces of degree at most D, each containing at least A lines of L. If A > 2DL1/2,
then the number of surfaces Zj is at most 2L/A.

Proof. We use a double counting argument on the incidence between our surfaces and lines.
Label the surfaces Z1, Z2, . . . , ZJ . By hypothesis, Z1 contains at least A lines of L, so it
contributes A new lines. When we add Z2, Lemma 5.1 guarantees their intersection can
contain at most D2 lines. Hence among the A lines on Z2, at most D2 were already counted
on Z1, and at least A−D2 are actually new.

In general, when we reach Zj, each previous surface Zi (i < j) can share at most D2 lines
with Zj, and so the union of the first j − 1 surfaces covers at most (j − 1)D2 of the lines on
Zj. Therefore Zj adds at least A − (j − 1)D2 new lines.

Since there are only L lines total in L, summing over all j gives

L ≥
J∑

j=1

[
new lines from Zj

]
=

J∑
j=1

max
(
A− (j − 1)D2, 0

)
.

Now we extract the bound on J . Assume for the sake of contradiction, that J > 2L
A
.
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Set K =
⌈
2L/A

⌉
, so K ≤ J . Then for every 1 ≤ j ≤ K, we have

(j − 1)D2 ≤ (K − 1)D2 <
2L

A
D2 <

A

2
,

with the last strict inequality following from A > 2D
√
L. Hence each of the first K terms

in our sum satisfies

A− (j − 1)D2 >
A

2
,

and so

L ≥
J∑

j=1

max
(
A− (j − 1)D2, 0

)
≥

K∑
j=1

(
A− (j − 1)D2

)
> K · A

2
≥ 2L

A
· A
2

= L,

a contradiction. Therefore J ≤ K ≤ 2L/A, and we are done. ■

Now we are ready to work on the main bound below

Theorem 5.3 ( [4], Theorem 0.2). For any ε > 0, there are constants D(ε) and C(ε) such
that the following holds. If L is a set of L lines in R3 with at most L1/2+ε lines in any
algebraic surface of degree ≤ D(ε), then

|Pr(L)| ≤ C(ε)L3/2+εr−2 + 2Lr−1.

To show this, we will use induction on L and our method from the previous section.
However, we run into an issue. After partitioning, we collect the lines in each cell into a
subfamily Li. Since Li ⊂ L, we know that at most L(1/2)+ϵ lines of Li lie in any algebraic
surface of degree at most D, but we don’t know that at most |Li|(1/2)+ϵ lines of Li lie in any
algebraic surface of degree at most D. So we cannot directly apply induction to Li. We have
to somehow deal with low degree algebraic surfaces that contain more than |Li|(1/2)+ϵ lines
of Li. The majority of the proof is in resolving this.
To make the induction work better, we will actually show a stronger theorem, below.

Theorem 5.4 ( [4], Theorem 2.1). For any ε > 0, there are D(ε), and K(ε) such that
the following holds. For any r ≥ 2, let r′ =

⌈
r/2

⌉
. If L is a set of L lines in R3, and if

2 ≤ r ≤ 2L1/2, then there is a set Z of algebraic surfaces such that

• Each surface Z ∈ Z is an irreducible surface of degree at most D.
• Each surface Z ∈ Z contains more than L1/2+ε lines of L.
• |Z| ≤ 2L1/2−ε.
•
∣∣Pr(L) \ ∪Z∈ZPr′(LZ)

∣∣ ≤ K(ε)L3/2+ε r−2.

This clearly implies Theorem 5.3. If r > L1/2, we know |Pr(L)| ≤ 2Lr−1 by dou-
ble counting. If r ≤ 2L1/2, then Theorem 5.2 says the set Z must be empty and so
|Pr(L)| ≤ KL3/2+ϵr−2

We are now ready to prove Theorem 5.4.

Proof. Fix ϵ ∈ (0, 1
2
] and choose constants

• D = D(ϵ) so large that D−ϵ ≤ 10−3 and D ≪ K ,
• K = K(ϵ,D) sufficiently large for all upcoming inequalities.



INCIDENCE GEOMETRY IN R3 VIA POLYNOMIAL PARTITIONING 11

We proceed by induction on L = |L|. For the base case L ≤ (2D)1/ϵ, let Z = ∅; then trivially
|Z| = 0 ≤ 2L1/2−ϵ and

|Pr(L)| ≤ L2 ≤ KL3/2+ϵr−2.

Assume thes statement holds for all smaller L, and set S := Pr(L).
Now we apply Theorem 3.4 with degree D to the set S. It yields a real polynomial P of

degree ≤ D, whose zero set Z(P ) partitions R3 into O(D3) open cells {Oi}, each containing
at most CD−3|S| points of S. Lines not in Z(P ) intersect at most D + 1 cells, so∑

i

|Li| ≤ (D + 1)L ≤ 2DL,

where Li = {ℓ ∈ L : ℓ ∩Oi ̸= ∅}.
Call a cell Oi β-good if |Li| ≤ βD−2L, and choose a fixed constant β so that the total

number of lines in bad cells is at most 1
100

|S|. For each good cell we have |Li| ≤ 1
2
L (by

choosing D large), and either

r ≤ 2|Li|1/2,
or we bound |S ∩Oi| ≤ 4Lr−1 ≤ 4L3/2r−2 ≤ C1KD−3−2ϵL3/2+ϵr−2.

For the first case r ≤ 2|Li|1/2, apply the inductive hypothesis to Li and its rich set
Si := Prr(Li) ⊇ S ∩ Oi. There is a collection Zi of at most 2|Li|1/2−ϵ ≤ 2(βD−2L)1/2−ϵ

surfaces, each of degree ≤ D, so that

|Si \
⋃
Z∈Zi

Pr
r
(LZ)| ≤ K|Li|3/2+ϵr−2 ≤ C2K(D−2L)3/2+ϵr−2.

Summing over all good cells and adding the bad-cell contribution gives∣∣S \
⋃

i,Z∈Zi

Pr
r
(LZ)

∣∣ ≤ 1
400

KL3/2+ϵr−2.

Let {Zj} be the irreducible components of Z(P ). Each line not contained in Zj meets it
in at most degZj points, so

|S ∩ Zj \ Pr
r
(LZj

)| ≤ 10r−1(degZj)L,

and summing over j yields∣∣S ∩ Z(P ) \
⋃
j

Pr
r
(LZj

)
∣∣ ≤ 10DLr−1 ≤ 1

400
KL3/2+ϵr−2.

Combining these two inequalities shows that outside the surfaces in

Z ′ :=
⋃
i

Zi ∪ {Zj},

all but at most 1
200

KL3/2+ϵr−2 points of S lie on some surface of degree ≤ D. Moreover,

|Z ′| ≤
∑
i

2(βD−2L)1/2−ϵ +D ≤ CD3L1/2−ϵ.

Call these surfaces preliminary.
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Set S1 = S and iterate. Remove from Sj all points lying on any surface of Z ′
j, producing

Sj+1. Then reapply everything and to obtain a fresh list Z ′
j. After J = 1000 logL iterations

we see that

|SJ+1| ≤ (1/100)KL3/2+ϵr−2,

and the union Z̃ =
⋃

j<J Z ′
j has size

|Z̃| ≤ CD3L1/2−ϵ logL.

Finally, prune to

Z := {Z ∈ Z̃ : |LZ | ≥ L1/2+ϵ},
and apply Lemma 5.1 with A = L1/2+ϵ to get

|Z| ≤ 2L1/2−ϵ,

and redistribute the remaining few rich points by Theorem 3.4. We get∣∣S \
⋃
Z∈Z

Pr(LZ)
∣∣ ≤ KL3/2+ϵr−2.

So the induction is done. ■

5.2. A Bound on Total Incidences.
For the remainder of this paper, we work on bounding incidences in general, and shift from
r-rich points. The rest of this section will show an incidence bound for lines. Like Szemerédi-
Trotter and our r-rich bound, we induct on L. When we carry out the argument, there end
up being many terms, making it complicated. For some intuition, we discuss the thought
process beforehand.

Basically, we use Theorem 3.4 to control the incidences in the cells outside of Z(P ). We
divide the surface Z(P ) into planar parts and non-planar parts. The contribution from the
planar parts is controlled using the fact that there are at most B lines in any plane. The
contribution from the non-planar parts of Z(P ) is controlled using the theory of flat points
and lines.

Theorem 5.5 ( [10], Theorem 1). There exists an absolute constant C0 > 0 such that the
following holds. Let S ⊂ R3 be a set of |S| points and L a set of L lines, with at most B
lines of L contained in any single plane and with B ≥ L1/2. Then the number of incidences
satisfies

I(S, L) ≤ C0

(
|S|1/2 L3/4 +B1/3 L1/3 |S|2/3 + L+ |S|

)
.

Proof. We proceed by induction on L. For small L or extreme S, trivial counts I(S,L) ≤
L+S2, and Theorem 5.5 via projection show the claim holds with a suitable C0. Henceforth
assume

10L1/2 ≤ S ≤ 1
10
L2.

Let D ≥ 1 be a parameter chosen later. By Theorem 3.4, choose P ∈ R[x, y, z] of degree
≤ D so each connected component of R3 \ Z(P ) contains ≤ S/D3 points of S. Write

Salg = S ∩ Z(P ), Scell = S \ Salg,

Lalg = {ℓ ∈ L : ℓ ⊂ Z(P )}, Lcell = L \ Lalg.
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Decompose R3 \ Z(P ) =
⋃

i Oi. In each cell Oi, set

Si = S ∩Oi, Li = {ℓ ∈ L : ℓ ∩Oi ̸= ∅}.

Then |Si| ≤ S/D3 and
∑

i |Li| ≤ DL. Applying Theorem 4.1 in each cell and summing gives∑
i

I(Si, Li) ≤ C
(
D−1/3S2/3L2/3 +DL+ |Scell|

)
.

Each line in Lcell meets Z(P ) in at most D points, so

I(Salg, Lcell) ≤ DL.

Combining these two contributions,

I(S,L) ≤ C
(
D−1/3S2/3L2/3 +DL+ S

)
+ I(Salg, Lalg).

Next we bound I(Salg, Lalg) by splitting into planar, multiple-planar, and non-planar
pieces.

First the planar part. Let Lplan be lines in some plane of Z(P ), further split into Luni ⊂
Lplan lying in exactly one such plane, and Lmulti ⊂ Lplan lying in two or more planes. Similarly
define Suni, Smulti. Since each plane contains ≤ B lines, applying Theorem 3.4 in each plane
yields

I(Salg, Lplan) = I(Salg, Luni)+I(Smulti, Lmulti) ≤ C
(
B1/3L1/3S2/3+DL+|Suni|

)
+I(Smulti, Lmulti),

and we show |Lmulti| ≤ D2 and handles it by induction.

Now for the non-planar algebraic part. Define special points Sspec (critical or flat) and
special lines Lspec on Z(P ). Set Snonspec = Salg \ Sspec, Lnonspec = Lalg \ (Lplan ∪ Lspec). Now,
by Lemma 2.8,

I(Snonspec, Lalg) ≤ C|Snonspec|, I(Sspec, Lnonspec) ≤ CDL,

and bounds the remaining I(Sspec, Lspec \ Lplan) by noting

|Lspec \ Lplan| ≤ 4D2

and inducting on this small set.
Collecting all contributions, we see

I(S,L) ≤ C
(
D−1/3S2/3L2/3 +DL+B1/3L1/3S2/3 + L+ S

)
+ I(S ′, L′),

where |L′| ≤ 10D2 ≤ L/2, so the induction applies to I(S ′, L′). Finally chooseD ∼ S1/2L−1/4

in the range 1 ≤ D ≤ (1/10)L1/2. We check

D−1/3S2/3L2/3 +DL ≲ S1/2L3/4 +B1/3L1/3S2/3,

so the induction is complete. We are done. ■
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6. Sufficiently Rich Points on Algebraic Curves

In this section we present the two main incidence bounds for points on constant-degree
algebraic curves in R3.

To do this, we revisit Lemma 5.1. One direct consequence of Bézout is that a constructible
set C is a union of locally closed sets. Also, we can decompose C uniquely as the union of
irreducible locally closed sets. We state an important corollary of Lemma 5.1.

Corollary 6.1 (Consequence of Bézout for Constructible Sets). Let C ⊂ CN be a con-
structible set and write it as the union of locally closed sets

⋃t
i=1Xi, where

Xi = {p ∈ CN | f i
1(p) = 0, . . . , f i

ri
(p) = 0, gi(p) ̸= 0},

for polynomials f i
1, . . . , f

i
ri
, gi ∈ C[x1, . . . , xN ].

If C contains more than
∑t

i=1 deg(f
i
1) · · · deg(f i

ri
) points, then C is infinite.

Proof. Assume, for the sake of contradiction, that C is finite. Then each Xi is also finite,
and ∣∣C∣∣ =

t∑
i=1

∣∣Xi

∣∣ ≤
t∑

i=1

deg
(
Vi

)
,

where Vi := {p ∈ CN | f i
1(p) = · · · = f i

ri
(p) = 0} is the affine variety defined by the common

zeros of f i
1, . . . , f

i
ri
. By Theorem 5.1,

deg(Vi) ≤
ri∏
j=1

deg
(
f i
j

)
.

Hence ∣∣C∣∣ ≤
t∑

i=1

deg(Vi) ≤
t∑

i=1

ri∏
j=1

deg
(
f i
j

)
.

Contradiction. Therefore C must be infinite. ■

Theorem 6.2 ( [11], Theorem 1.4). Let P be m points and let C be n irreducible degree-E
curves from a constructible family C0 of complexity O(1) and k degrees of freedom in R3.
Suppose no surface infinitely ruled by curves of C0 contains more than q < n curves of C.
Then

I(P, C) = O
(
m

k
3k−2 n

3k−3
3k−2 + m

k
2k−1 n

k−1
2k−1 q

k−1
2k−1 + m + n

)
,

where the hidden constant depends on k,E and the complexity of C0.

Proof. We double induct on the number of curves n and the number of points m that for
any sets of points P and curves C satisfying Theorem 6.2, there exists a constant A

I(P,C) ≤ A
(
m

k
3k−2 n

3k−3
3k−2 + m

k
2k−1 n

k−1
2k−1 q

k−1
2k−1 + m+ n

)
.

As the base cases, when n ≤ n0, choosing A ≥ n0 makes the bound trivial. When
m ≤ a′ n1/k, the naive bound I(P, C) = O(n) implies the bound upon taking A sufficiently
large.

Assume now that the bound holds for all smaller pairs (m′, n′) in the lexicographic order,
and let m > a′ n1/k and n > n0.
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Now we apply partitioning. Choose constants a, a′, c > 0 and define

D =

c
m

k
3k−2

n
1

3k−2

, a′ n1/k ≤ m ≤ a n3/2,

c n1/2, m > an3/2.

By Theorem 3.4, there is a real polynomial f of degree at most D whose complement has
O(D3) connected cells, each crossed by at most O(n/D2) curves from C. Label these cells
τ1, . . . , τu, and set

Pi = P ∩ τi, Ci = {γ ∈ C : γ ∩ τi ̸= ∅}, mi = |Pi|, ni = |Ci| = O
(
n/D2

)
.

For each cell τi, the trivial bound gives

I(Pi, Ci) = O
(
m

1−1/k
i ni + ni

)
.

Summing over all O(D3) cells, we get

• If m ≤ a n3/2:∑
I(Pi, Ci) = O

(
m

k
3k−2 n

3k−3
3k−2

D2(1−1/k) + nD3
)
= O

(
m

k
3k−2n

3k−3
3k−2

)
.

• If m > an3/2: here ni = O(1), so∑
I(Pi, Ci) = O

(∑
mi

)
= O(m).

In either case, ∑
i

I(Pi, Ci) = O
(
m

k
3k−2n

3k−3
3k−2 +m

)
.

Let P ∗ = P ∩ Z(f) and write C = C∗ ∪ C ′, where C∗ are the curves fully contained in
Z(f) and C ′ = C \ C∗. Then

I(P ∗, C ′) = O(nD) = O
(
m

k
3k−2n

3k−3
3k−2 +m

)
.

It remains to handle I(P ∗, C∗). Factor f =
∏t

i=1 fi into irreducibles of degrees Di, so∑
Di = D. Assign each p ∈ P ∗ and each γ ∈ C∗ to the first fi that vanishes on it, yielding

sets Pi, Ci with sizes mi, ni.
If Z(fi) carries at most q curves from C, projecting to the plane gives

I(Pi, Ci) = O
(
m

k
2k−1

i n
k−1
2k−1

i q
k−1
2k−1 +mi + ni

)
.

Summing with Hölder’s inequality yields∑
i: ruled

I(Pi, Ci) = O
(
m

k
2k−1n

k−1
2k−1 q

k−1
2k−1 +m+ n

)
.

Each component supports at most O(D2
i ) “exceptional” curves. We can handle them by the

outer induction on n to get a contribution bounded by

A
(
m

k
3k−2n

3k−3
3k−2 +m

k
2k−1n

k−1
2k−1 q

k−1
2k−1 +m+ n

)
.

The non-exceptional curves contributeO(mi+niDi), summing toO(m+nD) = O(m
k

3k−2n
3k−3
3k−2+

m+ n).
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Combining the contribution with the bounds for C ′, and choosing A large enough, we get
the desired bound. So we are done. ■

This is a generalization of [5] for lines. The bound in Theorem 6.2 can be further improved
if we also analyze the dimensionality of C0.

For example, we can take C0 to be the set of all circles in R3. Then, since the only surfaces
that are infinitely ruled by circles are spheres and planes, the subfamily of all circles that
are contained in some sphere or plane is only 3-dimensional (while C0 is 6 dimensional).

Formally, we say C0 is a family of reduced dimension s if, for each surface V that is
infinitely ruled by curves of C0, the subfamily of the curves of C0 that are fully contained in
V is s-dimensional. This gives us the following bound.

Lemma 6.3 ( [11], Theorem 1.13). For given integer parameters c, E, there exist constants
C1 = C1(c, E), r = r(c, E), and t = t(c, E) such that the following holds. Let f be a complex
irreducible polynomial of degree D ≫ E, and let C0 ⊂ C3

E be a constructible set of complexity
at most c. If there exist at least C1D

2 curves of C0 such that each of them is contained in
Z(f) and contains at least C1D points on Z(f) that are (t, C0, r)-flecnodes, then Z(f) is
infinitely ruled by curves from C0.
In particular, if Z(f) is not infinitely ruled by curves from C0, then, except for at most

C1D
2 exceptional curves, every curve in C0 that is fully contained in Z(f) is incident to at

most C1D points that are incident to at least t curves in C0 that are also fully contained in
Z(f).

Proof. We present a sketch of the proof and machinery needed to show this lemma.
For the moment, fix an arbitrary integer r. By Lemma 8.3 and Equation (8.1) in [6], since

f is irreducible there exist r polynomials

hj(α, p) ∈ C[α, x, y, z], j = 1, . . . , r,

each of degree at most bj in the parameter α (where bj depends only on j and E) and of
degree O(D) in the point coordinates p = (x, y, z), with the following characterization: if γ
is an irreducible curve, p is a non-singular point of γ, and α encodes γ, then γ osculates to
Z(f) to order r at p exactly when

hj(α, p) = 0 for all j = 1, . . . , r.

(Geometrically, each hj represents one of the first r coefficients of the Taylor expansion of f
along γ at p. See Section 6.2 of [6], and the classical line-specific analyses in [10].

Now, treating p as fixed, the equations

hj(α, p) = 0, j = 1, . . . , r,

together with the condition α ∈ C0, define a constructible set Cp. By definition its degree
satisfies

d(Cp) ≤
( r∏
j=1

bj

)
· d(C0),

which is a constant depending only on r and E. Hence, by Corollary 6.1, Cp is either infinite
or contains at most d(Cp) = O(1) points.
Also , Corollary 12.1 of [6] guarantees the existence of a Zariski-open subset Ω ⊂ Z(f)

and a sufficiently large threshold r0 (determined by C0 and E via Theorem 8.1 of [6] such
that, whenever p ∈ Ω is a (t, C0, r)-flecnode with r ≥ r0, there are at least t curves from our
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family passing through p and lying entirely in Z(f). By hypothesis we have at least C1D
2

such curves, each carrying at least C1D (t, C0, r)-flecnodes, so Proposition 10.2 of [6] further
implies that Ω is entirely composed of (t, C0, r)-flecnodes. Applying Theorem 8.1 of [6] again,
we deduce that every point of Ω lies on at least t degree-≤ E curves contained in Z(f).
Finally, if we choose t ≥

(∏r
j=1 bj

)
d(C0)—a constant depending only on C0 and E—then

Z(f) must be infinitely ruled by C0 on Ω, and this ruling extends over all of Z(f). So we are
done.

■

This is a result of the analysis of Guth and Zahl [6]. It’s novelty is that it addresses
surfaces that are infinitely ruled by certain families of curve, instead of only doubly ruled.

Theorem 6.4 ( [11], Theorem 1.5). Under the same hypotheses as Theorem 6.2, assume
further that for every surface V infinitely ruled by curves of C0, the curves of C0 contained
in V form an s-dimensional family. Then for any ϵ > 0,

I(P, C) = O
(
m

k
3k−2 n

3k−3
3k−2 + m2/3n1/3q1/3 + m

2s
5s−4 n

3s−4
5s−4 q

2s−2
5s−4 nϵ + m + n

)
,

where the constant depends on k, µ, s, E, ϵ and the family complexity.

Theorem 6.4 is an improvement of Theorem 6.2 when s ≤ k and m > n1/k, in cases where
q is sufficiently large.

Proof. We again proceed by double induction on n and m.
As the base cases, if n ≤ n0, choose A ≥ n0 so that the bound holds trivially. Ifm ≤ a′ n1/k,

then the naive bound I(P, C) = O(n) suffices, upon taking A large.

Assume now the bound holds for all pairs (m′, n′) with n′ < n or n′ = n, m′ < m, and let
n > n0, m > a′ n1/k.
Fix constants a, a′, c > 0 and set

D =

c
m

k
3k−2

n
1

3k−2

, a′ n1/k ≤ m ≤ a n3/2,

c n1/2, m > an3/2.

By Theorem 3.4, there is a real polynomial f of degree ≤ D partitioning R3 into O(D3)
cells, each met by O(n/D2) curves of C. Denote the cells by τi, and write

Pi = P ∩ τi, Ci = {γ ∈ C : γ ∩ τi ̸= ∅}, mi = |Pi|, ni = |Ci| = O(n/D2).

Using the trivial estimate I(Pi, Ci) = O(m
1−1/k
i ni + ni) and summing over O(D3) cells

yields ∑
i

I(Pi, Ci) = O
(
m

k
3k−2n

3k−3
3k−2 +m

)
.

Let P ∗ = P ∩ Z(f) and split C = C∗ ∪ C ′, with C∗ the curves lying entirely in Z(f). Then

I(P ∗, C ′) = O(nD) = O
(
m

k
3k−2n

3k−3
3k−2 +m

)
.

Factor f =
∏t

i=1 fi into irreducibles of degrees Di, and assign each point in P ∗ and each
curve in C∗ to the first component fi vanishing on it, creating sets Pi, Ci of sizes mi, ni.
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If Z(fi) is infinitely ruled by the family C0, then at most q curves of C∗ lie on it. Projecting
points Pi and curves Ci to a generic plane, we get

I(Pi, Ci) = O
(
m

2s
5s−4

i n
3s−6
5s−4

i +m
2/3
i n

2/3
i +mi + ni

)
.

By Hölder’s inequality and tracking the q curves, we get∑
i: ruled

I(Pi, Ci) = O
(
m

2s
5s−4n

3s−4
5s−4 q

2s−2
5s−4 + ϵm2/3n1/3q1/3 +m+ n

)
.

By Lemma 6.3, each Z(fi) contains O(D2
i ) exceptional curves, which are handled by

induction on n. The remaining curves contribute O(mi + niDi), summing to O(m+ nD) =

O(m
k

3k−2n
3k−3
3k−2 +m+ n).

Collecting contributions from the cells, from C ′, and from both cases on Z(f), and choosing
A large, yields the bound. So we are done. ■
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